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Among seed attributes, weight is one of the main factors determining the

soybean harvest index. Recently, the focus of soybean breeding has shifted to

improving seed size and weight for crop optimization in terms of seed and oil

yield. With recent technological advancements, there is an increasing application

of imaging sensors that provide simple, real-time, non-destructive, and

inexpensive image data for rapid image-based prediction of seed traits in plant

breeding programs. The present work is related to digital image analysis of seed

traits for the prediction of hundred-seed weight (HSW) in soybean. The image-

based seed architectural traits (i-traits) measured were area size (AS), perimeter

length (PL), length (L), width (W), length-to-width ratio (LWR), intersection of

length and width (IS), seed circularity (CS), and distance between IS and CG (DS).

The phenotypic investigation revealed significant genetic variability among 164

soybean genotypes for both i-traits and manually measured seed weight. Seven

popular machine learning (ML) algorithms, namely Simple Linear Regression

(SLR), Multiple Linear Regression (MLR), Random Forest (RF), Support Vector

Regression (SVR), LASSO Regression (LR), Ridge Regression (RR), and Elastic Net

Regression (EN), were used to create models that can predict the weight of

soybean seeds based on the image-based novel features derived from the Red-

Green-Blue (RGB)/visual image. Among the models, random forest and multiple

linear regression models that use multiple explanatory variables related to seed

size traits (AS, L, W, and DS) were identified as the best models for predicting seed

weight with the highest prediction accuracy (coefficient of determination,
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R2=0.98 and 0.94, respectively) and the lowest prediction error, i.e., root mean

square error (RMSE) and mean absolute error (MAE). Finally, principal

components analysis (PCA) and a hierarchical clustering approach were used

to identify IC538070 as a superior genotype with a larger seed size and

weight. The identified donors/traits can potentially be used in soybean

improvement programs
KEYWORDS

soybean, RGB image, machine learning, hundred-seed weight prediction, superior
donor identification
Background

Soybean (Glycine max (L.) Merr.) is an important oilseed and

food crop consumed worldwide. The seeds are protein-rich (40%),

thereby making them a key crop for global food and nutrition security

(Rajendran and Lal, 2020; Rajendran et al., 2022). It provides a good

amount of essential amino acids, macronutrients, micronutrients,

and minerals (Garda et al., 2020). Approximately two-thirds of the

world’s protein concentrate requirements for livestock feed and 25%

of global edible oil consumption are met by soybeans. The top

producers of soybean include the USA, Brazil, and Argentina

(referred to as the “Big 3”), while in India it is grown in the Kharif

season and mainly produced in Madhya Pradesh, Maharashtra,

Rajasthan, Karnataka, Andhra Pradesh, and Chhattisgarh (Agarwal

et al., 2013; Siamabele, 2021). Global soybean productivity has

increased from 265,088,429 metric tons in 2010 to 333,671,692

metric tons in 2019, while in India it has increased from

12,736,000 metric tons in 2010 to 13,267,520 metric tons in 2019

(FAOSTAT, 2019). Also, about 10.5 million metric tons of soybean

oil are being consumed globally (SoyStats, 2020). In turn, breeding

efforts are required to improve the status of soybean productivity for

economically important traits such as seed shape and weight (Kumar

et al., 2023). Soybeans are widely used in various traditional and

modern preparations, such as soy paste, soy milk, miso, tofu, and

natto, in addition to soybean meal (Medic et al., 2014). Soybean

harbors a wide variety of compounds with therapeutic roles, such as

storage proteins used to treat hypocholesterolemia and chronic

kidney diseases. In addition, trypsin inhibitors and lectins have

anti-cancer properties, and soy compounds and iso-flavonoids can

act against angiotensin-converting enzymes along with other

constituents and provide scope for crop improvement (Medic et al.,

2014; Ramlal et al., 2022a; Ramlal et al., 2022b; Ramlal et al., 2022c;

Ramlal et al., 2023a). Soybean is a major legume consumed by both

humans and livestock (Rajendran et al., 2023). Another important

aspect of soybean, when genetically modified, is its herbicide

tolerance, which has revolutionized production and reduced the use

of pesticides (Nandula, 2019). It is also used in sealing agents and

adhesives, biofuel production, pharmaceuticals, and the food industry

(Lee et al., 2007). Soybean is also involved in several marker-based

breeding programs to confer disease and pest resistance and to
02
improve economically important traits (seed composition and oil

quality) (Lee et al., 2007). It has immense application in the

development of haploids and doubled haploids (Ramlal et al., 2023b).
Image-based phenotyping for
crop improvement

As the global demand for soybean is increasing rapidly, there is a

critical need for improving soybean through breeding approaches for

higher yield, enhancement of nutritional quality, and resistance to

biotic and abiotic stresses. In modern breeding programs, precision

phenotyping (measurement) of morpho-physiological traits along

with genotyping data are considered essential inputs. Current

phenotyping strategies in plant breeding have been revolutionized

by advances in high-throughput phenotyping platforms that

encompass imaging sensors and perform automated image

acquisition, processing, and techniques for effective big data

analysis, especially for the identification of superior donor

genotypes and crop improvement (Das Choudhury et al., 2019;

Niazian and Niedbała, 2020; Omari et al., 2020; Yoosefzadeh-

Najafabadi et al., 2021). Image-based phenotyping is considered to

be the most powerful tool, enabling researchers to study various plant

traits at the phenome scale at multiple spatiotemporal and spectral

resolutions. Due to the affordable cost of sensors and lower technical

complexity, visual (RGB) sensors are mostly preferred for predicting

various phenotypic traits, such as leaf area (projected shoot area),

biomass (Lati et al., 2013; Parent et al., 2015; Nyalala et al., 2019),

senescence (Cai et al., 2016;Wallis et al., 2022), nitrogen use efficiency

in wheat (Nguyen et al., 2019), leaf area index measurement in boreal

conifers (Fernandes et al., 2004), leaf chlorophyll estimation (Barman

and Choudhury, 2020), nutrient uptake (Ball et al., 2020) and grain

yield in corn and wheat (Gracia-Romero et al., 2019; Bekkering et al.,

2020; Khaki et al., 2020, 2021; Korohou et al., 2020). Similarly, these

sensors can predict growth responses to various abiotic stresses like

high temperature (Grieder et al., 2015) in wheat, salinity tolerance in

rice (Hairmansis et al., 2014), drought stress (Briglia et al., 2020) in

grapevine, combined drought and heat in wheat (Abdelhakim et al.,

2021), and disease severity of Ascochyta blight in chickpea (Zhang

et al., 2019).
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Targeting yield attributes for improving
crop productivity

Conventionally, in-plant traits such as biomass, number of

tillers or nodes, number of inflorescences or flowers per node,

and number of pods per plant are recorded to estimate soybean

production performance. Post-harvest seed parameters, such as the

number of seeds per pod, number of grains per plant, grain weight

per plant, and hundred-seed weight (HSW), are required for the

breeding of improved crop varieties with higher productivity.

