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Insights into mechanisms of seed
longevity in soybean: a review

Polneni Jagan Mohan Rao*, Mandalapu Pallavi , Yarasi Bharathi,
P. Bindu Priya, Patta Sujatha and Kona Prabhavathi

Seed Research and Technology Centre, Professor Jayashankar Telangana State Agricultural
University, Rajendranagar, Hyderabad, India
Soybean, a crop of international importance, is challenged with the problem of

seed longevity mainly due to its genetic composition and associated

environmental cues. Soybean’s fragile seed coat coupled with poor DNA

integrity, ribosomal dysfunction, lipid peroxidation and poor antioxidant system

constitute the rationale for fast deterioration. Variability among the genotypes for

sensitivity to field weathering contributed to their differential seed longevity.

Proportion and density of seed coat, glassy state of cells, calcium and lignin

content, pore number, space between seed coat and cotyledon are some seed

related traits that are strongly correlated to longevity. Further, efficient

antioxidant system, surplus protective proteins, effective nucleotide and

protein repair systems and free radical scavenging mechanisms also

contributed to the storage potential of soybean seeds. Identification of

molecular markers and QTLs associated with these mechanisms will pave way

for enhanced selection efficiency for seed longevity in soybean breeding

programs. This review reflects on the morphological, biochemical and

molecular bases of seed longevity along with pointers on harvest, processing

and storage strategies for extending vigour and viability in soybean.
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1 Introduction

Soybean (Glycine max L. Merill) is an important oilseed crop contributing to 30 per

cent of the world’s edible oilseed production. Owing to its superior nutritional qualities,

soybean is considered as a miracle crop and is cultivated in many developing countries to

meet their growing demand for protein and oil (Khurshid et al., 2017). Seed of soybean is a

powerhouse of nutrients consisting of 40 to 45% protein, 20 to 22% oil and 20 to 26%

carbohydrate besides high amounts of calcium, phosphorous and vitamins (Rahman et al.,

2011). Globally it is cultivated in an area of 124.92 m ha with production and productivity

of 348.71 mt and 2791 kg ha-1 respectively (INDIASTAT, 2018). India ranks fifth among

major soybean growing countries in the world with 12.92 m ha of cultivated area

producing12.61mt at a productivity of 976 kg ha-1 (INDIASTAT, 2020-21).
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Both production of highly vigorous seed and retention of seed

vigour are pivotal for profitable seed production. Short life span of

soybean seed (< 8 months in tropics) under ambient storage

conditions forbids its usage in the ensuing seasons by farmer thus

burdening the seed industry with entire seed supply. It is therefore

pertinent to develop a complete seed supply chain for soybean duly

maintaining its quality at all stages beginning from harvest till

sowing. Thus seed longevity assumes a key role in preserving the

seed fitness during storage under ambient conditions. However,

maintaining seed longevity is challenging in soybean given its

inherent shorter life span besides meager understanding of the

mechanisms regulating seed longevity during late maturation

(Shelar et al., 2008). Poor seed longevity leads to unexpected

losses in seed viability during storage, negatively impacts seedling

establishment and ultimately affects crop yield (Walters, 1998;

Finch-Savage and Bassel, 2016).

Seed longevity is influenced by the ability to stabilize the

biological entity for longer period by formation of an amorphous,

highly viscous, solid-like matrix (i.e., a glassy state) in cells that

suspends integrated metabolic activities and severely slows down

deteriorative reactions (Walters, 1998; Buitink et al., 2000; Walters

et al., 2010). Seed longevity is also attributed to a range of protective

compounds (Sano et al., 2016; Leprince et al., 2017) including non-

reducing soluble sugars (sucrose and raffinose family

oligosaccharides-RFOs) (Salvi et al., 2016; Zinsmeister et al.,

2016) and a set of late embryogenesis abundant (LEA) proteins

and heat shock proteins (HSP) (Tejedor-Cano et al., 2010;

Hundertmark et al., 2011; Chatelain et al., 2012). Longevity is also

conferred by antioxidants that limit oxidation of lipids, proteins and

nucleic acids during storage such as glutathione (Nagel et al., 2015),

tocopherols (Debeaujon et al., 2000; Sattler et al., 2004), flavonoids

present in the seed coat (Debeaujon et al., 2000) and lipocalins

(Boca et al., 2014). Several repair mechanisms also contribute to

longevity when they are activated during seed imbibition to fix

damage that occurred to proteins and DNA during storage (Oge

et al., 2008; Waterworth et al., 2010). In addition to protection and

repair, an impaired degradation of chlorophyll appears to negatively

influence longevity (Nakajima et al., 2012; Zinsmeister et al., 2016).

Presence of chlorophyll is considered as an indicator of immaturity

but how it affects longevity remains unsolved.

