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Assessing potential European
areas of Pierce’s disease
mediated by insect vectors by
using spatial ensemble model

Sunhee Yoon1 and Wang-Hee Lee1,2*

1Department of Smart Agriculture Systems, Chungnam National University, Daejeon, Republic of
Korea, 2Department of Biosystems Machinery Engineering, Chungnam National University,
Daejeon, Republic of Korea
Pierce’s disease (PD) is a serious threat to grape production in Europe. This

disease is caused by Xylella fastidiosa and is mediated by insect vectors,

suggesting its high potential for spread and necessity for early monitoring. In

this study, hence, potential distribution of Pierce’s disease varied with climate

change and was spatially evaluated in Europe using ensemble species

distribution modeling. Two models of X. fastidiosa and three major insect

vectors (Philaenus spumarius, Neophilaenus campestris, and Cicadella viridis)

were developed using CLIMEX and MaxEnt. The consensus areas of the disease

and insect vectors, along with host distribution, were evaluated using ensemble

mapping to identify high-risk areas for the disease. Our predictions showed that

the Mediterranean region would be the most vulnerable to Pierce’s disease, and

the high-risk area would increase three-fold due to climate change under the

influence of N. campestris distribution. This study demonstrated a methodology

for species distribution modeling specific to diseases and vectors while providing

results that could be used for monitoring Pierce’s disease by simultaneously

considering the disease agent, vectors, and host distribution.
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1 Introduction

Pierce’s disease, caused by Xylella fastidiosa, damages various economically important

agricultural crops, including grapes, almonds, citrus fruits, coffee, and peaches (Almeida et al.,

2005; European Food Safety Authority, 2020). X. fastidiosa was first reported in the USA

(Pierce, 1892) and has spread to Europe and Asia (Leu and Su, 1993;Montero-Astua et al., 2008;

Amanifar et al., 2014; Denancé et al., 2017), causing Pierce’s disease with symptoms of leaf

chlorosis, wilting, and diebacks in infected plants (Almeida et al., 2005). X. fastidiosa has been of

particular significance in Europe since its initial discovery in olive trees in southern Italy

(Saponari et al., 2013). This disease has severely damaged agricultural crops in European

countries, including France, Spain, Portugal, and Germany (EFSA Panel on Plant Health, 2015;
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Olmo et al., 2017). X. fastidiosa is currently listed on the EPPO A2 list

of pests recommended for regulation as a quarantine pest,

demonstrating the need for monitoring to suppress damage and

disease severity (EPPO 2019).

X. fastidiosa is transmitted to other hosts through insect vectors

that feed on the xylem tissue of plants (Almeida, 2016) and establish

persistent and non-circulative infections within the foregut of

insects (Purcell and Finlay, 1979; Almeida et al., 2005). These

vectors of Pierce’s disease are found in many parts of the world

and have spread the disease. In Europe, Philaenus spumarius is a

major insect vector widely found in various habitats, including

agricultural fields, grasslands, and woodland edges (Cornara et al.,

2017). This pest causes significant damage to olive trees in Italy

(Cornara et al., 2017). Species from the Aphrophoridae family,

including Neophilaenus campestris and Philaenus italosignus, and

species from the Cicadellidae family, including Cicadella viridis, are

known vectors of X. fastidiosa in Europe (Trkulja et al., 2022). These

vectors acquire the bacterium when they feed on infected plants and

can spread Pierce’s disease by feeding on host plants. Moreover,

because the flight ability of these vectors increases the risk of the

spread of X. fastidiosa it is important to control insect vectors to

prevent the damage caused by this disease, requiring a method that

effectively confines potential areas exposed to insect vector

distribution (Lago et al., 2021).

