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A total of 151 recombinant inbred lines (RILs) were derived from the cross between
‘Cucumis sativus L. hardwickii’ (HW) and a cultivated Northern Chinese inbred line
‘XinTaiMiCi" (XTMC). We used resequencing to construct the genetic map and
analyze the genetic background of RIL population, and combined with the
phenotypes of RIL population and the analysis of RNA-seq data, we located the
major loci controlling the fruit length of cucumber and related analysis. A genetic
map containing 600 bin markers was constructed via re-sequencing. Based on the
phenotype data collected in two different seasons (spring 2021 and autumn 2022),
the major quantitative trait loci (QTLs) controlling cucumber fruit length were
located and their transcriptomic analysis carried out. The results revealed three
QTLs (FI2.1, FI4.1, and F16.1) detected repeatedly in the two seasons, of which Fl4.1
was the dominant QTL. From the functional annotation of corresponding genes
there, we discovered the gene Csa4G337340 encoding an auxin efflux carrier family
protein. The expression of that gene was significantly lower in XTMC and the long-
fruit RIL lines than in HW and the short-fruit RIL lines; hence, we speculated the gene
could be negatively correlated with the fruit length of cucumber. Transcriptomic
analysis showed that 259 differentially expressed genes (DEGs) were enriched in the
plant hormone signal transduction pathway. In addition, among those DEGs, 509
transcription factors were detected, these distributed in several transcription factor
gene families, such as bHLH, AP2/ErF -ERF, C2H2, and NAC. Therefore, we
concluded that the major gene controlling the fruit length of cucumber is located
in the interval of Fl4.1, whose gene Csa4G337340 may be involved in the negative
regulation of fruit length. Further, genes related to plant hormone signal transduction
and several transcription factors were also found involved in the regulation of
cucumber fruit length. Our results provide a reference for the fine mapping of
major genes and analyzing the mechanism of cucumber fruit length.
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Introduction

The fruit of cucumber (Cucumis sativus) is an important
reproductive organ, whose quality of appearance and flavor
directly affect whether consumers want to buy and eat it. In
particular, the length of fruit is a critical agronomic trait that
affects the yield and appearance quality, serving also as the main
reference standard for the classification of fresh commercial fruit
products (Qi et al,, 2013). The fruit length of wild cucumber plants
is only about 3-5 cm, whereas that of cultivated cucumber has
changed significantly after its long-term domestication and
improvement. Accordingly, fruit length is also a valuable trait
targeted in current cucumber breeding efforts.

Before the entire cucumber genome was successfully sequenced,
many researchers had studied the quantitative trait loci (QTLs)
related to the shape and size of cucumber fruits, but almost no genes
were cloned (Yuan et al., 2007; Yuan et al., 2008; Wang et al., 2009).
At present, there are many reports on the genetic analysis, location,
gene cloning and functional research of cucumber fruit’s shape, size,
and length. Although many QTLs linked to the shape or size of
cucumber fruit have been identified in recent years, very few of
these QTLs have yet to be cloned. Qi et al. (2013) obtained five
QTLs (fl1.1, fl3.1, fl4.1, fl4.2 and fl6.1) related to cucumber fruit
length by analyzing the resequencing results of 115 cucumber
materials. Later, Wei et al. (2014) used the inbred lines CC3 and
NC76 that differ greatly in fruit length to construct an F,
population, and then analyzed the length of commercial as well as
mature fruit, which yielded eight QTLs relevant to fruit length.
Weng et al. (2015) used different isolated populations to investigate
fruits’ phenotype at different development stages, thereby obtaining
12 QTLs related to fruit size and shape. Zhu et al. (2016) found
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FIGURE 1
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seven QTLs related to fruit length and eight QTLs related to fruit
diameter by using a F, population. Among the above loci, the QTL
located by different researchers but which overlap in the cucumber
chromosome position is referred to as the consensus QTL. Weng
et al. (2015) put forward a model to explain the differences in
cucumber fruit shape based on 12 consistent QTLs—FSI.1, FS1.2,
FS2.1, FS2.2, FS3.1, FS3.2, FS3.3, FS4.1, FS5.1, FS6.1, FS6.2, FS7.1—
among them, FS1.1 plays a decisive role in fruit length, whereas only
FS3.3 regulates fruit elongation. Yet the model can only explain
about 40% of the fruit length variation effect, which suggests other
genes contribute to controlling fruit size. In later studies, Sheng et al.
(2019) and Pan et al. (2020) added another nine consistent QTLs
(FS1.3, FS1.4, FS2.3, FS4.2, FS4.3, FS5.2, FS5.3, FS6.3, FS7.2) to the
cucumber fruit’s shape regulation model (Figure 1); among them,
only FS4.3 regulates the fruit length of cucumber. Most of these 21
QTLs can be detected in many different populations of cucumber
plants, which also shows that their regulation can cover most of the
extant trait variation in the shape of cucumber fruit.