Seed ageing is an inexorable and irreversible process influenced

by both intrinsic and extrinsic factors and detected by cytological,

physiological, biochemical and physical changes associated with

decline in seed quality and viability (Nadarajan et al., 2023). Seed

deterioration is considered to begin at physiological maturity (ie.,

pre-harvest) and continue during harvesting, processing and

storage at a rate greatly influenced by genetic, production and

environmental factors (Hampton and Tekrony, 1995). Thus high

germinating seed lots that are chronologically of same age may

deteriorate at different rates, henceforth differing markedly in seed

vigour. The rate of deterioration fluctuates critically from one

species to another and also among the same species depending on

the crop growth conditions and genetic lineage (Chau et al., 2019

and Crane et al., 2003). Deterioration is evident as a reduction in

percentage germination and field emergence, increased number of

weak/abnormal seedlings, loss of vigor and viability ultimately
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causing seed death (Maity et al., 2000; Tilebeni and Golpayegani,

2011). The internal factors which contribute to the process of seed

deterioration are loss of membrane integrity, change in the

structure of macromolecules (Barton, 1961; Wilson and Mc

Donald, 1986; Wettlaufer and Leopold, 1991), enzyme

degradation (Barton, 1961; Bailly et al., 1998; Ravikumar et al.,

1998), impairment of RNA and protein synthesis and DNA

degradation. The deteriorative alterations occurring with time

along with exposure to external challenges decreases the ability of

seed to survive as it is accompanied with loss of quality, viability and

vigour. The rate of deterioration rapidly surges with increase in

either seed moisture content or storage temperature (Ellis

et al., 1991).

Speed of deterioration depends on the storage environment and

also particularities of the species like the seed chemical composition.

In soybean, linoleic acid content in seed is largely influenced by the

intensity of lipid peroxidation rather than its oil and oleic acid

contents (Tatić et al., 2012). Oilseeds are highly sensitive to storage

environment and lose viability at a quicker pace due to high fatty

acids and fragile seed coats. Fatty acid composition is one of the key

factors determining the susceptibility of oils to oxidation process

(Shaban, 2013). It limits seed longevity due to decline in oil content

and germination percent during storage. Lipid auto oxidation and

changes in fatty acid content during storage are the most often

mentioned reasons for accelerated damage of seed in oilseed crops

(Tatić et al., 2012). The enzyme lipase, abundantly produced during

storage, breaks down lipids into free fatty acids and glycerol.

Accumulation of reactive oxygen species and free radicals is

considered as one of the important elements of seed ageing.

Though an irreversible process, seed ageing can be swayed with

anti-oxidants like a- tocopherol, ascorbic acid, glutathione

carotenoids and phenolic compounds such as flavonoids that offer

protection from free radicals or produce halogen vapours to

stabilize unsaturated fatty acids thereby reducing the amount of

oxygen around the seed and decreasing the initiation of free

radicals. In view of the accruing international importance of

soybean and yet the unsolved hitches, this review frames out the

major causes and challenges pertaining to seed longevity along with

conceptualizing heuristic strategies for prolonged longevity of

soybean seed.
2 Mechanisms of seed deterioration

2.1 Cellular degradation

2.1.1 Membrane damage
Cell membrane deterioration (Berjak and Villiers, 1972;

Priestley and Leopold, 1986; Ferguson et al., 1990; Aiazzi et al.,

1997) and damage to nucleic acids (Chen et al., 2013; Fleming et al.,

2019) are the two major aspects of seed deterioration during storage

(Figure 1). Cellular deterioration begins with membrane damage

which on losing permeability allows leaching of cytoplasmic

contents into the intercellular spaces. Membrane disintegration is

triggered by the hydrolysis of phospholipids and their auto

oxidation. Increased solute leakage, higher free fatty acid levels,
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loss of membrane phospho lipids, lower antioxidant potential of

lipids, lower tocopherol content and reduced ascorbate-

dehydroxyascorbate ratio indicative of oxidative stress are the key

age-induced changes observed in soybean seed (Senaratna et al.,

1988). Loss of seed viability is correlated to phospholipase D activity

that is accounted for detachment of plasma membrane from cell

wall complex and disorganization of oil bodies during natural

ageing in soybean (Lee et al., 2012). Membrane permeability in

seeds increases with age causing a surge in electrical conductivity

(EC) (Ferguson et al., 1990).

2.1.2 Mitochondrial degradation
Loss of membrane integrity disturbs the functionalities of all

membrane bound organelles including mitochondria. Seed vigor

declines in parallel to cell turgor in seeds with disturbed membrane

integrity (Parrish and Leopold, 1978) (Figure 1). Seed ageing is

closely linked with mitochondrial degradation and associated

functional changes such as loss of its natural swelling and

contracting ability causing to permanently remain in swollen

state, followed by pigmentation and fragmentation. Inflated

ATPase and depressed ability of oxidative phosphorylation are

key aspects of mitochondrial deterioration (Priestly, 1986;

Walters, 1998; Murthy et al., 2002). Mitochondrial membranes

comprising of phospholipids and proteins, and specifically the

inner one has a strong influence on seed viability when

disorganized (Tatipata, 2009). With ageing, inner membrane

vesiculates, cristae disappear and ATP synthase dissociates

leading to impaired supply of ATP to cell by mitochondria

(Daum et al., 2013). Further, activities of mitochondrial

antioxidant enzymes significantly drop in aged seeds. There is

down regulation of cytochrome oxidase pathway, tricarboxylic
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acid cycle, mitochondrial protein levels and many other

associated proteins (Yin et al., 2016). Retarded mitochondrial and

ascorbic acid-glutathione cycle activities along with increased

reactive oxygen species (ROS) accumulation cause mitochondrial

dysfunction in aged soybean seeds (Xin et al., 2014). Mitochondria

with accumulated excessive ROS negatively impact the antioxidant

system activity leading to seed deterioration (Kurek et al., 2019).

