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Although baicalein and wogonin contents in Scutellaria baicalensis, a traditional

Chinese herb, are known to be regulated by jasmonic acid, the exact mechanism

by which jasmonic acid regulates the accumulation of baicalein and wogonin

remains unclear. In this study, we discovered SbLOX3, a gene encoding 13-

lipoxygenase from the roots of S. baicalensis, which plays an important role in the

biosynthesis of jasmonic acid. The contents of methyl jasmonate, baicalin,

wogonin, and three metabolic intermediates of methyl jasmonate, 13-HPOT,

OPDA, and OPC-8, were downregulated in the hair roots of the SbLOX3 RNAi

lines. We confirmed that SbLOX3 was induced by drought stress simulated by

PEG and Fusarium oxysporum, which subsequently led to changes in the content

of MeJA, baicalin, and wogonin. Taken together, our results indicate that a 13-

LOX is involved in the biosynthesis of jasmonic acid, and regulates the

accumulation of baicalein and wogonin in S. baicalensis roots.
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Introduction

Scutellaria baicalensis Georgi is a commonly used traditional Chinese herb known for

its antiviral, anti-inflammatory, and anticancer properties (Duan et al., 2014; Liu et al.,

2021; Song et al., 2021). The primary medicinal metabolites found in S. baicalensis are

baicalein and wogonin (Himeji et al., 2007; Nayak et al., 2014; Wang et al., 2018). Baicalin

content is the primary evaluation index for the quality control of S. baicalensis, as specified

in the National Pharmacopoeia of 2015 (National Pharmacopoeia Committee, 2015).
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The accumulation of baicalin and wogonin in the roots of S.

baicalensis is closely linked to a distinct anatomical structure

referred to as the “root hollow”. The levels of baicalin and

wogonin are observed to be higher in hollow roots as compared

to those without a hollow (Ren et al., 2009; Zhao et al., 2017). This

difference is related to the content of jasmonic acids (JAs) in the

roots based on our previous study (Geng et al., 2023). The

regulation of 4’-deoxyflavone accumulation is mediated by methyl

jasmonate (MeJA), with exogenous application of MeJA leading to

an increase in the levels of both baicalin and wogonin in S.

baicalensis roots. However, the mechanism by which JAs are

stimulated during root hollow development remains unknown.

The JA biosynthetic pathway and catalyzing enzymes have been

elucidated in Arabidopsis. JA biosynthesis begins with a-linolenic
acid (a-LeA) in the plastid. 13-Lipoxygenase (13-LOX) oxidizes

LeA to (13S)-hydroperoxy octadecatrienoic acid (13-HPOT), and

13-allene oxide synthase (13-AOS) and allene oxide cyclase (AOC)

catalyze 13-HPOT into 12-oxo-10,15(Z)-phytodienoic acid (OPDA;

Wasternack & Hause, 2013). In Arabidopsis, AtLOX2, AtLOX3,

AtLOX4, and AtLOX6 are four major 13-LOXs that participate in

the biosynthesis of JAs. Each of these 13-LOXs participates in

biosynthesis of JAs in leaves (Chauvin et al., 2013; Grebner et al.,

2013; Chauvin et al., 2016). Among these genes, expression of

tLOX3 and AtLOX4 is active and AtLOX2 and AtLOX6 are highly

unstable (Bannenberg et al., 2009). AtLOX3 and its closely related

gene, AtLOX4, are highly expressed in the roots of Arabidopsis, but

the expression levels of AtLOX2 and AtLOX6 are very low in roots

(Vellosillo et al., 2007). Thus, AtLOX3 and AtLOX4 respond to

biotic and abiotic stress in roots (Ding et al., 2016; Yang et al., 2020;

Oshita et al., 2023).