Although researchers have performed much QTL mapping and
analysis of cucumber fruit shape, many QTLs have not been cloned.
With more in-depth basic research, increasingly more reports are
becoming available on the fine mapping, gene cloning, and
molecular mechanism of cucumber fruit concerning its size and
shape. For example, Pan et al. (2017) used different populations to
locate candidate genes responsible for round cucumber via marker
linkage analysis, these being homologous to tomato SISUN genes.
Wu et al. (2018) located the candidate gene of FS2.1 to be CsTRMS5,
which belongs to the homologous gene SITRM5, a member of the
tomato TONNEAUI1 Recruiting Motif (TRM) family. In other
work, by analyzing the sequence of 150 cucumber materials
having different fruit lengths, Zhao et al. (2019) identified that the
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Physical locations of 21 consensus fruit size-related QTL (Sheng et al., 2019). Consensus fruit size QTL is indicated by blue vertical bars
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MADS-box family gene CsFULI regulates the length of cucumber
fruit. Through a QTL-seq analysis, Xu et al. (2020) located the
major gene CsFnl7.1 for cucumber neck length, which encodes a late
embryogenesis abundant protein. More recently, using a NIL
population, Che et al. (2023) identified the gene controlling the
length of cucumber fruit as CsRCR, and analyzed the regulation
mechanism of its alleles in the formation of cucumber fruit length.

By studying mutants of cucumber fruit length, researchers have
also uncovered some quality trait genes that govern cucumber fruit
length. For instance, Xin et al. (2019) obtained a short-fruit mutant
short fruitl, generated by EMS (Ethylmethanesulfonate) mutation.
Through BSA-seq and dCAPS marker screening, it was determined
that SFI is the key gene regulating cucumber fruit elongation by
regulating ethylene. Zhang et al. (2020) used short fruit 2, a natural
mutant of short-fruit cucumber, to determine that the gene SF2
regulates cucumber fruit length by regulating cell proliferation,
which encodes an HDC1 homolog. Cheng et al. (2021) recently
mapped a candidate gene to CsaV3_1G044310 by using a natural
mutant msf (medium short-fruit), which encodes a homologous
protein of the Arabidopsis type II inositol polyphosphate 5-
phosphatase (type II 5 Ptase). Finally, Zhang et al. (2023)
obtained a short-fruit mutant sf4 by EMS mutation. Using map-
based cloning, the gene that controls cucumber fruit elongation was
identified as CsalG665390 on chrl, which encodes an O-linked N-
acetylglucosamine (GlcNAc) transferase (OGT).