2.1.3 Ribosomal dysfunctioning
Impairment of ribosome function is manifested as non-

dissociation of polyribosomes before attachment of preformed

mRNA affecting the process of protein synthesis. In non-viable

seeds the ribosomes fail to dissociate and protein synthesis is

retarded which is a measurable symptom of ageing (Smith, 1995

and Walters, 1998).
2.2 Genetic degradation

In several plants, chromosomal or DNA aberrations within

cells have been observed along with loss of seed viability (Abdalla

and Roberts, 1968). Fragmentation of embryonic nuclear DNA

and its repair processes progress slowly during ageing due to

deactivation of certain key enzymes like DNA polymerase and

DNA ligase (Coello and Vazquez-Ramos, 1996; Schoen et al.,

1998; Chwedorzewska et al., 2002) (Figure 1). Potential targets

for oxidative damage in the DNA chain include purine and

pyrimidine bases and deoxyribose sugars (Larson, 1997; Roldan-

Arjona and Ariza, 2008). Volatile aldehydes formed from lipid

peroxidation cross link with macromolecules like sugars, amino

acids or the polypeptide chain, altering their structure and
FIGURE 1

Seed deterioration mechanism in soybean.
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increasing the occurrence of genetic mutations during seed

ageing. Polymerase chain reaction (PCR) using primers, has

been widely used for studying these genetic changes. The

RAPD profiles of DNA from differently aged soybean seeds

showed polymorphism (Shatters et al., 1994) while natural

deterioration had no effect on RAPD markers in seeds stored

for longer periods (Zhang et al., 1996). Later on, a set of thirteen

selected SSR loci for DNA profiling of soybean cultivars was

identified (Song et al., 1999). Such studies assist in taking a

deeper look into the effects of seed ageing through molecular

markers and DNA fingerprinting.
2.3 Biochemical changes

2.3.1 Lipid peroxidation
Seed viability is directly influenced by membrane lipid functioning

though exactly how it is affected is yet to be fully unraveled. Most of the

oilseed plants are highly prone to lipid peroxidation induced damages.

Lipid peroxidation is an oxidative damage affecting cellular

membranes, lipoproteins and other molecules that contain lipids

(Figure 1). The extent of lipid peroxidation is greatly influenced by

the seed moisture content and storage temperature (Murthy et al.,

2002). Recent studies suggest that catalysis of lipid hydrolysis mediated

by lipases occurs even in dry seed as the microenvironment of oil

bodies permits diffusion of the enzyme (Wiebach et al., 2020). Lipid

peroxidation is a chain of reactions initiated by free radicals resulting

from stress and influencing the unsaturated fatty acids in cell

membranes leading to their damage. These free radicals act as both

initiators and terminators of lipid peroxidation process and once

activated, these reactions continue auto catalytically causing

structural and functional changes to the substrate (Ognjanovic et al.,

2008). Enzymatic antioxidants like superoxide dismutase (SOD),

catalases and peroxidases, and non-enzymatic antioxidants like

ascorbic acid and glutathione control the levels of ROS wherein

ascorbic acid content and activity typically decrease during seed

maturation while glutathione plays a key role as redox buffer

(Nadarajan et al., 2023). Thus reduced non-enzymatic antioxidant

contents and catalase activity causes accumulation of ROS eventually

leading to lipid peroxidation in soybean (Lin et al., 2022). The down-

regulation and reduction in scavenging antioxidant activity is

associated with depression of the antioxidant enzyme (Yin et al.,

2016). This imbalance of the antioxidant system leads to the

accumulation of reactive oxygen species (ROS), especially hydrogen

peroxide (H2O2) due to its relatively long half-life (1 ms) compared to

the other forms of ROS (2–4 µs) (Gill and Tuteja, 2010). Moreover,

lipoxygenase, an oxidative enzyme present in many unimbibed seeds is

also capable of producing activated oxygen and subsequently catalyzing

lipid peroxidation by using membrane and phospholipid components

as substrates (Priestly, 1986). Enzyme phospholipase D catalyzes

phospholipid hydrolysis causing compositional changes in

triacylglycerols (storage lipids) and its suppression can increase seed

longevity in soybean (Lee et al., 2012). In Jatropha curcas, however,

seed deterioration is correlated to changes in the antioxidant enzymatic

activities of embryo with no relation between deterioration of seed

during storage and lipid peroxidation activity (Silva et al., 2017).
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Changes in the chemical constituents of cell also correlate with

seed viability thus serving as indirect measures of seed longevity like

rise in electrical conductivity of seed leachates associated directly

with deterioration in soybean (Srivastava and Gill, 1975). On the

contrary, when seeds were stored at 10°C for 18 months, bulk

electrical conductivity test could not establish an association

between fatty acids and carbohydrate changes and hence cannot

be considered as an useful indicator of seed degradation

(Panobianco and Vieira, 2007). Accumulation of volatile

aldehydes is another indicator of lipid peroxidation and thereto

seed deterioration. These volatile aldehydes are the secondary

products of lipid peroxidation that dehydrate fatty acids to

smaller volatile carbon compounds like hexanals, pentanals and

butanals. Stored soybean seeds showed decline in protein, lipid and

poly unsaturated fatty acid contents and increase in hexanals

(Braccini et al., 2000).