However, most of these phenotyping traits are measured visually

through manual counting or low-throughput weighing scales.

Traditionally, HSW is phenotyped by counting 100 seeds and

measuring the fresh weight of a hundred seeds using a weighing

scale. Moreover, recording the HSW of a large set of diverse crop

germplasm is laborious, costly, and time-consuming, with the risk

of manual errors. Recently, image-based phenotyping

methodologies [image-based phenotyping in papaya (Santa-

Catarina et al., 2018), high-throughput phenotyping methods for

salt toxicity in lentil (Dissanayake et al., 2020), and Greenotyper

(Tausen et al., 2020)] have been widely adapted to estimate both in-

plant and post-harvest seed parameters, which are found to

contribute to higher genetic variability to improve the

productivity of diverse crops. Prediction of yield estimates from

image-based measurements of canopy color (Yuan et al., 2019),

number of flowers, number of grains, number of pods per plant (Lu

et al., 2022), grain weight, and spike length and width (Misra et al.,

2020) have been reported. Similarly, Dell’Aquila et al. (2000)

reported the measurement of the area, perimeter, and length of

white cabbage seeds to reveal changes in seed physical parameters

during imbibition, suggesting the high potential of image analysis in

seed biology studies. Digital imaging of seeds has been used to

group and classify genotypes based on similarity in several crops,

such as carrot (Anouar et al., 2001), ragweed (Sako et al., 2001),

lentil (Shahin and Symons, 2003), and flax (Dana and Iva, 2008).

Thangavel (2003) with sorghum, Kumar (2003) with lucerne, Shete

(2004) with castor, Suma (2005) with sesame, and Venora et al.

(2006) with Phaseolus sp. have used image analysis for varietal

characterization. Maize tassels have been phenotyped using a tassel

image-based phenotyping system for early yield prediction (Gage

et al., 2017). However, no one has reported the development of an

image-based method to predict the hundred-seed weight of crop

plants to accelerate breeding efforts.
Seed weight prediction using image-based
seed architectural traits

Imaging and machine learning (ML) models are gaining

popularity and importance for the prediction of genotypes to

phenotypes that include yield, days to heading, and thousand-seed

weight (Crossa et al., 2019; Khaki and Wang, 2019; Grinberg et al.,

2020). Models such as random forests (RF), support vector machines

(SVM), and artificial neural networks (ANN) can capture the

complex interactions between genotype, phenotype, and
Frontiers in Plant Science 03
environment in contrast to earlier methods due to their non-

linearity. ML plays therefore a significant role in supporting plant

breeding. ML has many applications in classical plant breeding, such

as genetic diversity evaluation, yield component analysis, stability

analysis, and tolerance to biotic and abiotic stresses, among others

(Niazian and Niedbała, 2020), and can also be associated with

analysis and prediction using omics data (van Dijk et al., 2021).

Associating or predicting plant genotypes with phenotypes requires

testing a series of ML algorithms, as each algorithm has its own basic

assumptions and biases, and no algorithm provides the best

performance for all traits. However, ML models outperform deep

learning models in providing interpretive feature selection for

soybean trait prediction (Gill et al., 2022).

Seed plays an important role in the life cycle of plants. Breeding

new high-yielding soybean cultivars requires genetic variation in

seed traits among different soybean cultivars/varieties to select

superior genotypes (yield, etc.). However, information on seed

morphological traits is poorly understood due to difficulties in

data collection and visualization. Moreover, a major research gap

is found in the identification of novel seed architectural traits (SAT)

associated with the seed mass/weight trait and its genetic variation

present in the large population of different soybean genotypes.

Nothing has been found on the breeding value of these i-traits for

their use in crop improvement. We need to decipher the dynamic

relationship of these image-based SAT (i-traits) with seed weight

through variance and co-variance analysis. To the best of our

knowledge, this is the first study to report on image-based SAT

data to identify superior donors for improving seed weight traits

in soybean. The present study focuses on the development of

an image-based methodology to predict the hundred-seed weight

of soybean genotypes and discover superior donor genotypes

with contrasting seed sizes and/or weight traits. This image-

based methodology can potentially be applied to other major

field crops to breed better varieties with improved traits to

increase productivity.
Materials and methods

Plant materials

Seed architectural traits were measured from 164 different

soybean accessions (including germplasm, cultivars, indigenous

landraces, exotic lines, etc.; Supplementary Table 1) multiplied at

the Soybean Genetics Unit of the Indian Agricultural Research

Institute (IARI), New Delhi, India, in 2019. The freshly harvested

seeds were stored in desiccators, and seed moisture content was

estimated using oven-drying and gravimetric methods at different

time points. Genotypes were chosen based on seed moisture

content (~14%) and genotypic variation in pedigree, flower color,

days to flowering, maturity duration, biomass, seed coat color, and

seed yield per row. A total of 100 uniform seeds were selected from

the harvested seed lot, and imaging scanners were used for

phenotyping and deciphering the relationship between SAT and

seed weight.
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Data acquisition

Image scanning setup and simultaneous
accession weighing
Image scanning setup

SATs were derived from images acquired by scanning three

replications of 100 seeds from each soybean accession. Protocols

described by Tanabata et al. (2012) were used for sample preparation

and scanning. Seeds were arranged in a 10×10 row and column matrix

on the flatbed scanning surface of the HP LaserJet scanner (model: HP

LaserJetPro MFP M126nw; software version 15.0.15311.1315, released

in 2021), as depicted in Figure 1. RGB images were captured in.jpeg

format at 600 dpi with a scan area of 1024 × 1024 pixels. A 15 cm ruler

was placed just to the side of the seeds during image acquisition and

used as a ruler for calculating the pixel size and area (0.081 mm per

pixel). Image acquisition took only a few minutes, allowing us to

manually process approximately 492 batches of seeds in 2 weeks. The

complete workflow of the current study related to the image-based

prediction of seed weight is shown in Figure 1.