Species Distribution Model (SDM) evaluates the potential

distribution and occurrence probability of a species as a function

of the estimated relationships among species biology, occurrence

areas, and environmental characteristics (Elith and Leathwick,

2009) and has been further applied for the spatial prediction of

disease and surveillance of invasive species (Peterson and Vieglais,

2001; Peterson et al., 2003). Owing to its advantages in screening

areas exposed to the target species in advance, it has been applied to

develop the fundamentals necessary for monitoring and controlling

diseases and pests (Bosso et al., 2017; Jung et al., 2019; Byeon et al.,

2021; Lee et al., 2022; Song et al., 2022; Yoon et al., 2023). SDM

algorithms can generally be classified into mechanistic and

correlative models (Kearney et al., 2010; Li and Wang, 2013).

Each algorithm differs in the required data, variable format,

operational method, and process of obtaining predicted results,

meaning that suitable algorithms vary according to the available

information, target species, and research purpose. Recently, an

ensemble model that uses two or more models has been used to

complement the uncertainty of individual models and improve

their reliability (Araújo and New, 2007; Kumar et al., 2015;

Narouei-Khandan et al., 2020). Hence, its application to evaluate

the potential distribution of a species is increasing, which has led to

the development of ensemble models for studies with worldwide

concerns (Araújo and New, 2007; Mainali et al., 2015). The use of

multiple environmental variables, not just climatic factors,

improves predictive performance (Matyukhina et al., 2014; Bradie

and Leung, 2017; Lee et al., 2021).

Few studies have investigated the characteristics of Pierce’s

disease in terms of symptoms, ecology, and vectors (Davis et al.,

1978; Anas et al., 2008; Chatterjee et al., 2008; Raffini et al., 2020).

However, SDM studies assessing the risk of the disease are relatively

limited with two notable studies by using the MaxEnt model
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(Bosso et al., 2016a), and the CLIMEX model (Hoddle, 2004).

These studies showed the notable application of SDM to the disease,

but both are simple models only utilizing the disease records and

climatic data, suggesting a need for considering additional

environmental conditions with a recently advanced modeling

technique. In this study, we evaluated the potential risk areas for

Pierce’s disease in Europe using a novel ensemble SDM, integrating

different algorithms used for the disease and vectors with host

distribution due to climate change. CLIMEX, a mechanistic model,

was used to predict climatically suitable regions for X. fastidiosa, while

MaxEnt, a correlative presence-only model, was used to evaluate

potential areas of occurrence for major insect vectors (Raffini et al.,

2020). The ensemble model was then spatially constructed by

projecting the consensus areas of the disease and insect vectors in

addition to the host distribution so that the final outcome could

identify high-risk areas vulnerable to Pierce’s disease.
2 Materials and methods

2.1 Acquisition and processing of
occurrence data

The occurrence coordinates of X. fastidiosa were obtained from

the disease distribution by using Global Biodiversity Information

Facility (GBIF, 2022a), Center for Agriculture and Bioscience

International (CABI, www.cabi.org), and previous studies (Bosso

et al., 2016b; Castillo et al., 2019; Safady et al., 2019). A total of 49

distribution coordinates in Europe were confirmed after cross-

checking the above multiple sources, which should minimize

occurrence uncertainty.

For insect vectors of Pierce’s disease, P. spumarius, N.

campestris, and C. viridis were selected because they are the

widely distributed predominant vectors of X. fastidiosa in Europe

(Janse and Obradovic, 2010; Elbeaino et al., 2014; Morente et al.,

2018). To obtain specific occurrence coordinates, we used GBIF

(GBIF, 2022b; GBIF, 2022c; GBIF, 2022d) and CABI, and the

occurrence data were carefully determined by cross-checking the

two databases. Then, spatial filtering was applied to the occurrence

data to minimize the sampling bias by balancing the sampling

density (Kramer-Schadt et al., 2013). The spatial filtering buffer was

determined based on flying ability, setting 5 and 3 km for P.

spumarius and N. campestris, respectively, whereas C. viridis was

spatially filtered with a default buffer radius of 10 km (Lago et al.,

2021). The spatial rarefying function in the SDM toolbox developed

for ArcGIS (version 10.8.1, ESRI, USA) was employed for spatial

filtering (Brown, 2014). Finally, 4772, 234, and 993 European

occurrence points for P. spumarius, N. campestris, and C. viridis,

respectively, were confirmed on the map (Figure 1).
2.2 Acquisition and processing of
meteorological data