2.3.2 Enzymatic changes
Analysis of enzymatic changes is yet another tool to understand

seed deterioration during ageing. The most prominent hypothesis

regarding seed ageing points towards the structural changes at

macromolecular level leading to enzymatic degradation

(Figure 1). A positive correlation exists between the enzyme’s

antioxidant capacity and seed vigour while lessened antioxidant

enzymatic activity during ageing (Ebone et al., 2020) is analogous to

enhanced lipid peroxidation (Bailly et al., 1998). Prolonged storage

causes rapid reduction in the activities of superoxide dismutase, a-
amylase, dehydrogenase, catalase and ascorbate peroxidase enzymes

(Bailly, 2004; Bales ̌ević-Tubić et al., 2011; Yadollhhi and

Mashayekhi, 2013; Radha et al., 2014; Pawar et al., 2017; Brar

et al., 2019; Das and Biswas, 2022). This leads to higher

accumulation of free radicals and weakened seed viability.

Likewise, decline in esterase and glutamate dehydrogenase

activities leads to low seed vigour under varying storage periods

(Vieira et al., 2013). High seed moisture content (upto levels

necessary for germination) activates some hydrolytic enzymes

that stimulate seed ageing and any further increase in moisture

content leads to speedy deterioration of seed because of energy

expenditure and accumulation of breakdown products (Copeland

and McDonald, 1995). Under low storage moisture conditions,

inflation of toxic compounds that reduce seed viability occurs due

to reduced respiration and enzyme activity. During accelerated

ageing, lipid peroxidation causes loss of free radical scavengers

resulting in seed deterioration (Bailly et al., 1998). Soybean

genotypes with higher longevity recorded greater lipoxygenase II

and antioxidative enzymatic activities that lessened lipid

peroxidation and improved viability throughout storage

(Vijayakumar et al., 2019).

2.3.3 Metabolic changes
Decline in germination ability with ageing is manifested due to

depletion of total sugars, protein and oil contents in seed (Mahjabin

et al., 2015) (Figure 1). A complete proteomic analysis of soybean

seed subjected to controlled deterioration revealed degradation of

proteins involved in primary metabolism and energy metabolism

leading to an impairment of ATP synthesis and also decreased
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modulation of protein synthesis related proteins. These

modulations in de novo protein synthesis are one of the major

contributors for decreased seed longevity (Min et al., 2017). The role

of chemical protein reactions in loss of seed viability was

investigated through studies on Maillard products. This reaction

is catalysed by glycosylation or glycation associated with the

covalent attachment of reducing sugars to amine groups of amino

acid and protein to form glycated protein. Decrease in seed

germination along with accumulation of Maillard products in

soybean embryos could be attributed to the role of Maillard

reaction (Wettlaufer and Leopold, 1991). A novel non-destructive

method of measuring the respiratory products in seeds was

associated with changes in seed metabolic activity apart from

decrease in viability and quality with ageing (Kranner and Gill,

1996). The naturally ageing soybean seed in glassy state inhibits the

formation of reducing sugars from hydrolysis of oligosaccharides

delaying the ageing process (Sun and Leopold, 1995). Fall in

carbohydrate and protein contents (Verma and Ram, 1987),

increased MDA and proline contents and low concentrations of

antioxidant enzymes (Abdulla and Farah, 2014) in ageing seeds

emphasize lipid peroxidation activity. In general, seed stored for

longer periods shows decreased metabolic activity and lower

potential to produce nucleic acids and nucleotides (Mahjabin and

Abidi, 2015).
3 Factors influencing seed longevity
in soybean

Seed, the basic input of agriculture, is highly sensitive to any sort

of damage, even more so in case of soybean. The environment

prevailing during seed production, development and maturation

has great influence on seed longevity and vigour.
3.1 Intrinsic factors

Germination ability and seed vigour are maximum at

physiological maturity i.e., when seed attains maximum dry

weight. Radicle hypocotyl, the most crucial part for germination

is vulnerable to damage during harvesting and processing in

soybean because of its position and delicate seed coat (Kuchlan,

2006). Longevity is developed during seed filling to seed maturation

stages (Zanakis et al., 1994; Verdier et al., 2013; Leprince et al., 2017)

though some opine that highest longevity is acquired during seed

filling stage (Gillen et al., 2012; Filho, 2016). Longevity is maximum

at peak physiological maturity after acquisition of desiccation

tolerance and shortly before the end of seed filling and onset of

maturation drying (Lima et al., 2017). Thereafter, the time required

to achieve 50% germination (P50) increased by two times from

further maturation to stage R9 ie., dry mature seeds. There is

increasing evidence on synthesis of protective mechanisms that

enhance longevity being induced sequentially and increase
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progressively during late seed maturation (Probert et al., 2007;

Righetti et al., 2015; Leprince et al., 2017). Soybean seeds harvested

at different developmental stages show varied levels of protective

compounds and thereto varied longevity periods.