Seed weighing

Soon after image acquisition, the hundred-seed weight (HSW)

was measured using a precision weighing balance (make: Mettler

Toledo, model XPR204S) with up to three decimal places.
Frontiers in Plant Science 04
Image processing and trait extraction

Image processing
SmartGrain (version 1.2), an open-source image analysis

software, was downloaded (http://www.kazusa.or.jp/phenotyping/

smartgrain/index.html) for image processing and analysis

(Tanabata et al., 2012; Gürsoy, 2019; Leiva et al., 2022). The raw

images were loaded into the software, and the developer’s

recommended procedure was followed for image segmentation,

processing, and data mining.

Trait extraction
The SmartGrain software constructs ellipses on detected grains

to identify the total number of grains/seeds and also computes eight

different seed architectural traits related to seed size and shape,

which include umber of seeds (NS), area size (AS), perimeter length

(PL), length (L), width (W), circularity (CS), length-width ratio

(LWR), intersection of length and width (IS), center of gravity (CG),

and distance between IS and CG (DS) (Figure 1). The description of

the traits is length (a distance between two points around the

longitudinal axis of an object and expressed in mm), width

(measured in the horizontal X-axis/transverse axis and expressed

in mm), perimeter length (multiplication of the length, width, and

height of the object and expressed in mm), area (multiplication of
FIGURE 1

Workflow of soybean seed weight prediction using image-based architectural traits.
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the length and width of the object and expressed in mm2), and

circularity (square root of the ratio of the actual area of the object to

the area of a circle with the same circumscribed circle: where A is

the actual area of the object, AP is the area of a circle with a

diameter equal to the circumscribed diameter (or) length of the

object). DS is the distance between IS and CG and represents the

shape of the seed.
Data analysis

Data preprocessing
Outlier detection and imputation

Outliers and missing values in the data can influence prediction

accuracy. Hence, data obtained from an image-based assessment of

selected accessions were first subjected to missing value and outlier

detection and imputation using the RStudio program (V:

2022.02.3). A multivariate approach was used to detect outliers,

where box plots were generated for the continuous variable and

observations outside 1.5 times the interquartile range (the difference

between the 75th and 25th quartiles) were considered outliers and

imputed with the mean of other replications.

Data normalization (z-score scaling)

The dataset contained variables with different units from pixel

to weight in mg, area in cm2 and length in mm, therefore, to use the

complete data frame for statistical analysis, it was imperative to

scale it to a single range. We selected a simple feature scaling

method, standard z-score (mu), which used variable averaging and

standard deviation as factors to normalize all variables close to zero

and in the range from -3 to +3. The z-score feature scaling method

was selected as it takes into account both the mean value and the

variability in a set of raw scores.
Statistical analysis and visualization
of results

The pre-processed clean data obtained through image-based

assessment of selected accessions were subjected to various

statistical analyses, such as descriptive statistics analysis, analysis of

variance (one-way), calculation of Tukey’s HSD, broad sense

heritability and components of variance (genotypic, phenotypic,

and environmental coefficient of variance), coefficient of variance

and its components of variance (genotypic, phenotypic, and

environmental coefficient of variance) using the variability package

(Briglia et al., 2020) in Rstudio. Psych library (Mohi-Ud-Din et al.,

2021) was loaded in Rstudio, and the pairwise panel command was

used for visualization of Pearson’s correlation coefficient (r) and

plotting frequency distribution. A hierarchical clustering of genotypes

was performed to group the similar genotypes into clusters using the

hclust command with two complementary methods: the average

linkage hierarchical clustering method (ALHCA) and the complete

linkage hierarchical clustering method (CLHCA). The members of

clusters were compared between the two methods, and a confusion
Frontiers in Plant Science 05
matrix was formed to revalidate the clustering of member genotypes

based on image-based seed traits.
Feature selection, identification of superior
traits, and donor genotypes

Trait suitability analysis using the variance
inflation factor

The multiple independent variables and their relationships with

each other greatly influence the prediction accuracy of dependable

variables. Hence, trait suitability analysis was performed by

estimating the variance inflation factor (VIF) using the library car

and the VIF command in Rstudio. The VIF is a measure of the

amount of multicollinearity in a set of multiple regression variables.

A VIF value greater than 10 was considered to have very high

multicollinearity and was removed or reconsidered from

further analysis.

Superior image feature (i-trait) selection
Two methods of feature selection were employed. First,

principal component analysis (PCA) was used, which is an

unsupervised method of feature selection that does not use

information about the feature value and target value. The PCA

also used normalized data, which requires some kind of

transformation before analysis. Hence, we used an additional

method called the Boruta algorithm, which used wrapper

methodology for the accurate identification of superior image

features for seed weight prediction. The PCA was performed in

RStudio using the FactoMineR library (Mohi-Ud-Din et al., 2021),

and the scree plot was constructed using the fviz_screeplot function.

The first two principal components were selected based on the

elbow angle of the scree plot. The PCA biplot was constructed with

facto extra using the fviz_pca_biplot function. The 10 best image

features contributing the most variance to the PC 1 and PC 2

components of PCA were plotted as a bar chart using the

fviz_contrib function. Similarly, the 10 best soybean genotypes

were selected based on the highest variance contribution to the

PC 1 component and plotted as a bar chart. The Boruta function

was used in RStudio with raw data set to max run 500. With this

method, a subset of features called shadow features was used to train

a model. The model developed from the shadow features was used

to select the feature based on forward or backward selection

elimination. Finally, the features were listed based on their

importance, with the highest MaxImp value and decision.

Trait prediction (seed weight as a dependable
variable) using ML models

To predict soybean weight based on the extracted feature variables,

seven regression models were explored in this study: simple linear

regression (SLR), multiple linear regression (MLR), random forest

(RF), support vector regression (SVR), lasso regression (LR), ridge

regression (RR), and elastic net (EN). The caret (Yuan et al., 2019),

mlbench (Elangovan et al., 2023), and glmnet (Singh et al., 2023)

packages were used to train the machine learning models in RStudio.
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To predict soybean seed weight, a dataset comprising seven image-

based architectural traits derived from 164 different soybean genotypes

was partitioned into (80:20%) a training (131) and a test (33) dataset for

validation. All seven regression models were repeated 10 times with

cross-validation on the training data using the trcontrol function with

the repeated cv method. A linear regression model was constructed

using the training dataset, using SW as a dependent variable and all

other image features together or separately as independent variables.