Meteorological data from 1990–2018, including maximum

temperature, minimum temperature, precipitation, and elevation,
frontiersin.org
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were obtained with a 2.5-minute resolution from WorldClim

(https://www.worldclim.org) (Fick and Hijmans, 2017). The

meteorological data were then converted into 19 bioclimatic

variables to be used as MaxEnt model variables in ASCII format

using R software (R Core Team, 2021) (Hijmans et al., 2017). The

obtained meteorological data were extracted for the cells assigned to

Europe and converted into two separate files, recording locations

(loc file) and meteorology (met file), which was the required format

for the CLIMEX model (Kriticos et al., 2015).

For future prediction, a 2.5-minute resolution of the Shared

Socioeconomic Pathways (SSP) 585 climate change scenario for

2041–2060, generated by the MIROC6 model, was obtained (Fick

and Hijmans, 2017). For the MaxEnt model, the scenario was

obtained in the form of a bioclimatic variable identically defined

to the current bioclimatic variables. In contrast, the monthly

average minimum temperature, maximum temperature, and

precipitation of SSP 585 were obtained for the CLIMEX model.

Then, the same data processing was applied to obtain a format

applicable to the CLIMEX model, as was done for the current

meteorological data. Consequently, we obtained current and future

meteorological data of the same type and time for use with different

SDM tools.
2.3 MaxEnt modeling for insect vectors

MaxEnt is a modeling algorithm that we used for the three

insects (Raffini et al., 2020). This model evaluates the possibility of

occurrence by training environmental variables in the occurrence

areas of a species (Phillips et al., 2004; Phillips et al., 2006; Elith

et al., 2011). Because the spatial autocorrelation of bioclimatic
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variables can lead to model overfitting, it is necessary to select

model variables that are not correlated. In this study, a variable

showing a correlation coefficient > 0.8 for a biologically driven

variable was removed (Kumar et al., 2014; Ancillotto et al., 2019;

Yoon and Lee, 2021). The selected MaxEnt model variables for

insect vectors were 10, 12, and 10 bioclimatic variables for P.

spumarius, N. campestris, and C. viridis, respectively (Table 1).

Because it is required to determine the model features and

regularization multiplier (RM), we used ENMeval in the R package,

which compares all possible combinations of model settings to find

the RM and the best model features of linear (L), quadratic (Q),

product (P), threshold (T), and hinge (H) based on the Akaike

information criterion (AIC) (Muscarella et al., 2014). The optimal

model features for P. spumarius and C. viridis were RM of 0.5, and

LQHPT features, while RM of 0.5 and LQ features were optimal for

N. campestris evaluation. The model was then operated with 10,000

random backgrounds using 10-fold cross-validation, and the output

was recorded in logistic format and projected onto a map

using ArcGIS.

Two widely used metrics were employed to evaluate the

reliability of the developed model: the area under the receiver

operator curve (AUC) and true skill statistics (TSS) (Fielding and

Bell, 1997; Allouche et al., 2006; Merow et al., 2013). In general,

AUC < 0.7 is considered a poor performance, 0.7 ≤ AUC < 0.8 is

moderate, and AUC ≥ 0.8 is good to excellent performance (Merckx

et al., 2011; Peterson et al., 2011). True skill statistics, a more

practical metric than the AUC, were calculated using a threshold

value that maximized the sum of sensitivity and specificity (Liu

et al., 2005). In general, it was considered that a value of TSS < 0.2

indicated a poor performance, 0.2 ≤ TSS < 0.4 was an acceptable

performance, 0.4 ≤ TSS <0.6 was a moderate performance, and TSS
FIGURE 1

Occurrence coordinates of (A) Xylella fastidiosa, (B) Philaenus spumarius, (C) Neophilaenus campestris and (D) Cicadella viridis.
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≥ 0.6 suggested a good performance (Landis and Koch, 1977;

Tobeña et al., 2016).
2.4 CLIMEX modeling for Pierce’s disease

CLIMEX (version 4.0; Hearne Software, Melbourne, Australia)

predicts the potential distribution of a species by evaluating the

biologically suitable areas in a local climate (Kriticos et al., 2015).