Hilum is another prime seed part that delivers nutrients and

photosynthates to the developing embryo and when damaged leads

to seed infections and inferior seed quality. Likewise, properties of

seed coat surface like cutin deposition, cuticle cracks, gap between

seed coat and cotyledon and depositions influence water

permeability, fungal invasion, and ultimately seed longevity in

soybean (Ranathunge et al., 2010; Kuchlan et al., 2018).
3.2 Extrinsic factors

In addition to the internal aspects, environmental stresses during

seed development and maturation phases also impair seed longevity.

Continuous precipitation after crop maturation and prior to harvest

leads to wetting and drying of seed resulting in seed deterioration.

Hot and dry weather during harvest adversely affects both physical

and physiological qualities of soybean seed (Green et al., 1971).

Similarly water stress during seed development results in mature

green seeds with poor seed longevity (Smolikova and Medvedev,

2016). The maturation environment (i.e., humidity and temperature)

fluctuations influence seed vigour as they not only accelerate

respiration and consume the food reserves essential for seedling

development, but also trigger the formation of toxic compounds

which degrade plasmatic membranes of the seeds (Aumonde et al.,

2017). A stimulated rainfall of 120 and 180 mm at R8 stage of

soybean promotes significant reduction of germination and seed

vigour in comparison to 0 and 60 mm along with reduction in

antioxidative enzyme activity, accumulation of hydrogen peroxide

andmalondialdehyde, protein content and protease activity (Pinheiro

et al., 2023). Water deficiency during different stages of plant growth

results in reduced seed development due to decrease in

photosynthesis, assimilation and translocation to developing seeds

(Sobko et al., 2020). High (>35°C) as well as low (<15-17°C)

temperatures result in reduced seed filling and retarded seed

growth respectively (Liu et al., 2008). Higher water availability

throughout the vegetative growth phase results in delayed flowering

with enhanced assimilation during seed development (Kuswantoro,

2018). Apart from temperature, relative humidity also greatly

influences seed longevity, so the seeds should be stored as per

Harrington’s principles.

Mechanical damage during harvesting and threshing is a

common problem encountered in soybean. The seed becomes

brittle and easily prone to mechanical injuries when moisture

content drops below 12 percent (Delouche and Gill, 1973). It is

therefore suggested to harvest the crop at an optimum seed

moisture content of 13 to 15 percent (Park and Webb, 1959;

Popinigis, 1972). It is also recommended to store soybean at

reduced oxygen levels i.e., below 0.77MPa oxygen pressure to

extend seed longevity (Ohlrogge and Kernan, 1982).
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4 Reinforcing systems of seed
longevity in soybean

4.1 Protective systems

4.1.1 Seed and seed coat components
Seed coat is an important protective agent that shields the

underlying embryo from biotic and abiotic stresses (Figure 2). The

degree of protection offered relates to the structural arrangement

and composition of seed coat. Several defense-linked proteins such

as polyphenol oxidases (eg., catechol oxidases and laccases),

peroxidases and chitinases are prevalent in the seed coat testa

(Moïse et al., 2005; Pourcel et al., 2005). The lignin content of

soybean testa also correlates with seed permeability and resistance

to mechanical damage (Debeaujon et al., 2007). Generally high seed

permeability is associated with rapid deterioration while seed coat

lignin content is negatively correlated with seed permeability (Abati

et al., 2022). A decrease in seed coat deficiency in natto soybean

varieties is associated with alleles governing higher lignin

biosynthesis (Zhu et al., 2020). The cell wall organization, callose

deposition in cell wall, cuticle development, cell wall modification,

and secondary ce l l wal l b iogenes is are governed by

Glyma.15G078300, Glyma.15G075300, Glyma.15G074700,

Glyma.15G074000, and Glyma.15G072300 group of genes (Shao

et al., 2007). The rate of oxygen consumption estimated through Q2

seed analyser is associated with germination capacity of seed and is

affected by seed coat permeability and seed size besides dormancy

status and imbibition rate (Nadarajan et al., 2023). Black seeded

soybean with few pores on seed coat, high lignin content and

narrow space between seed coat and cotyledon possesses greater

longevity (Kuchlan et al., 2010). Seed coat impermeability is also

associated with the presence of phenolic (Chachalis and Smith,

2001; Zhou et al., 2010) and more importantly epicatechin type of

phenolic compounds that positively influence the hard seed

percentage (Zhou et al., 2019). The permeability of wild soybean

can be linked to the free deposit with larger cuticle cracks on seed

coat (Vu et al., 2014). Calcium content of seed coat is another factor
Frontiers in Plant Science 06
accountable for hard-seededness and therefore low germination

with prolonged longevity as depicted in seed coats of GmHs1-1

transgenic soybean lines that had more calcium than wild type (Sun

et al., 2015). Two black seeded genotypes ACC No.369 and ACC

No.39 reported high seed longevity both under natural and

accelerated ageing conditions (Naflath and Ravikumar, 2023).

Therefore small sized black coated soybeans with high lignin and

calcium contents, higher secondary metabolites and lower seed coat

permeability effect prolonged seed longevity in soybean.