The lm, rf, and svmLinear2 functions were used to build linear, random

forest, and support vector machine models, respectively. The eps

regression type was used with the linear kernel type and cost=0.1 for

SVM models, and the tuning values were 0.001, 0.01, 0.1, 1, 10, and

100. A ridge regressionmodel was performed using the glmnet package

with tunegrid alpha=0, lambda=0.0001, and trcontrol with 10 times

validation. A lasso regression was performed using the glmnet package

with tunegrid alpha=1, lambda=0.0001, and trcontrol with 10 times

validation. An elastic net regression was performed using the glmnet

package with tunegrid alpha=0.1, length=10, lambda=0.0001, and

trcontrol with 10 times validation. Knn models were performed

using the caret, pROC, and mlbench packages with a k value=1:70.
Comparison of ML model performance and
the best model for predicting SW

The predict function was used to forecast the SW value of the

testing dataset based on a model developed on the training dataset.

The coefficient of determination (R2), root mean square error

(RMSE), and mean absolute error (MAE) were used as evaluation

metrics to quantify the performance of the regression models and to

determine how well the model predicts new data and whether the

model is too complicated. The cor function was used to estimate

Pearson’s correlation coefficient between the predicted SW value

and the actual SW value in the testing dataset. The lm function was

used to measure the coefficient of determination (R2) between the

predicted and actual SW values in the testing data set. The root

mean square error (RMSE) was calculated from the square root of
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the mean estimated from the difference between actual and

predicted SW in the training dataset. The mean absolute error

(MAE) was calculated from the mean absolute difference between

the predicted and actual SW of the training dataset. The ggplot2

package was used to plot the regression model graphs of the

predicted and actual datasets.
Results and discussion

The study generated ~ 24.6 GB of high-resolution RGB image data

by scanning the seeds of 164 different soybean genotypes. The

processed image data included the data matrix array of 1,14,737 data

points related to eight SATs (NS, AS, PL, L, W, LWR, CS, and DS)

estimated from 100 individual seeds of each of the 164 soybean

genotypes. We removed NS from further analysis because it was 100

and common to all of the 164 different genotypes. The data

preprocessing efforts identified approximately 763 data points that

were either missing or found to be outliers, hence statistically imputed

to have a complete data matrix array of 1,15,500 data points for further

analysis. Finally, the SAT data collected from 100 seeds of each

genotype were pooled, and the mean values were analyzed along

with the hundred-seed weight. A very low coefficient of variation

(<5%) was found for all SAT collected from 100 individual seeds of

each genotype (Supplementary Table 2). This suggested that the 100

seeds selected for imaging have uniform and pooled average values

represent the SAT characteristics of each genotype while the descriptive

statistics and ANOVA results are presented in Table 1.

The ANOVA results showed statistically significant genotypic

variation in selected different soybean genotypes for seed

architectural traits and hundred-seed weight (P ≤ 0.001). The

presence of genetic variability for seed traits such as seed length,

width, and weight has been reported using conventional

phenotyping methods. Imaging technology has advantages over

conventional phenotyping as it records more trait resolution (SA,

PL, L, W, LWR, CS, and DS) per unit of data recording time. Kim

et al. (2022) demonstrated the use of eight different seed
TABLE 1 The mean and associated standard error ( ± SE), maximum, minimum, least significant differences (LSD0.05), estimated genotypic (S2g), and
experimental error (S2e) variance components, among the soybean germplasm accessions.

SoV SA PL L W LWR CS DS SW

Minimum 13.36 13.89 4.48 3.69 1.07 0.77 0.20 4.85

Maximum 24.04 19.18 6.35 5.75 1.33 0.91 0.56 9.46

Mean ± SE 18.09 ± 0.19 16.32 ± 0.13 5.29 ± 0.06 4.47 ± 0.005 1.19 ± 0.005 0.85 ± 0.001 0.29 ± 0.001 6.69 ± 0.06

C.V. 12.47 6.72 6.33 7.66 3.15 2.61 14.94 13.70

C.D 5% 0.52 0.37 0.15 0.01 0.02 0.03 0.003 0.18

F value 141.61*** 64.60*** 35.07*** 4540.4*** 46.67*** 1.91*** 1403.7*** 208.79***

Heritability 0.98 0.96 0.92 0.99 0.93 0.20 1.00 0.97

GV 4.98 1.15 0.10 0.11 0.0013 0.0001 0.002 0.83

EV 0.11 0.05 0.01 0.0001 0.0001 0.0004 0.00001 0.01
fro
*** Significant at p<0.001, surface area (SA), perimeter length (PL), length (L), width (W), length-to-width ratio (LWR), seed circularity (CS), and distance between IS and CG (DS) and hundred-
seed weight (SW).
ntiersin.org

https://doi.org/10.3389/fpls.2023.1206357
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Duc et al. 10.3389/fpls.2023.1206357
architectural traits to predict seed weight in soybean. In that study,

apart from architectural traits, seed coat color was also documented

for diversity characterization of germplasm according to UPOV

classification. Recently, several pieces of literature reported the

variability of seed traits captured using imaging sensors in

soybean (Yuan et al., 2019; Baek et al., 2020; Yang et al., 2021; Lu

et al., 2022). However, the present work demonstrated the

application of imaging sensors to predict SW from SAT, which is

an important yield-contributing trait to identify superior donors for

breeding better soybean crop plants. Pair's panel matrix analysis

clearly showed that all eight SATs data following the normal

distribution pattern (Figure 2). Hence, these traits are expected to

show polygenic inheritance and be controlled by multiple

quantitative trait loci. Genetic variability plays a significant role in

plant breeding, and the extent of heterogeneity in germplasm is

governed by genetic variation (GV) and phenotypic variation (PV)

of traits. For all attributes, the variance component for error

(environmental variation) was lower, indicating that selection is

useful in breeding these traits (Table 1). Heritability represents the

phenotypic variation present in a population that is mainly

contributed by genetic variation between individuals in that

population. Among the SATs, size-related traits (AS, PL, L, W,

and DS) showed very high (>95%) broad sense heritability, along

with SW (0.97). The lowest heritability value (0.20) was observed

for the shape-related SAT (CS).
Seed size features determine seed weight

The selected i-traits related to seed size (AS, PL, L, W, and DS)

showed a strong and significant positive Pearson correlation
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coefficient (P<0.001) with SW (Figure 2). These traits can