In our previous study, two genes, such as Sb01g66750 and

Sb01g34210, were induced in roots with root hollows according to a

transcriptome analysis (Geng et al., 2023). These two genes were

annotated to have 13-LOX activity. In this study, we identified

Sb01g66750, which was called SbLOX3, as a 13-LOX that catalyzes

the biosynthesis of 13-HPOT and JAs in S. baicalensis. It also

further affected root hollow development and the accumulation of

baicalein and wogonin. We report that PEG-simulated drought

stress induced the expression of SbLOX3 and the accumulation of

MeJA, baicalein, and wogonin in the hair roots of S. baicalensis.
Materials and methods

Plant materials

The plants were maintained in Jinan, Shandong Province, China

(36°20´N, 117°47´E). S. baicalensis Georgi seedlings were planted in

pots (8 × 12 cm) filled with 90% nursery substrate (0–6mm, Pindstrup,

Denmark) and 10% vermiculite. The seedlings were cultured in a

growth chamber at 25°C, with an illumination of 60 mmol m−2 s−1 and

a humidity of 50%–75% until 10 pairs of main leaves appeared. Then,

half of the seedlings were harvested, segmented by organ, frozen in

liquid nitrogen, and stored at −80°C for quantitative real-time-

polymerase chain reaction (qRT-PCR) analysis. The other half of the

seedlings were used to induce hair roots and RNAi.
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Cloning and phylogenetic analysis of
SbLOX3 and SbLOX6

The primers used for full-length cloning of Sb01g66750 and

Sb01g34210 were designed from the S. baicalensis reference genome

database of Zhao et al. (2019) and are listed in Supplementary

Table 1. The PCR products were cloned into pDONR207 using the

Gateway BP Clonase II enzyme mix (Thermo Fisher, Waltham,

MA, USA). The sequencing results are shown in Supplementary

Figure 1. The sequenced genes were aligned, and the phylogenetic

trees were built using Molecular Evolutionary Genetics Analysis

version 7.0 (Kumar et al., 2016) and the maximum likelihood

method with 1,000 replicates of bootstrap support.
Hair root induction for RNAi

Nonhomologous DNA regions of SbLOX3 and SbLOX6 were

cloned using the primers listed in Supplementary Table 1. The PCR

products were cloned into pDoner 207 for sequencing and then

cloned into pK7WIWG2D using the Gateway LR Clonase II enzyme

mix. The RNAi vector was introduced into A. rhigogenes A4 by

electroporation. The transformants were screened on LB solid

medium containing 50 mg L−1 spectinomycin.

The signal clone of A. rhigogenes A4 carrying the empty vectors or

the SbLOX3 RNAi vectors was inoculated into 5 ml of YEB liquid

medium containing 50 mg L−1 spectinomycin at 28°C and 120 rpm

until an OD600 value of 0.5 was reached. The culture was centrifuged at

3,000 × g for 15 min, the supernatant was removed, and the pellet was

resuspended in MS liquid medium containing 50 mM acetosyringone.

Scutellaria hairy roots were induced using the method described

by Zhao et al. (2016) with modifications. The fourth and fifth main

leaves of S. baicalensis seedlings were collected as leaf explants. The

leaves were treated with 75% ethanol for 30 s and with 0.1%

mercuric chloride for 10 min, then washed five times in sterile

water. The leaves were scratched in an A. rhigogenes-infection

solution using a knife. The leaves were dried with sterile filter

paper and cultured on MS solid medium containing 50 mM
acetosyringone at 25°C for 72 h in the dark. Then, the leaves

were transferred to B5 medium containing 50 mg L−1 kanamycin

for 4 weeks until the hair roots were visible. The medium was

exchanged every week. The hair roots were screened by qRT-PCR.
PEG-simulated drought stress

Hair roots with positive results were transferred to new B6

liquid medium containing 50 mg L−1 kanamycin with shaking at

100 rpm for 8 weeks. The liquid medium was exchanged every 2

weeks. All hair roots were transferred to a new medium for the

PEG-simulated drought stress. The hair roots were randomly

divided into a treatment group, in which 5%, 10%, 15%, 20%, and

25% PEG-8000 (Sigma, St. Louis, MO, USA) was added to the

medium. The medium was not exchanged in the control group. The

PEG-simulated drought stress lasted for 7 days. The hair roots were

harvested 6 h after treatment for qRT-PCR analysis, and 1 day after
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treatment for MeJA content analysis and 7 days for baicalein and

wogonin content. All harvested roots were frozen in liquid nitrogen

and stored at −80°C for further analysis.
Preparation of F. oxysporum spore
suspension and inoculation on hair root