Seed coat proportion is yet another essential feature impacting

the protection offered against mechanical damage during harvesting

and processing. Proportion of seed coat has a positive association

with seed longevity as evident from higher proportion of seed coat

in the black-seeded varieties compared to yellow-seeded ones

(Kuchlan et al., 2010). Seed density also associates positively with

seed longevity (Adsul et al., 2018). Likewise, seed longevity can also

be attributed to development of glassy state of the cells which halts

the integrated metabolic activities thus slowing down the

deteriorative reactions by curtailing the production of toxic

compounds (Buitink et al., 2000; Walters et al., 2005; Walters

et al., 2010). Rapid decrease in the seed viability of accelerated

aged soybean seeds is associated with loss of glassy state (Sun and

Leopold, 1994) during which lipid peroxidation and Maillard

reactions are prevented (Karmas et al., 1992).
4.1.2 Antioxidant compounds
Accumulation of antioxidant components in dry seeds during

late maturation phase on mother plant contributes to storability

potential. Enzymatic antioxidants comprising ascorbate peroxidase,

superoxide dismutase (SOD), glutathione reductase, catalase,

peroxidase, glutathione peroxidase, etc., play a key role in

scavenging the accumulated free radicals especially SOD

providing the first line of defense against ROS (Bailly et al., 1996;

Kuchlan, 2006). Likewise, the protective role of antioxidant

secondary metabolites such as flavonoids, vitamin E (tocopherols

and tocotrienols), ascorbic acid and glutathione carotenoids during

aging or oxidative stress is well documented (Figure 2). Poor
FIGURE 2

Reinforcing systems of seed longevity in soybean.
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storability in soybean is due to high hydroperoxidelyase activity

during storage causing excess release of volatile aldehydes

(Hosamani et al., 2013). Furthermore, it is also regarded that the

cause for low storability in aged soybean seeds is not lack of energy

reserves, but lack of capability to catabolize the available energy

reserves to sucrose (Zhou et al., 2020). Thus seed longevity is a

function of both energy storage and its metabolism. In addition,

seed treatment with RNS (Reactive Nitrogen Species) compounds

like NO or NO donors prior to or during initial stages of aging

activates antioxidant systems and triggers defense mechanisms

leading to delayed aging (Ciacka et al., 2020).

4.1.3 Protective proteins
The LEAs, HSPs and seed storage proteins are vital for

desiccation tolerance and maintenance of a quiescent state in

orthodox seeds (Figure 2). They also aid in trapping the ROS and

protecting cellular structures and other seed proteins from oxidative

stress. Furthermore, they help in stabilization of glassy cytoplasm,

protection of structural proteins, condensation of chromatin and

dismantling of thylakoids in chloroplasts (Sano et al., 2015;

Ballesteros et al., 2020) Increased number of transcripts encoding

HSPs and heat shock factors (HSFs) offer resistance against

accelerated ageing in soybean (Lima et al., 2017). Defensive

proteins like polyphenol oxidases, peroxidases and chitinases

playing a protective role, accumulate in soybean seed testa during

stress (Ranganathan and Groot, 2023). Protein content of soybean

seed from all nodal positions decreased vastly after 180 days of

storage leading to deterioration in longevity (Sharma et al., 2013).

Up-regulation of various HSPs identified as differentially expressed

genes (DEGs) was accompanied with high temperature and

humidity except Glyma.15G088000 which is found in susceptible

soybean cultivars under no stress conditions (Shu et al., 2019). Also,

the transcriptomes associated with seed longevity during

maturation contain several transcription factors involved in

ethylene and auxin signaling (Lima et al., 2017). Soybean seed

storage proteins (SSPs) accumulated during seed development

largely account for its commercial and nutritional value (Dean

and Finer, 2023).
4.2 Repair systems

4.2.1 DNA and RNA repair
Seeds are subject to DNA lesions, not only during desiccation

but also during seed storage (Osborne et al., 1980). Seed repair

mechanisms like priming help in DNA repair through repair

pathways like base excision repair (BER) where single strand

breaks (SSBs) are repaired by nucleotide excision repair (NER)

and double strand breaks (DSBs) by homologous repair (HR) or

non-homologous end joining (NHEJ) mechanisms (Figure 2). For

the same reasons, their induction during seed invigoration

treatments is of special interest to the seed industry.

RNA being single-stranded, is most vulnerable to damage. The

ABA-mediated transcription plays a vital role in determining stored

mRNA profiles (Kimura and Nambara, 2010). Quantity of mRNA
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like LEAs and HSPs. Small non-coding RNAs (miRNAs and

siRNAs) though do not code for any protein, have a key role to

play in DSB repair mechanism (Rzeszutek and Betlej, 2020).