potentially be used for breeding better soybean plants by

predicting SW and selecting superior donors for crop

improvement. Although seed shape-related traits (LWR

represents the ovality of seed shape) showed a very high

heritability (0.93) in our population, Pearson’s correlation

coefficient showed a significant negative correlation between SW

and LWR. Another shape-related trait (CS) showed the lowest

broad-sense heritability (0.20) and Pearson’s correlation

coefficient (-0.19) with SW. In the case of DS, the highest

heritability (1.00) and moderate positive correlation (r=0.35)

between SW and DS were recorded. These results clearly showed

that the seed shape and size of different soybean genotypes were

extremely variable, ranging from round to elliptical. The seeds of

most of the cultivars used in this study were oval, with the highest

genetic variation towards ovality. However, shape-related traits

(neither ovality nor circularity) hardly influence SW. Among the

SAT, the highest correlation value (r=0.99) was found between SA

and PL. Kim et al. (2022) have reported similar higher positive

correlation between the SA and PL. SW was positively correlated

with SA, PL, L, W, and DS and negatively correlated with LWR

and CS. The PCA bi-plot also showed that seed shape (DS and

LWR) and size-related traits (AS, L, W, PL, and DS) were

negatively correlated, and the loading vectors were grouped in the

opposite diagonal quadrants (Figure 3). The seed size-related traits

were identified as a major positive contributor to the variance in

PC1 and PC2 components. In contrast, seed shape-related traits

were found to be the negative contributors to the PC1 and PC2

components of the biplot. Thus, seed size determines the seed

weight more than seed shape traits (Cober et al., 1997; Kim et al.,

2022) in soybean.
FIGURE 2

Pair’s panel matrix depicting frequency distribution, regression, and correlation coefficient (r) of eight different SAT measured from 164 soybean
genotypes. Correlation coefficient at the significant level of at P<0.05 (*) and P<0.001 (***). Surface area (SA), perimeter length (PL), length (L), width
(W), length-to-width ratio (LWR), seed circularity (CS), distance between IS and CG (DS), and hundred-seed weight (SW).
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Image feature selection and superior
trait identification

Trait suitability analysis was performed using variance inflation

factor (VIF) analysis. It was used to measure the degree of

multicollinearity among the independent variables in multiple

regression models. In general, multicollinearity does not reduce

the predictive power of multiple regression models, but it does

reduce the statistical significance of independent variables. A large

VIF (>10) of an independent variable indicates a highly collinear

relationship among the independent variables (Supplementary

Table 3). Among the traits, the VIF value ranged from 1.47 to

18.90. Very high multicollinearity was observed to exist between AS

and PL, 18.90 and 17.21, respectively. Although both AS and PL

recorded >10 VIF, AS was selected as suitable for multiple

regression model analysis due to its technical advantage over PL.

This is because predicting the seed weight based on the mass per

pixel has advantages over simple boundary pixel count (PL)

estimation, as the latter has a higher probability of overestimating

or underestimating and detecting outliers.

Similarly, feature selection is an important step in a data set

with many variables and features. Boruta analysis eliminates

unimportant variables to improve the accuracy and performance
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of the model. Boruta adds randomness to the given data set by

creating shuffled copies of all features, called shadow features,

and determining at every iteration whether a real feature has

higher importance than the shadow feature. It simply reduces

dimensions and training time. Boruta allows feature selection

and ranking based on the Random Forest (RF) algorithm. Seven

features recorded by imaging were subjected to Boruta analysis

in all features that recorded values for mean, median, and

maximum importance and also remained beyond shadowMax

(Supplementary Table 4). AS was the best predictor variable with

the highest maximum importance (27.94), followed by L (22.15)

and DS (20.86), while LWR (4.71) and CS (9.90) were the least

important in predicting SW. The Boruta plot clearly showed that

all seven SAT features had a higher Z-score than the maximum

feature of the shadow feature, and constancy removed

unimportant features (Supplementary Figure 1).
PCA biplot

The purpose of the PCA is to obtain a small number of linear

combinations of the eight variables that account for most of the

variability in the data. The Principal Component Analysis describes
A B

C D

FIGURE 3

Principal component analysis of eight selected SATs with CVs ≥0.3 collected from 164 different soybean genotypes. Clockwise from the top left
panel (A) Scree plot depicting the number of informative principal components (2). Top right (B) bi-plot showing the distribution loading vectors and
position of each genotype in the PC space; Bottom left (C) panel shows the relationship and importance of the traits among each other; Bottom
right (D) the importance of the traits in terms of the highest contribution of variance to the principal component PC1 vs. PC2, representing 84.74%
of the variability. Surface area (SA), perimeter length (PL), length (L), width (W), length-to-width ratio (LWR), seed circularity (CS), and distance
between IS and CG (DS) and hundred-seed weight (HSW).
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the total variation available in the population and the relative

distance among the 164 genotypes for each combination of seed

traits studied. So, the most informative trait can be selected through

dimensionality reduction and data normalization techniques. In

this case, two components were extracted, and the inclusion

criterion used was that two components had eigenvalues greater

than or equal to 1.0 (Supplementary Table 5). This result indicates

that the variability of the seed traits studied by imaging soybean

seeds is mostly explained by PC1 and PC2 of symmetrical variation.

PC1 vs. PC2 accounted for 84.74% of the variability in the loading

plots. PCA of the accession-by-trait correlation matrices was

performed, and a biplot was generated to allow the clustering of

genotypes (Figure 3). The biplot showed both the loadings of each

variable (arrows) and the scores of each genotype (numbers). The

angles between the arrows show their close association in terms of

correlations. The traits AS, L, PL, W, and SW showed a positive

association (angles between the directional vectors <90°). The first

component (PC1) accounted for 68.11% of the variability and

primarily included image-based seed size traits such as PL, SA L,

W, DS, and manually recorded SW traits. PC2 accounted for

16.62% of the variation derived from CS, SA, PL, W, and SW. A

wider angle of loading variable was found for LWR and SW for both

PC1 and PC2 components on a negative slope. This indicated that

LWR had a significant negative relationship with soybean hundred-

seed weight. The genotypes located closer in the plot showed similar

scores on the PCA components and exhibited similar profiles of

image traits. All genotypes were distributed in all quadrants and

showed no distinct separation. The loading score of the PC1 vs. PC2

plot with the largest PL, SA, L, W, DS, CS, and SW (Supplementary

Figure 5) was identified as the number of superior genotypes

(Supplementary Table 5). Eight seed traits with CVs ≥0.3

(Table 1) were used for factor analysis using the PCA extraction

method. For each trait, the largest variable loading score in PC1

and PC2 is shown in bold. Among the traits, PL, AS, L, W, DS,

and SW were identified as the highest variance (>12.5%)

contributing variables and were found to be important features in

the SAT. CS and LWR are the lowest variance-contributing

variables recorded in the population. Kim et al. (2022) reported a

similar trend of results.
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Comparison and identification of the best
prediction model to predict SW