F. oxysporum was purchased from Agricultural Culture Collection

of China. A 5-mm spore cake was cut from the edge of potato dextrose

agar medium and grown in potato dextrose water media at 26°C with

shaking at 200 r/min for 2 days to prepare spore suspension. Each bottle

of hair roots in treatment groups was added with 2 ml of spore

suspension, while the control group was added with 2 ml of potato

dextrosewatermedia. Thehair rootswere harvested 9h after inoculation

for qPCRanalysis; 1 day after inoculation forMeJA content analysis; and

1 day, 2 days, 3 days, and 4 days after inoculation for baicalein and

wogonin content analysis. All harvested roots were frozen in liquid

nitrogen and stored at −80°C for further analysis.
Wound treatment

Cultured hair roots with positive qRT-PCR results were selected for

the wound treatment. The hair roots were randomly divided into a

treatment group, in which the hair roots were wounded with forceps,

and control plants, which were handled identically but not wounded. All
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hair roots were cultured for 7 days. Then, all hair roots were harvested,

frozen in liquid nitrogen, and stored at −80°C for further analysis
qRT-PCR analysis

The qRT-PCR analysis was performed using the method

described by Geng et al. (2023) with the plant materials described

by Geng et al. (2023) (Figures 1A, C), the frozen organ materials

described above (Figure 1B), or with hair roots (Figures 2, 3).
UPLC-MS analysis

Baicalin, wogonin, 13-HPOT, OPDA, OPC-8, and MeJA

standards were purchased from Desite Biotech (Chengdu, Sichuan

Province, China). Standard stock solutions (0.1 mg ml−1) were

prepared following Geng et al. (2023).

The frozen samples were crushed in amixermill (MM400, Retsch)

containing small steel balls in liquid nitrogen for 1.5 min at 30 Hz.

Then, 1 g of sample was extracted three times with 10 ml of 50%

methanol in an ultrasonicator bath for 30 min and centrifuged at

12,000 × g for 10 min to remove debris. The supernatant was collected

and concentrated with a vacuum concentrator (Labconco, Kansas City,

KS, USA) at 4°C until it was 2 ml. The concentrated supernatant was

filtered through a 0.2-mm filter before injection. UPLC was performed

with the Acquity H system (Waters Corp., Milford, MA, USA). MS was
B

C D

A

FIGURE 1

Identification and expression profiles of SbLOX genes. (A) Relative expression level of Sb01g66750 and Sb01g34210 in 2-year and 3-year roots with
root hollow. (B) Relative expression level of Sb01g66750 and Sb01g34210 in different organs. (C) Phylogenetic tree of Sb01g66750 and Sb01g34210.
(D) Relative expression level of Sb01g66750 and Sb01g34210 during root hollow development. The data are the means ± SDs (n= 3), *means p <
0.05, **means p < 0.01.
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performed with the Xevo TQ-XS system (Waters Corp). Separation

was achieved with a 150 × 2.1-mm, 3-µm C18-120 column (Shimadzu,

Tokyo, Japan) and the following gradient: 0.1% formic acid in water

(A) vs. 0.1% formic acid in acetonitrile (B) run at 0.3 ml min−1 and a

column temperature of 40°C (0 min, 95% B; 15 min, 95% B; 16 min,

95% B; 17 min, 5% B; 20 min, 5% B).
Statistics

All data are presented as mean ± SD. The paired or unpaired

two-tailed Student’s t-test was used to detect group differences. p-

values < 0.05 were considered significant. Three biological repeats

were used for all analyses.
Results

Identification and expression profiles of the
SbLOX genes

Sb01g66750 and Sb01g34120 were upregulated differentially

expressed genes (DEGs) in 3-year roots with hollows compared
Frontiers in Plant Science 04
with 2-year roots without hollows (Geng et al., 2023). To confirm

the RNA-seq results, qRT-PCR was performed on 2-year roots

without hollows and on 3-year roots with hollows. The results

showed that Sb01g66750 and Sb01g34120 were upregulated in 3-

year roots with hollows compared with 2-year roots without

hollows (Figure 1A).