4.2.2 Protein synthesis and repair
The protective compounds (Sano et al., 2016; Leprince et al.,

2017) such as non-reducing soluble sugars, raffinose family

oligosaccharides (RFO proteins) (Salvi et al., 2016), LEAs and

HSPs (Tejedor-Cano et al., 2010; Chatelain et al., 2012) act as

chaperones and molecular shields in preventing protein

denaturation and membrane destabilization during drying

(Figure 2). Induction of Mt-HSFA9 expression is also correlated

with the acquisition of longevity (Lima et al., 2017). The expression

profiles of twenty-seven transcription factors highly correlated with

longevity, including homologues of ERF110, HSF6AB, NFXL1, and

members of the DREB2 family, as well as those associated with

auxin (Arif et al., 2022).
4.3 Detoxification

4.3.1 ROS scavenging
In order to control free radical induced cellular damage, seeds

develop a detoxification mechanism that includes a number of

antioxidant enzymes such as superoxide dismutase (SOD), catalase

(CAT), ascorbate peroxidase (APX), mono-dehydroascorbate

reductase (MDHAR), dehydroascorbate reductase (DHAR),

glutathione peroxidase (GSHPx), and glutathione reductase

(GSSGR) (Bailly, 2004; Bailly et al., 2008). A large number of

these enzymes involved in ROS detoxification are present in dry

mature seeds and germinating seeds. The compounds like

glutathione, tocopherols, flavanoids and lipocalins limit oxidation

of proteins, fats and nucleic acids (Lima et al., 2017). Scavenging of

ROS is also known to be undertaken by glutathione, ascorbic acid

(vitamin C) and peroxiredoxins.
5 Genetics of seed longevity

In soybean, a strong maternal influence is observed for seed coat

characteristics and longevity of F1 seeds in reciprocal crosses

(Kueneman, 1983) in addition to a minor influence of the seed’s

own genotype. The segregation of F2 population in 3:1 and

backcross population in 1:1 ratio confirms single gene control of

seed longevity in soybean (Adsul et al., 2018). Seed longevity is also

strongly associated with number of pods per plant and seed yield

(Singh et al., 2021). The backcross/pedigree method of breeding is a

better approach for transfer of seed storability trait to high yielding

genotypes, however selection should not be practiced at F2
generation because trait expression is delayed by one generation

during segregation due to strong maternal influence (Singh and

Ram, 1986). The molecular and morphological distance-based

grouping and model-based structuring of 96 soybean genotypes

grouped six black seed coat colour genotypes viz., local black
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soybean, Kalitur, ACC Nos. 39, 109, 101 and 37 with high seed

longevity and small seed size into one cluster (Naflath et al., 2022).

Stable genomic regions governing the inheritance of soybean

seed storability comprising of 34 QTLs on 11 chromosomes were

identified by employing high-density genetic linkage maps for

seed longevity in two RIL populations derived from

Zhengyanghuangdou Meng 8206 and Linhefenqingdou Meng

8206 (Zhang et al., 2019). Two major QTLs and eight QTL

hotspots localized on chromosomes 3, 6, 9, 11, 15, 16, 17, and 19

are responsible for seed vigor related traits in soybean (Wang et al.,

2021). Gene editing using CRISPAR cas9 for storage protein viz.,

Glyma.20g148400, Glyma.03g163500 Glyma.19g164900 was

identified in soybean (Li et al., 2019). The candidate genes

controlling nodulation specificity have been edited by CRISPR/

Cas9 system combined with hairy-root transformation system

(Tang et al., 2016). In 2014, TALENs technology was first used in

soybean to mutate two fatty acid desaturase 2 genes (FAD2-1A and

FAD2-1B) to create a high oleic acid soybean variety (Haun

et al., 2014).
6 Molecular mechanism of
seed longevity

Four independent SSR markers viz., Satt538, Satt600, Satt434

and Satt285 located at a distance of 158.63 cM, 75.4 cM, 105 cM and

25.51 cM on chromosomes A2, D1b, H and J respectively are

associated with seed longevity (Cregan et al., 1999); Satt434,

Satt538, Satt281, and Satt598 on chromosomes H, A2, C2 and E

respectively with seed coat permeability while Satt28 on

chromosome C2 is linked to electrolyte leaching (Singh et al.,

2008b). The black and yellow seed coat genotypes were grouped

by SSRs into two major clusters with Satt371, Satt453 and Satt618

that are identified as candidate markers linked with seed storability

and testa color (Hosamani et al., 2013). Twenty seven transcription

factors highly correlated with longevity i.e., homologues of ERF110,

HSF6AB, NFXL1 and members of the DREB2 family based on gene

co-expression network analysis. A transcriptional transition

enriched with AP2/EREBP and WRKY transcription factors and

genes associated with growth, germination and post-transcriptional

processes occurred concomitant with seed chlorophyll loss and

detachment from the mother plant, suggesting that this prepares the

seed for the dry quiescent state and germination (Lima et al., 2017).

Complex alterations occur in transcriptomes from seed

physiological maturity till dry state indicating the role of

transcription factors in delaying seed deterioration (Ramtekey

et al., 2022). Metaanalysis and transcriptome profiling identified

involvement of 7 hub genes in seed oil and seed storage protein

accumulation processes in soybean (Qi et al., 2018).