Simple linear regression models were performed with each of

the selected independent variables (AS, PL, L, W, LWR, CS, and DS)

separately on the dependent variable (SW), and the results are

presented in Table 2 and Supplementary Figure 2. The models were

trained using 80% of the data (131), and the linear prediction model

was tested on 20% of the data (33). The prediction accuracy (R2),

Pearson’s correlation coefficient (r), statistical significance (p-

value), root mean square error (RMSE), and mean absolute error

(MAE) were estimated between the predicted SW (pSW) and the

actual seed weight (aSW; ground truth). In both the training dataset

(TrD) and the testing dataset (TsD), the results showed a high

positive correlation (>0.80) between aSW and pSW using AS, PL, L,

andW with a high statistical significance (p>0.001) (Supplementary

Figure 3). This showed that seed size-related traits were more

informative for predicting seed weight than seed shape factors.

Among the dependent variables, AS was found to be the best

predictor with the highest coefficient of determination/prediction

accuracy (R2 = 0.89) in both TrD and TsD (Supplementary

Figure 7). The model equations of LWR, CS, and DS showed

weak correlation (<0.50) between aSW and pSW, high RMSE and

MAE values (>0.70), and prediction accuracy (R2<0.1). Therefore, it

was not found to be suitable for the prediction of SW. Next to AS,

PL was identified as the next best predictor, with an accuracy of R2 =

0.82 in TrD and R2 = 0.80 in TsD. Among these two predictor traits,

AS was the best choice owing to the lowest RMSE (TrD= 0.39;

TsD=0.27) and MAE (TrD=0.32; TsD=0.22) values in both TrD

and TsD. Moreover, SW prediction using AS was observed to be

more accurate as the RMSE (0.27) and MAE (0.22) values of TsD

were significantly lower than TrD (RMSE=0.39; MAE=0.32). Singh

et al. (2020) reported that a simple foreground area was found to be

the best predictor and has a greater association with seed weight. A

similar type of image-based seed weight prediction using seed

architectural traits has been reported in rice (Singh et al., 2020),

wheat (Sabanci et al., 2016), and forest species (Felix et al., 2021).

Multiple linear regression models were performed with four

superior independent variables (AS, L, W, and DS) on the
TABLE 2 Performance indicators of simple linear regression models used to predict SW using selected SATs as independent variables (AS, PL, L, W,
LWR, CS, and DS).

SNo Formula
Training set Testing set

Equation R P R2 RMSE MAE Equation R P R2 RMSE MAE

1 SW ~ AS SW=0.89XAS+0.71 0.90 <0.001 0.89 0.39 0.32 SW=0.89XAS+0.77 0.95 <0.001 0.89 0.27 0.22

2 SW ~ PL SW=0.82XPL+1.18 0.90 <0.001 0.82 0.39 0.32 SW=0.77XPL+1.52 0.90 <0.001 0.80 0.36 0.28

3 SW ~ L SW=0.75XL+1.62 0.87 <0.001 0.75 0.46 0.32 SW=0.68XL+2.12 0.88 <0.001 0.76 0.41 0.31

4 SW ~ W SW=0.65XW+2.31 0.81 <0.001 0.65 0.54 0.37 SW=0.77XW+1.55 0.90 <0.001 0.81 0.36 0.30

5 SW ~ LWR SW=0.11XLWR+5.95 0.33 <0.001 0.10 0.86 0.69 SW=0.06XLWR+6.30 0.21 0.004 0.04 0.94 0.75

6 SW ~ CS SW=0.01XCS+6.56 0.12 0.013 0.012 0.90 0.73 SW=0.006XCS+6.63 0.06 0.58 -0.007 0.97 0.80

7 SW ~ DS SW=0.09XDS+6.01 0.31 <0.001 0.095 0.86 0.67 SW=0.11XDS+5.99 0.44 <0.001 0.185 0.89 0.72
frontie
Pearson’s correlation coefficient (r), Root mean square error (RMSE); Coefficient of determination (R2); Mean absolute error (MAE).
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dependent variable (SW), and the results are presented in

Supplementary Table 7. Irrespective of the multivariate regression

models (MLRM, RF, SVR, Lasso, Ridge, EN, and KNN), the results

showed a high positive correlation (>0.90) between aSW and pSW

in both the training dataset (TrD) and the testing dataset (TsD)

(Figure 3). Among the models, RF was found to be the best model

with the highest coefficient of determination/prediction accuracy

(R2 = 0.98) in TrD and the lowest RMSE (0.13) and MAE (0.09).

Next to RF, the MLRMmodel was found to be the best model with a

high R2 (0.94), low RMSE (0.23), and MAE (0.18). MLRM was

found to be the best predictive model for TsD with R2 (0.94), RMSE

(0.20), and MAE (0.15). In TsD, RF was the next best predictor with

an accuracy of R2 (0.92), RMSE (0.22), and MAE (0.16). The model

equations of Lasso, KNN, and EN recorded relatively low predictive

accuracy (R2 < 0.1), high RMSE, and MAE values (>0.15), and were

therefore found to be unsuitable for predicting SW. Among the

predictor models, RF and MLRM stood out as the best choices

owing to the highest prediction accuracy, and correlation with the

lowest RMSE and MAE values in both TrD and TsD (Figures 4, 5).

Morphology is an important and effective attribute and a useful

feature to discriminate objects that vary with mass in image-based

crop phenotyping (Khoshroo et al., 2014). Several reports digitally

determine the component traits of SAT, namely, area (AS),

perimeter length (PL), length (L), width (W), length-width ratio

(LWR), circularity (CS), center of gravity (CG), intersection of

length and width (IS), and distance between IS and CG (DS), using

RGB images (Tanabata et al., 2012). There are many Windows- or

Android-based free open-source software products used to measure

grain size and shape, such as SmartGrain (Tanabata et al., 2012),

GrainScan (Whan et al., 2014), and ImageJ (Abràmoff et al., 2004)

for digital phenotyping of SAT. A few paid commercial software
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products, namely Lemnagrid (LemnaTec scanalyzer 3D), can be

utilized to increase the trait resolution of SAT phenotyping. It is

very simple and easy to capture the images with scanners to extract

seed properties (Tanabata et al., 2012). Although several reports

have been published for the non-invasive prediction of whole plant

biomass using pixel counts derived from digital images, very little

information is available for predicting hundred- or thousand-seed

weights of soybean genotypes through SAT.