In this study, RIL (recombinant inbred line) populations were
used to construct a genetic linkage map containing 600 bin markers
by resequencing, and the population’s genetic background was
analyzed. Based on the phenotypic data from spring 2021 and
autumn 2022, QTL analysis of major loci of cucumber fruit length
was carried out. Three coincident QTLs located on Chr2, Chr4, and
Chré6 were obtained in both seasons, among which FI4.1 was the
prominent interval, in that it contained 115 genes, of which 41 were
significantly differentially expressed in the short-fruit line (S190)
and long-fruit line (L67). Through gene function annotations we
found that this interval contains a gene Csa4G337340 encoding an
auxin efflux carrier family protein; the expression level of this gene
in the long-fruit lines is obviously down-regulated. According to the
transcriptomics analysis, numerous genes were enriched in the
plant hormone signal transduction pathway, and many
differentially expressed transcription factors were found.
Therefore, we speculate that plant hormones and their related
genes in addition to a large number of transcription factors
together play a pivotal role in regulating the length of
cucumber fruit.

Materials and methods
Plants and growing conditions

The 151 RILs were obtained from a cross between ‘P1183967
(C. sativus L. hardwickii) (HW) and a cultivated line, XinTaiMiCi’

(XTMC). A fully randomized block design was used, in which three
replicates were set in spring 2021 and likewise in autumn 2022, with
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five plants per replicate of one RIL line. The experimental materials
were planted in the plastic arch shed at the experimental station of
the Jimo Dipingxian Agricultural Cooperative of Qingdao
Agricultural University, and subjected to conventional cultivation
management practices in the field.

Construction of high-density genetic
map and background analysis of
segregation population

The genetic background of the 151 RIL lines was analyzed by
high-throughput sequencing, and a high-density genetic linkage
map was built using the sequencing results.

Phenotype data collection

We collected data on fruit length (‘FI’, in cm; that is, the length
from the apex of fruit to the pedicel attachment), measured
according to the standards published by Yuan et al. (2008). Two
fruits were measured per plant, and averaged over all plants to
represent the fruit length of one RIL line.

QTL analysis

All the genotype data from the RIL population plants were used
to perform the linkage analysis using QTL IciMapping software
(Meng L. et al., 2015).

RNA extraction and quality testing

To reduce the differential genetic background as much as
possible, we selected RIL-67 (L67) with the longest fruit length
and RIL-190 (S190) with the shortest fruit length, for our
investigation of the two seasons’ result and conducted the
transcriptomics analysis on their commercial fruits. Selecting the
fruit 15 days after flowering, remove the fruit stalk, fully grind the
remaining fruit in a mortar filled with liquid nitrogen, and take 0.2g
for the determination of RNA-seq. Three fruits were selected from
each plant as three groups of biological repeats. Total RNA of each
was isolated with an RNA extraction kit (Tiangen). The purity and
concentration of each RNA sample were assessed with a NanoDrop
2000 spectrophotometer (Eppendorf, USA), using Agient2100/
LabChip GX to accurately check the integrity of RNA, and detect
the qualified RNA for library construction.

Construction and quality control
of cDNA library

The main process of cDNA library construction went as follows:
(1) mRNA was isolated from total RNA using oligo-dT magnetic
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beads; (2) a fragmentation buffer was added to randomly interrupt
mRNA; (3) mRNA was used as a template to synthesize cDNA, and
the latter purified; (4) this purified double-stranded cDNA was
repaired at the end, appended with poly-A and connected with a
sequencing linker, after which the fragment size was selected by
AMPure XP beads; (5) finally, the cDNA library was obtained by
PCR enrichment.

After completing the library construction, the Qubit 3.0
fluorescence quantifier was used for preliminary quantifications, and
the concentration should be > 1 ng/ uL. Next, the inserted fragments
of the library were detected by the Qsep400 high-throughput analysis
system. Finally, the effective concentration of a given library (effective
concentration of the library > 2 nm) was accurately quantified via real-
time PCR, to ensure the quality of each library.

Sequencing and data analysis

All libraries were sequenced on the Illumina NovaSeq6000
platform at Biomarker Technologies (Qingdao). Sequencing data
were analyzed by the bioinformatics analysis process provided by
BMKCloud (www.biocloud.net).

gRT-PCR verification

To verify the expressed genes in the transcriptomics data, eight
differentially expressed genes (DEGs) were included for the qRT-
PCR assay. Primer information for the qRT-PCR can be found in
Supplementary Table S1, for which the Actin-F/R primers served as
the control.