CLIMEX uses parameters representing the biological responses of a

species to climate to evaluate the possibility of pest invasion based on

climatic suitability (Byeon et al., 2018). The outcome is Ecoclimatic
Frontiers in Plant Science 04
Index (EI), a quantitative representation of the climatic suitability of a

species in a specific area. The EI value, which comprehensively

estimates species growth and inhibition under given climatic

conditions, was scaled from 0 to 100 (Kriticos et al., 2015). A

species cannot be theoretically established at zero EI, whereas an EI

>30 suggests an optimal climate for species inhabitation (Kriticos

et al., 2015). In this study, we employed a previously developed

CLIMEX model for Pierce’s disease (Hoddle, 2004) (Table 2).

Because of the characteristics of the CLIMEX model, which

determines the parameter sets showing the best fit to the actual

distribution data, there is no standard method for evaluating the

performance of the CLIMEX model. Therefore, we estimated its
TABLE 1 CLIMEX parameter values for Xylella fastidiosa.

Parameters Code X. fatidiosa*

Temperature

Limiting low temperature (°C) DV0 5

Lower optimal temperature (°C) DV1 12

Upper optimal temperature (°C) DV2 34

Limiting high temperature (°C) DV3 37

Moisture

Limiting low soil moisture SM0 0.1

Lower optimal soil moisture SM1 0.5

Upper optimal soil moisture SM2 1.75

Limiting high soil moisture SM3 2

Cold stress (CS)

CS temperature threshold (°C) TTCS -1

CS temperature rate THCS -0.001

CS degree-day threshold (°C) DTCS 20

CS degree-day rate DHCS -0.00025

CS average temperature threshold (°C) TTCSA 4

CS average temperature rate THCSA 0

Heat stress (HS)

HS temperature threshold (°C) TTHS 34

HS temperature rate THHS 0.001

HS degree-day threshold (°C) DTHS 0

HS degree-day rate DHHS 0

Dry stress (DS)

DS threshold SMDS 0.1

DS rate HDS -0.005

Wet stress (WS)

WS threshold SMWS 2

WS rate HWS 0.002
*Parameters are from Hoddle, 2004 for X. fatidiosa.
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TABLE 2 Model performance and variables that contributed to the MaxEnt model.

Philaenus spumarius Neophilaenus campestris Cicadella viridis

AUC 0.79 AUC 0.94 AUC 0.90

TSS 0.84 TSS 0.89 TSS 0.91

Variable Percent
contribution

Permutation
importance

Variable Percent
contribution

Permutation
importance

Variable Percent
contribution

Permutation
importance

Temperature
Seasonality
(Bio4)

65.6 58.1 Min
Temperature of
Coldest Month
(Bio6)

36.3 2.8 Isothermality
(Bio3)

39.3 26.5

Precipitation of
Warmest
Quarter (Bio18)

9 0.7 Isothermality
(Bio3)

17.4 2.7 Temperature
Annual Range
(Bio7)

16.8 13.3

Annual Mean
Temperature
(Bio1)

7.4 4.8 Temperature
Seasonality
(Bio4)

17.2 49.9 Precipitation of
Warmest
Quarter (Bio18)

10.7 9.1

Max
Temperature of
Warmest
Month (Bio5)

7.4 16.2 Precipitation
Seasonality
(Bio15)

9.5 0.1 Annal Mean
Temperature
(Bio1)

10.7 16.8

Elevation 5 7.4 Elevation 6.5 1.8 Mean
Temperature of
Driest Quarter
(Bio9)

6.4 4.3

Mean Diurnal
Range (Bio2)

2 2 Mean
Temperature of
Driest Quarter
(Bio9)

3.3 4 Precipitation
Seasonality
(Bio15)

3.6 5.5

Isothermality
(Bio3)