Recently, Sabanci et al. (2016) used a Logitech c905 webcam

camera to acquire still images and accurately predicted wheat seed

weight (99.66%) using a simple polynomial regression model.

Similarly, Felix et al. (2021) determined the thousand seed weight

(TSW) of seeds harvested from 16 different forest tree species using

digital image processing through image J software and

demonstrated the comparative advantages (60-80% time savings)

of image-based phenotyping for counting seed number, weight, and

TSW over traditional manual measurement. Singh et al. (2020) used

a mobile camera (Apple iPhone) to acquire the RGB images and

used six machine learning algorithms in a stacked ensemble model

to predict the size and weight of rice kernels using the pixel count

derived from the segmented foreground images. In all of the above

cases, the prediction accuracy was very high (R2 > 0.95), either

because of the smaller sample size or because of the application of

powerful machine learning models to predict seed size and weight.

Recently, Lu et al. (2022) used 24 soybean varieties and used

deep learning neural network techniques such as generalized

regression neural network (GRNN) and You Only Look Once

(YOLOv3) algorithms to predict grain yield per plant (with 90.3%

prediction accuracy) using leaf number count as an independent

variable and pod categorization based on the number of seeds per

pod in hidden layers. Similarly, Rajković et al. (2021) used ANN and
FIGURE 4

Comparative performance of nine machine learning models (LASSO regression, Least Absolute Shrinkage and Selection Operator; Linear_PL, Linear
regression model using PL as the independent variable; KNN, k-nearest neighbors algorithm (k-NN); Elastic net regularization; Linear_AS, Linear
regression model using AS the independent variable; MultilinearModel, Multiple linear regression model using seed size factors; i.e., AS, L, W, and DS
as the independent variable, Random forest regression, Ridge regression, Support vector regression models.
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RFR models to predict six major crop production-oriented traits

such as oil content, seed yield, protein content, oil and protein

content, thousand seed weight, yield, and quality of rapeseed. They

used 40 different soybean genotypes and found RFR models to be

the best model (0.88% prediction accuracy) to predict the best year

of production and genotype. Yuan et al. (2019) used early-season

canopy RGB images to predict soybean yield, maturity, and seed

size using 457 dependable variables related to color and texture

features. Prediction accuracy was limited to 0.58% for seed size and

0.62% for yield using cubist and random forest regression models.

Singh et al. (2020) used stacked ensemble models comprising ANN,

RF, SVM, KRR, and KNN for grain size and weight prediction. They

found that the normalized pixel area of the rice kernel predicts the

single kernel weight with 0.95% accuracy. Smitchger and Weeden

(2018) found the ideal seed size for maximum seed yield in pea

plants and reported that the seeds with the maximum size had the

highest seed weight and harvest index. However, in all these cases,

the main focus was on in-field plant traits to predict the soybean

seed weight. However, no previous study has reported using seed

architectural traits to predict seed weight. This is the first report to

predict the hundred-seed weight using multiple image-based seed

architectural traits and machine learning algorithms.

Hundred-seed weight is a very important trait that physiologists

and breeders measure to record and maintain the pedigree and yield

performance of the genotype. Conventionally, automatic seed

counters that work on the principle of vibrator and

phototransistor sensors are widely used in the seed industry and

by scientific organizations for seed counting. Traditionally, 100
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seeds were counted either manually or by machine and then

weighed manually using a scale to measure HSW. Recently, a

company called Elmor combined a grain counting and weighing

machine for the determination of the thousand kernel weight.

Through the use of this modern machine, there has been a

significant reduction in manual labor efforts. However, the time

required for counting and weighing remains a major bottleneck in

traditional phenotyping methodologies. It is advantageous to have

image-based HSW estimation tools for the automatic measurement

of HSW and simultaneous measurement of seed weight using seed

architectural traits, such as color traits, of each seed. There is a

crucial need to enhance the productivity of soybean plants by

breeding for uniform, larger seed sizes per plant. This will result

in higher yields and facilitate mechanical harvesting. Moreover, the

image-based technology has the added advantage of mapping

quantitative trait loci (QTL)’s/genes from seed architectural traits

estimated using multiple numbers of seeds harvested from a large

number of genotypes. Researchers spend much of their productive

time counting and weighing the seeds from a large number of

different genotypes. Hence, there is a need for faster, automated

image-based phenotyping tools for estimating HSW. Generally,

seed weight prediction using imaging techniques uses white light-

illuminated platforms, and the major bottleneck associated with

causing an error is related to the underestimation of closely located

overlapping seeds. Placing seeds in a non-overlapping pattern on

the scanning platform took more time in our case. In such cases,

tools that automatically place seeds through vacuum tube

techniques, predict hundred-seed weight based on a lower
A B

C D

FIGURE 5

Performance of superior machine learning models for predicting seed weight using seed size factors (AS, L, W and DS). Prediction models using (A)
RF training dataset, (B) RF testing dataset, (C) MLR training dataset and (D) MLR testing dataset.
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number of randomly placed seeds, or use accurate image processing

techniques that take care of the overlapping seed count or the

sequential imaging of seeds using push broom conveyor systems are

the basic engineering needs to be met for the invention of automatic

HSW machines. Sabanci et al. (2016) used a variable number of 25

to 100 grains of wheat and predicted the seed weight at a 99.66% R2

value, even with a smaller number of seeds. The mass of the seed is

determined by its dry matter and moisture content. With the recent

advent of RGB and NIR sensors, multi-modal regression algorithms

can be developed to predict seed moisture content using the NIR

signal and the weight component using the RGB image-derived AS

feature. Several smartphone-based Android mobile applications

(seed counter and seed counting) are available to estimate various

seed architectural traits. This holds promise for the future

development of an agronomically user-friendly mobile application

that accurately predicts seed weight using SAT. Thus, the enormous

labor, time, cost, and space involved in conventional phenotyping

can be minimized to hasten the breeding cycle. In this experiment,

we demonstrated the image-based methodology to predict the

breeder’s best traits of interest (hundred-seed weight) for

improving the productivity of soybean genotypes using image-

based architectural traits. The contrast donor genotypes were

effectively used for bi-parental crossing and mapping of QTLs

associated with seed size and weight traits. This methodology can

be easily deployed in other major cereal and pulse crops to breed

better genotypes with higher productivity.
Donor selection based on superior i-trait
and hierarchical clustering analysis

The identification of soybean donor genotypes contrasting in seed

size, shape, and weight was the main objective of the current

experiment. Among 164 different soybean genotypes, HSW was

highest in JS 20-30 (9.24g), DS 9712 (8.81g), JS 93-06 (8.61g), PK564

(8.59g), JS9423 (8.52g) and UPSL-332 (8.54g). In contrast, HSW was

lowest in BJJF-8 (4.9g), UPSL-365B (5.24g), M-53 (5.29g), L-768

(5.29g), UPSL-736 (5.33g), UPSL-326 (5.233g) and L-780 (5.38g).