Results

Construction of a high-density genetic
map and background analysis of the RILs

The parents and 151 RIL lines were resequenced to construct a
high-density genetic map (Figure 2). The total length of this map was
322.47 cM, which included seven linkage groups corresponding to
cucumber chromosomes, with a total of 600 bin markers and an
average minimum spacing of 0.45 cM (Table 1). By comparing the 151
RIL lines with the genomes of their parents, the genetic background
and prospect of RIL populations were analyzed (Figure 3).

Phenotypic analysis of fruit length

In the spring of 2021 and the autumn of 2022, the average
length of HW fruit was 8.96 and 8.72 cm, respectively, while the
corresponding average length of XTMC fruit was 30.78 and 30.12
cm. The fruit length of the RIL populations for the two seasons was
mainly 6.75-29.6 cm and 6.89-30.86 cm, and it was continuously

Frontiers in Plant Science

10.3389/fpls.2023.1208675

distributed among different lines (Figure 4). Among them, the fruit
of RIL-190 was the shortest in the two seasons, at 6.75 and 6.89 cm,
respectively, whereas that of RIL-67 was the longest, at 29.6 and
30.86 cm, respectively.

QTL mapping results and gene analysis

QTL IciMapping was used to analyze the fruit length of
cucumber, with seven QTLs related to fruit length obtained.
Among them, four QTLs (FI2.1, FI2.2, Fl4.1, and Fl6.1.) were
obtained in spring 2021, the dominant locus being FI4.1, and the
LOD value was 7.82 (Table 2; Figure 5A); three QTLs (FI2.1, Fi4.1,
and Fl6.1.) were obtained in autumn 2022, with FI4.1 still the
prominent locus, and the LOD value was 6.71 (Table 2; Figure 5B).
In the mapping results of the two seasons, three QTL intervals on
Chr2, Chr4, and Chr6 are coincident, indicating that the phenotype
data of the RIL populations were relatively stable, with all major loci
in the interval of 12862726-14137628 on Chr4. We identified 115
genes in the interval of Fl4.1, among which Csa4G337340 was
annotated as an auxin efflux carrier family protein; according to
the cucumber genome database, this gene is expressed most in the
unfertilized ovary (Figure 6A). We then selected two parents and
three RIL lines with the longest fruit (L67, L35, and L58) and
another three RIL lines with the shortest fruit (5190, S44, and S126),
to determine this gene’s magnitude of expression. These results
showed that the expression levels of Csa4G337340 in long-fruit
parent XTMC and long-fruit lines L67, L35, and L58 were
significantly lower than those in short-fruit parent XTMC and
short-fruit lines S190, S44, and S126 (Figure 6B).

Quality control of transcriptome
sequencing data

After applying the quality control, a total of 42.99 Gb of data
were obtained, and the percentage of Q30 bases in each sample was
at least 95.85% (Table 3).

In this study, cucumis _ sativus.chineselong _ v2.genome.fa
served as the reference genome for the comparison of clean reads.
HISAT2 software (Kim et al, 2015) was used to quickly and
accurately compare clean reads with that reference genome, and
thereby obtain their location information. Then, using StringTie
(Pertea et al., 2015) to assemble the reads, we reconstructed the
transcriptome for subsequent analysis. Employing the comparison
rate, we sought to evaluate whether the selected reference genome
assembly satisfied the information analysis needs. According to
these results, the comparison rate between the reads of each sample
and the reference genome was between 93.23% and 96.35%
(Table 4). Hence, the reads checked via quality inspection were
robust for use in further analysis.

Using the DESeq package for R software, a principal component
analysis (PCA) was performed using the expression levels of the
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Schematic diagram of genetic map.
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samples. PCA analysis can cluster similar samples together, and the
closer the distance among them, the higher the similarity between
those samples. The PCA showed that the similarity between
repeated samples is very high, confirming the samples’ highly
reliability. However, evidently there is pronounced separation
between certain differing samples, which indicated significant
differences in gene expression among different samples fruits
(Figure 7). Altogether, these results demonstrated that cucumber’s
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transcriptomic data can be credibly used for the subsequent analysis
of DEGs.