The full-length Sb01g66750 and Sb01g34120 were sequenced

(Supplemental Data 1). A maximum-likelihood phylogenetic tree

was constructed to identify the functions and the evolutionary

relationships of Sb01g66750 and Sb01g34120. The results showed

that Sb01g66750 was homologous with AtLOX3 and Sb01g34120

was homologous with AtLOX6 (Figure 1B). Thus, we named

Sb01g66750 SbLOX3 and Sb01g34120 SbLOX6.

The SbLOX3 and SbLOX6 expression levels were analyzed in

different organs by qRT-PCR (Figure 1C). The expression level of

SbLOX3 was much higher than that of SbLOX6 in all organs. The

expression of SbLOX3 was higher in roots than in aerial parts, and

the expression of SbLOX6 was higher in aerial parts, particularly in

flowers, than in roots. These organ expression patterns were

consistent with those of AtLOX3 and AtLOX6 (Vellosillo

et al., 2007).

MeJA content increases during the development of root

hollows in S. baicalensis roots (Geng et al., 2023). AtLOX3 and
B

C

E

D

A

FIGURE 2

RNAi of SbLOX3 and SbLOX6. (A, B) Relative expression level of Sb01g66750 (A) and Sb01g34120 (B) in Sb01g66750 (A) and Sb01g34120 (B) RNAi
lines. (C) Content of MeJA in Sb01g66750 Sb01g34120 RNAi lines with or without manual wounded. (D) Relative content of a-LeA, 13-HPOT, and
OPDA in Sb01g66750 RNAi lines. (E) Biosynthesis pathway of MeJA in plants. Blue marks means downregulated compared with wild type. The data
are the means ± SDs (n= 3), *means p < 0.05, **means p < 0.01.
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AtLOX6 are two 13-LOX genes related to the biosynthesis of JAs

(Chauvin et al., 2013; Grebner et al., 2013; Chauvin et al., 2016).

Thus, qRT-PCR was used to analyze the expression levels of

SbLOX3 and SbLOX6 during root hollow development

(Figure 1D). The results showed that the expression of SbLOX3

and SbLOX6 increased 7.5-fold and 1.76-fold, respectively, during

root hollow development.
RNAi silencing of SbLOX3 and SbLOX6 in
hairy roots of S. baicalensis

RNAi was performed to confirm the role of SbLOX3 and

SbLOX6 in the biosynthesis of JAs in S. baicalensis roots. qRT-

PCR confirmed that the expression of SbLOX3 and SbLOX6 was

downregulated in the RNAi lines (Figures 2A, B). The SbLOX3

transcript level decreased by 78% in line 8 and by 53% in line 17.

The SbLOX6 transcript level decreased by 47% in line 19 and by

60% in line 22.

MeJA content decreased from 10.17 ng/g FW to 6.19 ng/g FW

in the SbLOX3 RNAi line 8 and to 7.37 ng/g FW in the SbLOX3

RNAi line 19 (Figure 2C). MeJA content increased significantly in

the wild type (WT) and SbLOX3 RNAi lines after being wounded,

but MeJA content remained significantly lower in the SbLOX3

RNAi lines than the WT. The MeJA content of the SbLOX6 RNAi

lines was not significantly different from the WT before and after

being wounded. Thus, we chose SbLOX3 as the major 13-LOX in

the biosynthesis of JAs in S. baicalensis roots.
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AtLOX3 in Arabidopsis encodes a lipoxygenase that catalyzes

the oxygenation of linolenic acid, which is transformed into 13-

HPOT. Thus, contents of linolenic acid, 13-HPOT OPDA, and 3-

oxo-2-(20-[Z]-pentenyl)-cyclopentane-1-octanoic acid (OPC-8),

which are downstream metabolites of 13-HPOT, were analyzed in

the WT and SbLOX3 RNAi lines by UPLC-MS (Figures 2D, E). The

results revealed no significant difference in linolenic acid content

between the WT and SbLOX3 RNAi lines. The 13-HPOT, OPDA,

and OPC-8 contents decreased significantly in the SbLOX3 RNAi

lines compared with the WT. This result indicates that SbLOX3 has

13-LOX activity and catalyzes the biosynthesis of 13-HPOT and JAs

in S. baicalensis.