Five QTLs located in chromosomes 2, 6 and 8 were found to be

associated with seed viability and seed vigor and two QTLs for seed

storability in soybean. These QTLs were found near loci controlling

seed viability, maturity, germination, seed hardness, and seed

surface micromorphology (Jiamtae et al., 2022). The genes linked
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to seed longevity in soybean include GolS1_A, GolS2_B and RS2_B

associated with the synthesis of RFO (Le et al., 2020; de Koning

et al., 2021), RS1, RS2 and RS3 involved in synthesis of raffinose

(Dierking and Bilyeu, 2008), SS involved in synthesis of stachyose

(Qiu et al., 2015) and RS2 for synthesis of raffinose and stachyose

(Valentine et al., 2017). In pea, soybean and chickpea, RFO levels

and expression of genes regulating its biosynthesis such as ABI5,

raffinose synthase and galactinol synthase control seed longevity

and vigour during seed maturation and germination (Salvi et al.,

2016; Zinsmeister et al., 2016; Lima et al., 2017). RFOs enhance seed

vigour and longevity by repressing ROS production and lipid

peroxidation (Salvi et al., 2016).
7 Post harvest measures to maintain
seed longevity

Appropriate scheduling of harvest time is pivotal for seed

quality as early harvest dampens seed longevity owing to under

development of vital seed organs while delayed harvest delivers aged

seed besides conferring losses due to seed shattering. Soybean seed

should be harvested and threshed when seed moisture content is

between 15 to 17%. Harvesting of soybean between yellow and

brown-pod stages followed by drying within pods at low

temperatures are optimal conditions for maintaining high seed

quality (Ennen, 2011). During mechanical threshing soybean with

weak structure is subjected to thrust leading to seed deterioration

(Gagare et al., 2014; Kuchlan et al., 2018). High quality soybean seed

with minimal damage is obtained at 14.3% moisture content in an

axial flow thresher with a feed rate and cylinder speed of 600 to 700

rpm (13.2 to 15.4 m/s) and 720 kg (plant)/h respectively (Vejasit

and Salokhe, 2004). During processing, static batch drying at

temperatures upto 40°C, employing low-moving equipment and

abrupt contacts with mechanical systems like pneumatic and

gravity separators is recommended to minimize dropping and

contact with seeds (Jaques et al., 2022).

Harvested seed should be stored at a seed moisture content of 8

to 12% based on the storage containers used. Processing of soybean

seed in air-screen cleaner followed by gravity separator without a

vertical bucket elevator for handling, improved the apparent seed

germination by removing damaged seeds (Pardea et al., 2002).

Enough care should be taken to ensure that the seed moisture

content does not drop below 5%, else membrane structures may

break down hastening the seed deterioration process. Seed longevity

is greatly influenced by external storage conditions like temperature

and humidity (Nadarajan et al., 2023) as well as diseases and insect

pests. Soybean seed stored in polyethylene-coated raffia packaging

under ambient conditions had physical and physiological qualities

similar to those stored under refrigeration (Coradi et al., 2020).

Treated soybean seeds remain viable for two seasons given the

storage temperature is maintained at 10 °C and relative humidity is

below 40% (Mbofung et al., 2013). Seed stored at relative humidity

of 50 to 60% in polythene bags at an initial moisture content of 8%

retained 80% germination up to six months (Ali et al., 2014).
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8 Seed longevity Status of Indian
soybean varieties

A vast number of soybean varieties (around 97) were developed

and so far released in India since its introduction in 1970s. These

varieties were grouped based on seed longevity and field weathering

(Bhatia et al., 2006) in the order of highly tolerant (less than 15%),

moderately tolerant (16 to 30%), susceptible (31 to 45%) and highly

susceptible (more than 45%). It is worrying to note that only eight

varieties were highly tolerant (Punjab 1, Kalitur, JS 80-21, NRC 37,

JS 72-280, Lee, PK 471 and MACS 450), 34% were moderately

tolerant (eg., JS 90-41, PK 472, MACS 124, and PK 1024) while

major chunk fell in susceptible and highly susceptible classes.

Several varietal characters like seed size, days to maturity,

percentage of hard seeds, seed coat thickness, hull percentage, oil

content, etc., contribute to the genotypic variation for field

weathering (Bhatia, 1996; Bhatia et al., 1996; Singh et al., 2008a).

In general early maturing varieties with bold seed, thinner seed coat,

high seed coat permeability, fewer hard seeds and high oil content

tend to lose viability much faster (Tiwari and Bhatia, 1995; Bhatia,

1996); while those with smaller sized seeds (Hosamani et al., 2013)

and black seed coats (Kuchlan et al., 2010; Pawar et al., 2017; Adsul

et al., 2018; Chandra et al., 2021) possess higher longevity.
9 Conclusion

Seed longevity is a major concern in soybean especially in

tropical regions where retention of seed germination during the

succeeding seasons is highly uncertain. Seed viability gradually

declines during storage, and the extent of deterioration depends

on storage conditions, nature and degree of damage incurred during

post harvest operations and genetic architecture of the seed itself.

Seed longevity in soybean is a complex phenomenon governed by

the seed coat structure, membrane permeability, antioxidant

system, genetic makeup and underlying molecular mechanisms.

High lignin content in seed coat, glassy state of cells, improved

antioxidant system and surplus storage proteins in seed form the

cues for extension of seed longevity along with introgression of

appropriate QTLs for delaying seed deterioration. Application of

suitable nutrient and antioxidants to improve seed coat integrity
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and antioxidant system is another possible avenue. Nonetheless,

further studies are needed for exploration and identification of

suitable alternate niches for quality seed production of soybean in

tropics. Given the growing preference of the crop and gravity of the

persevering challenges involved, it is pertinent to understand the

intricacies of molecular and genetic bases of mechanisms conferring

seed longevity for formulation of breeding programmes integrated

with marker assisted selection to derive lines with improved seed

longevity in soybean.
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