Differential expression genes analysis

A total of 9560 DEGs were obtained in S190 vs. L67, of which 4573
genes were up-regulated and 4987 genes were down-regulated. Several
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TABLE 1 Summary of genetic map information.

. Average
Linkage Chromosome Marker verag
distance
group length (cM) number
(cM)
Chrl 65.13 136 0.48
Chr2 54.58 103 0.53
Chr3 77.87 124 0.63
Chr4 26.90 30 0.90
Chr5 18.37 41 045
Chré 51.29 114 0.45
Chr7 2833 52 0.54

databases—CGO, GO, KEGG, KOG, NR, Pfam, Swiss-Pot, and
eggNGO—were used to annotate the functions of DEGs. A total of
9314 genes were thus annotated, of which 7749 and 6399 genes were
annotated in the GO (Gene Ontology) and KEGG (Kyoto
Encyclopedia of Genes and Genomes) databases respectively (Table 5).

To further understand the functioning of these DEGs, their GO
term enrichment analysis (P < 0.05) was conducted. In the
biological process (BP) group, the items with significant
enrichment by DEGs mainly included ‘cellular process’,
‘metabolic process’, ‘single-organism process’, and ‘biological
regulation’, among others (blue in Figure 8). In the cellular
component (CC) group, the items with significant enrichment
consisted mainly of ‘cell’, ‘cell part’, ‘organelle’, and ‘membrane’,
and others (green in Figure 8). In the molecular function (MF)
group, the items with significant enrichment chiefly comprised
‘binding’, ‘catalytic activity’, ‘transporter activity’, ‘molecular
function regulator’, and so on (orange in Figure 8).

KEGG enrichment analysis revealed the DEGs mainly enriched
in several pathways, such as ‘plant hormone signal transduction’,
‘plant-pathogen interaction’, ‘MAPK signaling pathway-plant’,
‘carbon metabolism’ (Figure 9A); among them, the pathway
having the most DEGs was ‘plant hormone signal transduction’,
with a total of 259 genes enriched (Figure 9B). Overall, 67 DEGs
were enriched in auxin signal transduction pathway, 25 up-
regulated and 42 down-regulated; 27 DEGs were enriched in
cytokinin signal transduction pathway, 9 up-regulated and 18
down-regulated. In addition, many DEGs were also enriched in
the gibberellin, abscisic acid, ethylene, brassinolide, and salicylic
acid signal transduction pathways (Figure 9B).

Transcriptome level analysis of genes in
the QTL intervals

We also analyzed gene expression in the QTL intervals FI2.1,
Fl4.1 and Fl6.1. Between S190 and L67, there were 23 DEGs in FI2.1,
of which 11 were up-regulated and 12 were down-regulated;
likewise, 41 DEGs in FI4.1, of which 21 were up-regulated and 20
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were down-regulated; 8 DEGs in FI6.1, all of which were down-
regulated (Figure 10A). The expression of genes in the same three
intervals was next analyzed between the shortest fruit line (S190)
and the three longest fruit lines (L67, L35 and L58). In the range of
FI2.1 there were seven genes up-regulated, such as Csa2G234570,
Csa2G234600, and Csa2G237140, while ten genes were down-
regulated, such as Csa2G234510, Csa238790, and Csa2G238830;
(Figure 10B; Supplementary Table S2). In the range of Fl4.1, 27
genes (e.g., Csa4G314390, Csa4G331080, and Csa4G334700) were
up-regulated while 25 other genes (e.g., Csa4G314490,
Csa4G335250, and Csa4G337340) were instead down-regulated
(Figure 10C; Supplementary Table S2). In the range of Fl6.1, only
two genes Csa6G499150 and Csa6G499730 were up-regulated in all
three long-fruit lines, in contrast to seven genes, such as
Csa6G499180, Csa6G499770, and Csa6G499850, that were down-
regulated (Figure 10D; Supplementary Table S2). According to
these gene expression patterns, we speculated that those genes
up-regulated in long-fruit lines may participate in the positive
regulation of the cucumber fruit length trait, while the down-
regulated one participate in its negative regulation.