The expression of JA-related transcription factors was

downregulated in the SbLOX3 RNAi lines. Based on our RNA-seq

results (Geng et al., 2023), we identified Sb06g11810, Sb01g24050,

Sb08g14740, and Sb03g14740 as differentially expressed transcription

factors associated with JAs. Among these, Sb06g11810 and

Sb01g24050 were found to be homologs of AtMYC2 (Supplemental

Figure 1A), and Sb06g11810was specifically identified as a homolog of

SmMYC2 in Salvia miltiorrhiza. S. miltiorrhiza and S. baicalensis

belong to the Lamiaceae. Sb08g14740 was identified as a homolog of

SiMYC2 in Sesamum indicum and Sb03g14740 was characterized as a

homolog of MTB3-like in Saliva hispanica. We quantified the

expression levels of Sb06g11810, Sb01g24050, Sb08g14740, and

Sb03g29260 in both wild-type and RNAi lines using qRT-PCR. The

expression of Sb06g11810 and Sb01g24050 was significantly

decreased in the SbLOX3 RNAi lines, while no significant

differences were observed for Sb08g14740 and Sb03g29260

(Supplemental Figures 1B–E).
FIGURE 3

In situ hybridization of SbLOX3. (A, B) In situ hybridization of SbLOX3 transcripts using sense probe in root without root hollow (A) or roots with root
hollow (B). (C) In situ hybridization of SbLOX3 transcripts using anti-sense probe in root without root hollow. (D) Enlarged image of (C). (E) In situ
hybridization of SbLOX3 transcripts using anti-sense probe in root with root hollow. (F, G) Enlarged image of (E) V, vessels. F, Fiber cells. M,
meristematic cells. Scale bars are shown in the lower right corner.
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In situ hybridization confirms that SbLOX3
is expressed during the development of
root hollows in S. baicalensis

To confirm the function of SbLOX3 in the biosynthesis of JAs

and the development of root hollows in S. baicalensis, DIG-labeled in

situ hybridization was performed on roots during root hollow

developmental stages I and IV (Geng et al., 2023). Only the

background was detectable when using the sense probe

(Figures 4A, B). However, strong signals were detected in tertiary

cambium that wraps the root hollow in stage 4 roots and xylem in

stage 1 and stage 4 roots when using the anti-sense probe (Figures 4C,

D). The enlarged image shows that the SbLOX3 transcripts were

expressed in meristem cells of the tertiary cambium (Figure 4E) and

in the vessels and fiber cells of the xylem (Figures 4F, G).
PEG-simulated drought stress and
Fusarium oxysporum demonstrated that
SbLOX3 responded to drought stress and
regulated the biosynthesis of MeJA under
drought stress

MeJA and other JAs respond to drought stress in plants

(Wasternack and Song, 2017) and regulate the biosynthesis of
Frontiers in Plant Science 06
baicalein in the roots of S. baicalensis (Xu et al., 2010; Geng et al.,

2023). Thus, we hypothesized the SbLOX3 response to drought

stress. Different PEG-8000 concentrations were tested to discover

the optimum concentration. The results showed that the SbLOX3

expression level was higher under 15% PEG-8000 than the other

PEG-8000 concentrations. qRT-PCR analysis showed that SbLOX3

was significantly induced by PEG-simulated drought stress

(Supplemental Figure 2). The expression level of SbLOX3,

Sb06g11810, and Sb01g24050 was significantly lower in the RNAi

lines than in the WT under drought stress (Figures 3A-C). MeJA

content in the hair roots of the WT and RNAi lines was induced

under drought stress, and MeJA content was lower in the RNAi

lines than the WT of the control and treatment groups (Figure 3D).

Drought stress induced the biosynthesis of baicalein and wogonin

in the hair roots of the WT and RNAi lines, but lower contents of

baicalein and wogonin were observed in the hair roots of the RNAi

lines compared with the WT (Figures 3E, F).

SbMYB3, an R2R3-MYB transcription factor that was reported as a

regulator of biosynthesis of root-specific flavones like baicalein and

wogonin in S. baicalensis roots, was induced by JAs (Fang et al., 2022).