The superior i-traits (AS) closely associated with SW were found to

be highest in soybean genotypes like JS 20-33 (23.65), JS9423 (22.91),
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DS9712 (22.56), UPSL-332 (22.41), JS 93-06 (22.23) and PK564

(22.17). Genotypes like BJJF-8 (13.67), L-768 (13.92), L-780 (14.15),

UPSL-326 (14.15), UPSL-736 (14.24), and M-53 (14.37) were found to

have the lowest SA. These genotypes were also identified to follow a

similar trend in the case of size and shape-related traits (PL, L, and W)

(Supplementary Table 8). The presentation of the results of TukeyHSD

clearly showed that these contrasting soybean genotypes were

statistically different and assigned different alphanumeric values with

the help of themultcomView function in RStudio. The data on seed size

and weight diversity clearly showed that the panel used in this study

were mostly indigenous germplasm seeds, and, as reported earlier, the

exotic lines (Chinese and Korean) soybean seeds were found to possess

larger seed size and weight (Kim et al., 2022).

The divisive hierarchical clustering analysis was performed to

arrange all the observations of eight variables collected from 164

genotypes. The clustering started with all observations in one cluster

at the top, and then splits were performed recursively as one moved

down in a top-to-bottom approach. The hierarchy was performed

based on ametric called distance, and a linkage criterion was specified

as the pairwise distances of observations in the sets. Two appropriate

linkage criteria (ALHCA and CLHCA) were performed using the

mean and maximum distance between elements of each cluster

(Supplementary Figures 4A, B). The confusion matrix (Table 3)

clearly showed that the first and second clusters comprised 66 and

26 genotypes, respectively, that had similar SATs within the cluster

based on the distance matrix calculated in both methods of HCA.

Similarly, the third and fourth clusters were found to contain 49 and

six genotypes with more similar trait combinations, respectively. Out

of 164 different soybean genotypes analyzed, 17 genotypes were

grouped in the third cluster by CLHCA and in the fourth cluster

by ALHCA in the confusion matrix (Table 3). Thus, the HC, or

grouping accuracy, of 89.63% was achieved by using all eight different

SATs for the identification of donors. Among the clusters, Cluster 1

was the largest, consisting of a large number (66) of genotypes. The

list of cluster group members is presented in Supplementary Table 9.

The contrast donors for soybean genotypes for seed size and weight

were selected from clusters 2 and 4. Kim et al. (2022) reported the

genetic diversity of soybean seed weight in the range of 8 to 24 g. In

our case, the cluster-wise range and mean values of SW were in the

range of 5 to 9 g (Table 3). This showed that the selected set of
TABLE 3 Confusion matrix for validating the list of cluster members (genotypes) identified by CL and AL hierarchical clustering analysis.

Cluster member list ALHCA

CLHCA Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 66 0 0 0

Cluster 2 0 26 0 0

Cluster 3 0 0 49 17

Cluster 4 0 0 0 6

Cluster range_AS 15.50-18.30 13.60-15.43 17.98-20.78 22.26-23.80

Cluster range_SW 5.10-7.34 5.10-6.12 6.55-8.16 8.48-9.46

Cluster mean_AS 17.01 14.65 19.41 22.79

Cluster mean_SW 6.33 5.70 7.26 8.85
fro
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germplasm is not sufficient to capture the genetic variability for seed

size and weight. However, the same methodology can be explored in

more technically recognized core germplasm sets. The highest means

for both AS and SW were observed in Cluster 4, and the lowest in

Cluster 2. It was shown that Cluster 4 included the group of six

soybean genotypes with the largest seed size, shape, weight, and

superior donors (JS 20-30, DS 9712, JS 93-06, PK 564, JS 9423, and

UPSL-332). In contrast, Cluster 2 consisted of a group of 26 soybean

genotypes with smaller seed size, shape, and weight traits. Tukey’s

HSD test was used to select the best contrast donor genotype from a

group of 26 genotypes clustered in Cluster 2 (Supplementary

Table 8). Moreover, a moderate to high positive (0.38 to 0.60)

relationship was found between AS and SW traits estimated within

the cluster groups. Each of the six selected superior (JS 20-30, DS

9712, JS 93-06, PK 564, JS 9423, and UPSL-332) and contrasting

soybean genotypes (BJJF-8, UPSL-365B, M-53, L-768, UPSL-736,

UPSL-326, and L-780) for seed size, shape, and hundred-seed weight

has been util ized in soybean breeding programs and

crop improvement.
Conclusions

An image processing technique was used to estimate the seed

architectural traits and hundred-seed weight of 164 different

soybean accessions using a flatbed scanner. The image processing

software, SmartGrain, was used to obtain their size, shape, and

other seed weight-related features. Precision phenotyping guides

breeders in the use of genotyping data for crop improvement.

Therefore, breeders require defined information from a large set

of accessions or germplasm collections for trait improvement. At

present, phenotyping is aided by imaging and machine learning

techniques in crop plants, as these can screen more accessions in

less time and space for our trait of interest. In the current study,

image processing technology was used to extract morphological

traits such as surface area, length, width, and perimeter from seeds

of soybean accessions to predict the final hundred-seed weight. The

strength of the correlation between traits revealed that surface area,

perimeter length, seed length, and width were good predictors of

hundred-seed weight. Machine learning models were successfully

implemented to estimate hundred-seed weight based on superior

image-based architectural traits. The highest R2 value with lower

bias and error values was obtained with a multivariate regression

model in the testing data set. The donor soybean genotype

identified with superior seed size, shape, and weight traits can be

utilized for soybean crop improvement programs. The same

methodology can be used to breed better crop varieties for higher

productivity in other plants.
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