Validation of RNA-Seq data by quantitative
real time RT-PCR assays

To verify the DEGs identified by RNA-Seq, eight DEGs were
randomly selected and verified by qRT-PCR in the two sets of
cucumber materials. Among those eight, four genes showed higher
expression while the other four displayed lower expression in line
$190. As Figure 11 shows, for these genes, this expression pattern in
the qQRT-PCR assays was the same as that in the RNA-Seq data.
Therefore, the RNA-Seq data were deemed highly reliable.

Discussion

In this study, we analyzed the major QTLs controlling
cucumber fruit length, and then explored the key genes and
pathways related to cucumber fruit length by conducting a
transcriptome analysis. The two-season phenotypic investigation
demonstrated that the fruit length of 151 RIL lines was basically the
same, irrespective of season (Figure 4), which suggests this trait is
relatively stable in this RIL population. Among the QTLs
distinguished in this study, the four QTLs of FI2.1, FI2.2, Fi4.1,
and FI6.1 in spring 2021, and the three QTLs of FI2.1, Fl4.1, and
Fl6.1 in autumn 2022, three were evident shared between seasons.
Importantly, in both seasons the major QTL is FI4.1, with LOD
values of 7.82 and 6.71, respectively (Figure 5; Table 2). This locus is
reportedly related to fruit length, fruit shape, and fruit stalk length,
as shown in many previous studies. Indeed, has been identified as
one of the consistent QTLs affecting cucumber fruit shape during
fruit development in studies by Weng et al. (2015) and Sheng
et al. (2019).
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Detection results of genetic background of RIL population. Red stands for ‘Xintaimici’, blue stands for 'Hardwickii’, gray stands for hybrid fragments.

Auxin is a fundamental endogenous hormone that participates
in many vital processes of plant growth and development, such as
embryogenesis, organogenesis, cell determination and division, and
tropic responses (Enders and Strader, 2015). These processes are
finely coordinated by auxin, namely by requiring the polar
distribution of auxin within tissues and cells. The intercellular
directionality of auxin flow is closely related to the asymmetric
subcellular location of PIN auxin efflux transporters (Zhou and
Luo, 2018). In our study, further analysis of those genes in the

Frontiers in Plant Science

interval FI4.1 shows that it contains 115 genes. According to their
gene function annotations, the Csa4G337340 gene in this region
encodes an auxin efflux carrier family protein. According to this
gene’s expression levels and patterning in different tissues of
cucumber, as provided by the cucumber genome website, we find
it maximally expressed in the unfertilized ovary (Figure 6A). From
the RT-PCR, it is clear that expression levels of this gene are
significantly lower in the long-fruit parent XTMC and the longest
fruit RIL lines L67, L35, and L58 than those in the short-fruit parent
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TABLE 2 QTL intervals information statistics.

Seasons QTLs Chr Position Interval size (Kb) Gene number

2021 spring FI2.1 2 11318282-11831887 513 3.58 7.138 -1.32 56

FI2.2 2 18154286-18620538 466 334 7.32 134 56

Fl4.1 4 12862726-14137628 1274 7.82 17.52 246 115

Fl6.1 6 24654259-24899860 245 534 10.96 -1.66 37
2022 autumn Fl2.1 2 11318282-11831887 513 5.79 12.56 -1.96 56