The expression level of SbMYB3 inWT and SbLOX3 RNAi lines under

control and PEG-simulated drought stress and F. oxysporum was

analyzed to confirm the role of SbLOX3 under drought stress. Results

show that SbMYB3 was downregulated in SBLOX3 RNAi lines and

induced by PEG-simulated drought stress (Supplemental Figure 3).
B

C D

E F

A

FIGURE 4

PEG-simulated drought stress on SbLOX3 RNAi lines. (A–C) Relative expression level of SbLOX3 (A), Sb06g11810 (B), and Sb01g20450 (C) under
control and PEG-treated groups. (D–F) Content of MeJA (D), baicalein (E), and wogonin (F) under control and PEG-treated groups. The data are the
means ± SDs (n= 3), *means p < 0.05, **means p < 0.01.
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A noticeable trend was observed in the expression levels of

SbLOX3 and MeJA content during both drought treatment and F.

oxysporum infection. F. oxysporum infection resulted in the

upregulation of SbLOX3, Sb06g11810, Sb01g24050, and MeJA

content (Figures 3A-D), while the accumulation of baicalein and

wogonin was significantly suppressed (Supplemental Figure 4).

Following inoculation with F. oxysporum, the expression level of

the reference gene b-tubulin rapidly decreased, and hair roots died

at 3 days post-inoculation (Supplemental Figures 4C, D)
Discussion

The roots of S. baicalensis contain high levels of bioactive

baicalein and wogonin, and the synthesis of baicalein and

wogonin in roots is regulated by JAs during the development of

the root hollow (Geng et al., 2023). In this study, we established how

JAs are regulated during the development of the root hollow.
SbLOX3 was identified as the 13-LOX
involved in the biosynthesis of JAs

Based on our RNA-seq results (Geng et al., 2023), SbLOX3 and

SbLOX6 were DEGs related to the development of the root hollow, and

this result was confirmed by qRT-PCR (Figure 1A). The functional

annotation and phylogenetic analyses suggested that SbLOX3 and

SbLOX6 have 13-LOX functions (Figure 1D), where SbLOX3 was

homologous with AtLOX3 and SbLOX6 was homologous with

AtLOX6. AtLOX3 and AtLOX6 are two 13-LOXs that participate in

the biosynthesis of JAs in Arabidopsis thaliana. The expression level of

AtLOX3 in A. thaliana roots is higher than that in aboveground parts.

AtLOX3 regulates the growth-restricted wound response (Yang et al.,

2020) and the responses to salt, heavy metal, and biotic stress (Ding

et al., 2016; Chávez-Martıńez et al., 2020; Oshita et al., 2023).

The expression level of SbLOX3 was significantly higher than that

of SbLOX6, and the expression of SbLOX3 in roots was significantly

higher than that in aerial parts (Figure 1C). The accumulation ofMeJA,

baicalein, and wogonin was suppressed in the SbLOX3 RNAi lines, but

not in the SbLOX6 RNAi lines (Figures 2C, 3D–F). This result indicates

that SbLOX3 is involved in the biosynthesis of JAs. The RNAi and

expression level results indicate that SbLOX6may not participate in the

biosynthesis of JAs or the accumulation of baicalein and wogonin.

AtLOX3 catalyzes the oxygenation of linolenic acid during the

transformation into 13-HPOT in A. thaliana (Wasternack & Hause,

2013). No significant difference in linolenic acid content was observed

between theWT and SbLOX3 RNAi lines, but 13-HPOT, OPDA, and

OPC-8 content decreased significantly in the RNAi lines, indicating

that SbLOX3 has 13-LOX activity in S. baicalensis.
SbLOX3 is induced in the tertiary meristem
during the development of the root hollow

The in situ hybridization results show the SbLOX3 expression

pattern during the development of the root hollow (Figure 4). In

normal roots, SbLOX3 was only expressed in vessels and xylem fibers
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(Figures 4C, D). JAs regulate the development of the xylem and the

vessels (Jang et al., 2019), which was consistent with our results. The

expression of SbLOX3 was significantly induced in vessels and xylem

fibers of stage IV roots during root hollow development, compared

with normal roots (Figures 4E, G). SbLOX3 was induced in tertiary

cambium during root hollow development (Figure 4F). The JA

content results during stage IV were consistent with our MeJA

results (Geng et al., 2023 and Figure 2C).

Based on our previous study (Geng et al., 2023), JAs regulate the

accumulation of baicalein and wogonin during root hollow

development in S. baicalensis. SbLOX3 expression was induced

during the development of the root hollow (Figure 1C), and

SbLOX3 expression was related to the accumulation of MeJA in

vivo (Figure 2). The location of SbLOX3 in tertiary cambium during

root hollow development indicated that SbLOX3 and JAs

participate in the development of the root hollow.
SbLOX3 is induced under drought stress
and Fusarium oxysporum

JAs respond to drought stress (Yao et al., 2022; Liu et al., 2021) and

Fusarium oxysporum infection (Hernández-Aparicio et al., 2021;

Pazarlar et al., 2022). Our results confirm the expression of SbLOX3

and that the accumulation of MeJA was induced by PEG-simulated

drought stress and F. oxysporum in the hair roots of S. baicalensis

(Figures 3A, B). The accumulation of baicalein and wogonin was

induced by PEG-simulated drought (Figures 3C, D) but suppressed

by F. oxysporum (Supplemental Figures 3A, B). The contents of MeJA,

baicalein, and wogonin decreased in the SbLOX3 RNAi lines, compared

with theWT (Figures 3B-D), indicating that drought stress induced the

expression of SbLOX3 and the accumulation of MeJA, baicalein, and

wogonin. F. oxysporum infection caused a rapid decrease in the

expression level of the qRT-PCR reference geneb-tubulin
(Supplemental Figure 3C) and the death of hair roots (Supplemental

Figure 3D). The suppression of baicalein and wogonin by F. oxysporum

may be attributed to the death of the hair roots, which were unable to

withstand the F. oxysporum infection (Supplemental Figure 3).

The expression level of SbMYB3 under drought stress supports

our results. SbMYB3 was an R2R3-MYB transcription factor that is

induced by JAs. SbMYB3 is a positive regulator for baicalein and

wogonin biosynthesis by directly binding to the promoter of

SbFNSII-2 and enhances its activity. Upregulated SbMYB3

induced the expression of SbFNSII-2 (Fang et al., 2022). Our

results confirmed that SbMYB3 was downregulated in SbLOX3

RNAi lines and upregulated by PEG-simulated drought stress.

These results explain how baicalein and wogonin contents were

regulated by SbLOX3 and PEG-simulated drought stress.
Sb06g11810 and Sb01g24050
have the potential to function
as MYC2 in S. baicalensis

Sb06g11810 and Sb01g24050 were identified as homologs of

AtMYC2, whereas Sb06g11810 was identified as a homolog of
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SmMYC2. These two genes have the potential to function as MYC2

orthologs in S. baicalensis (Supplemental Figure 1). MYC2 plays a

pivotal role as a regulatory factor in the JA signaling pathway,

responsible for coordinating plant responses to both biotic and

abiotic stresses (Kazan and Manners, 2013). Liu et al. (2022)

provided evidence that SmMYC2 functions as a positive regulator in

the biosynthesis of phenolic acids and anthocyanins in S. miltiorrhiza.

Notably, Sb06g11810 and Sb01g24050 were induced during root

hollow development (Geng et al., 2023), PEG-simulated drought

stress, and F. oxysporum, but their expression was suppressed in

SbLOX3 RNAi lines (Figures 3A–C; Supplemental Figure 1). The

specific functions of Sb06g11810 and Sb01g24050, however, warrant

further investigation. While their homology with AtMYC2 and

SmMYC2 suggests that they might function similarly to MYC2 in S.

baicalensis, additional studies are necessary to confirm this hypothesis.

Taken together, we identified SbLOX3 as a 13-LOX that

catalyzes the biosynthesis of 13-HPOT and JAs in S. baicalensis

and that affected the accumulation of baicalein and wogonin. PEG-

simulated drought stress induced the expression of SbLOX3 and the

accumulation of MeJA, baicalein, and wogonin in the hair roots of

S. baicalensis. Flavonoid metabolites are induced to resist drought in

plants (Yang et al., 2020; Meng et al., 2021; Yang et al., 2021; Tiedge

et a l . , 2022) . Baicale in and wogonin are two major

pharmacodynamic flavonoids in S. baicalensis. Thus, this study

provides new insight into the management of S. baicalensis

cultivation after further confirmation in the field. This study also

established the identification of MYC2 in S. baicalensis and further

investigation of the JA-MYC2 signaling pathway.
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