Fl4.2 4 12862726-14137628 1274 6.71 15.71 -2.60 115

Fl6.2 6 24654259-24899860 245 378 8.04 -1.58 37
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FIGURE 5
QTL mapping results of cucumber fruit length. QTL Mapping Results of Cucumber Fruit Length in 2021 spring (A) and 2022 autumn (B). The symbols
red arrow indicates the location of the major QTL.
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Expression of gene Csa4G337340. (A) Expression of Csa4G337340 in different tissues of cucumber (Cucurbit Genomics Database); (B) Expression of
Csa4G337340 in parents and RIL lines with long and short fruits. Different capital letters in the figure indicate significant differences at the level of P < 0.05.
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HW and the shortest fruit RIL lines S190, S44-2, and S126
(Figure 6B). Combined with previous research findings, these
results led us to speculate that Csa4G337340 may affect the
content of auxin in cucumber fruit by participating in its auxin
transport, and thereby play a negative regulatory role in
determining cucumber fruit length.

Plant endogenous hormones are crucial for normal fruit
development, because they can individually or interactively

TABLE 3 Statistical results of sample data.

influence plants’ tissue or organ development (Vogel, 2006; Su
et al, 2011; Meng X. et al,, 2015; Ma and Li, 2019). Notably,
Zhang (2019) used the short fruit mutant sf2 and wild-type
cucumber to analyze the transcriptomics of their fruits at
different developmental stages, finding that SF2 regulated the
cell division of fruits through the synergistic regulation of
various hormone pathways, such as IAA, GA, CK, ABA, JA and
ETH, which then affected the fruit cell division. Recently, Hu et al.

Samples Clean reads Clean bases GC Content %>Q30
$190-1 28,529,203 8,543,440,482 43.11% 96.75%
$190-2 25,316,164 7,579,461,884 42.84% 96.46%
$190-3 24,305,286 7,277,235,614 42.87% 96.35%
L67-1 20,946,293 6,271,925,220 43.07% 96.45%
L67-2 23,021,498 6,894,254,168 43.46% 96.15%
L67-3 21,461,558 6,427,601,460 43.22% 95.85%

TABLE 4 Sequence comparison results of sample sequencing data and reference genome.

Sample | Total Reads  Mapped Reads  Unig Mapped Reads = Multiple Map Reads = Reads Map to ‘+' = Reads Map to -
L67-1 41,892,586 40,039,268 (95.58%) 39,240,965 (93.67%) 798,303 (1.91%) 20,516,556 (48.97%) 20,532,700 (49.01%)
L67-2 46,042,996 43,922,842 (95.40%) 42,531,472 (92.37%) 1,391,370 (3.02%) 22,924,808 (49.79%) 22,874,970 (49.68%)
L67-3 42,923,116 41,084,427 (95.72%) 40,279,820 (93.84%) 804,607 (1.87%) 21,041,465 (49.02%) 21,058,559 (49.06%)
$190-1 57,058,406 54,711,328 (95.89%) 53,526,474 (93.81%) 1,184,854 (2.08%) 28,116,643 (49.28%) 28,146,245 (49.33%)
$190-2 50,632,328 48,391,111 (95.57%) 47,463,663 (93.74%) 927,448 (1.83%) 24,779,636 (48.94%) 24,816,860 (49.01%)
$190-3 48,610,572 46,486,951 (95.63%) 45,601,998 (93.81%) 884,953 (1.82%) 23,790,786 (48.94%) 23,829,806 (49.02%)

(1)Sample: Sample analysis number;

(2)Total Reads: Clean Reads number, calculate by single end;
(3)Mapped Reads: Number of Reads mapped to the reference genome and its percentage in Clean Reads;

(4)Uniq Mapped Reads: The number of Reads mapped to the unique position of the reference genome and its percentage in Clean Reads;
(5)Multiple Map Reads: The number of Reads mapped to multiple locations in the reference genome and its percentage in Clean Reads;

(6)Reads Map to “+’: The number of Reads mapped to the positive strand of the reference genome and its percentage in Clean Reads;
(7)Reads Map to *-’: The number of Reads mapped to the negative strand of the reference genome and its percentage in Clean Reads.
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TABLE 5 Statistics of the number of DEGs.
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GO enrichment of DEGs. Blue histogram: the enrichment result of DEGs in biological process; Green histogram: the enrichment result of DEGs in

cellular component; Qrange histogram: the enrichment result of DEGs in cellular component.
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FIGURE 9
KEGG enrichment of DEGs. (A) KEGG enrichment of DEGs; (B)

Distribution of DEGs in plant hormone signal transduction pathway.

transduction” pathway. Those enriched in auxin signal

(2022) examined the hormones and hormone-related genes of the
wild type and long-fruited mutant If, showing that, compared with
the wild type, the If mutant’s fruit content of cytokinin and auxin
changed significantly, as well as the expression of related genes;
this indicates that auxin and cytokinin may be involved in the
elongation of cucumber fruit cells. In the present study, from the
transcriptomic analysis of fruits produced by shortest fruit line
S190 and the longest fruit line L67 of the RIL populations,
numerous DEGs were enriched in ‘plant hormone signal

Frontiers in Plant Science

transduction pathway are the most abundant, totaling 67 DEGS,
with 25 up-regulated and 42 down-regulated; another 27 DEGs
were enriched in cytokinin signal transduction pathway (9 up-
regulated, 18 down-regulated); In addition, a large number of
genes are enriched in signal transduction pathways such as
ethylene, gibberellin, abscisic acid, salicylic acid, and jasmonic
acid. Therefore, we speculate that cucumber fruit length may be
related to the content of hormones and the expression of
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FIGURE 10

Gene expression in short fruit and different long fruit lines in the QTL intervals. (A) The expression of DEGs between RIL-190 and RIL-67 in the
intervals of FI2.1, Fl4.1 and Fl6.1; The expression of DEGs in the localization intervals F12.1 (B), Fl4.1 (C) and Fl6.1 (D) in the short fruit line RIL-190 and

the long fruit lines RIL-67, RIL-58 and RIL-35.

hormone-related genes in fruit, a view consistent with other
reported findings (Matsuo et al., 2012; Zhao et al.,, 2019).

Finally, we also found 509 differentially expressed
transcription factors between S190 and L67, most of which
belong to the BHLH, AP2/ERF-ERF, C2H2, NAC, Bzip, and
MYB gene families. Many of them function in mediating cell
division and expansion (Figure 12). In work by Jiang et al. (2015),
a large number of transcription factors were found that could be
related to cucumber fruit development, mainly concentrated in
the MYB, BHLH, NAC, and ERF/AP2 gene families, including
some reported transcription factors such as SPT, IND, CRC, FUL,
SUP, and HAN (Heisler et al., 2001; Girin et al., 2011; Zhang
et al., 2013). Hence, we speculate that transcription factors also
figure prominently in regulating the determination of cucumber
fruit length.
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Conclusion

A RIL population with 151 lines were derived from the cross
between ‘HW’ and XTMC’ and a high-density genetic map was
constructed. Combined with the phenotypic data of different
seasons, the QTL controlling the fruit length was located, and
the major QTL was FI4.1, which contained 115 genes. Based on
the gene function annotations, we found a gene Csa4G337340
encoding an auxin efflux carrier family protein, whose expression
level in the long-fruit parent and three longest-fruit RIL lines is
obviously down-regulated. Transcriptome sequencing was
carried out on the fruits of shortest-fruit line S190 and longest-
fruit line L67, and KEGG enrichment results showed that
differentially expressed genes were significantly enriched in the
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plant hormone signal transduction pathway. In addition, 509
transcription factors were detected among the DEGs, these
distributed in various transcription factor gene families, and
many of them were reported to be involved in the regulation of
phytohormone synthesis and metabolism. Accordingly, we
conclude that the major gene controlling the fruit length of
cucumber is located in the interval of FI4.1, and the gene
Csa4G337340 in this interval may be involved in the negative
regulation of fruit length. In addition, genes related to plant
hormone signal transduction and several transcription factors are
also involved in the regulation of cucumber fruit length.
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