1.3 4.3 Precipitation of
Wettest Quarter
(Bio16)

2.7 0.3 Mean
Temperature of
Warmest
Quarter (Bio10)

3.5 7.5

Mean
Temperature of
Driest Quarter
(Bio9)

1 4.2 Mean
Temperature of
Driest Quarter
(Bio8)

2.4 1.7 Mean
Temperature of
Driest Quarter
(Bio8)

3.1 1.8

Precipitation
Seasonality
(Bio15)

0.6 0.9 Precipitation of
Driest Month
(Bio14)

1.6 0.1 Elevation 3.1 1.9

Mean
Temperature of
Driest Quarter
(Bio8)

0.5 0.6 Temperature
(Bio1)

1.3 11.7 Mean Diurnal
Range (Bio2)

1.4 5.1

Precipitation of
Wettest Month
(Bio13)

0.2 0.9 Mean
Temperature of
Warmest
Quarter (Bio10)

1.1 24.7 Precipitation of
Wettest Month
(Bio13)

1.4 8.3

Precipitation of
Wettest Month
(Bio13)

0.4 0

Mean Diurnal
Range (Bio2)

0.3 0.2
F
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accuracy by counting the actual occurrence records included in the

simulation, as in previous CLIMEX studies (McConnachie et al.,

2011; Saavedra et al., 2015).
2.5 Distribution of host of X. fastidiosa

Pierce’s disease affects more than 300 plant species, including

grapes, citrus fruits, coffee, olives, almonds, blueberries, and other

herbaceous plants (Stancanelli et al., 2015). To consider the

distribution of host plants, we obtained a geodatabase of land

cover maps in Europe using the Copernicus Land Monitoring

Service (CLC, https://land.copernicus.eu/) (Büttner, 2014). Among

the 44 classified areas in the land cover, areas planted with

vineyards, fruit trees, berry plantations, and olive groves that were

particularly damaged by Pierce’s disease, were extracted and

projected onto the map (Figure 2).
2.6 Ensemble mapping of the potential
distributions of Pierce’s disease and
insect vector

The current and future potential distributions of insect vectors

and the climatic suitability for Pierce’s disease predicted using

MaxEnt and CLIMEX, respectively, were overlaid using ArcGIS

(Byeon et al., 2021; Lee et al., 2021). The prediction of insect vectors

was converted into binary maps by establishing a common

threshold value (the 10th percentile training presence logistic

threshold in MaxEnt) to classify presence or absence. The binary

map of each insect vector was then superimposed on a scale of cells

(the minimum projection unit under a given resolution) to find the

consensus areas for all three insect vectors in Europe. The CLIMEX

result of Pierce’s disease was also converted into a binary map

divided into suitable regions with EI ≥1 and unsuitable regions with
Frontiers in Plant Science 06
EI<1. The two binary maps were overlapped to define consensus

areas showing the potential distributions of both the disease and

insect vectors. The regions that were potentially the most vulnerable

to Pierce’s disease were identified by overlapping the host

distribution map with the disease vector map.
3 Results

3.1 Evaluating potential distribution of
Pierce’s disease using CLIMEX

The existing CLIMEX model includes all occurrence

coordinates of X. fastidiosa in Europe within the prediction

region, suggesting that the model is reliable (Hoddle, 2004).

When applying a threshold level of EI > 1, X. fastidiosa was

predicted to be distributed in the southern regions of Europe

under the current climate, with an estimated area of 1,948,597

km2 (Figure 3A). However, it is predicted to increase to 3,137,960

km2, reaching Hungary, England, Belgium, and Germany, in future

based on climate change.
3.2 Evaluating the potential distribution of
insect vectors of Pierce’s disease
using MaxEnt

The developed MaxEnt models for insect vectors showed AUC

values of 79, 0.94, and 0.90, and TSS values of 0.84, 0.89, and 0.91

for P. spumarius, N. campestris, and C. viridis, respectively,

suggesting the model performance was sufficient.

When applying the 10th percentile training presence logistic

threshold under the current climate, the potential distribution areas

of P. spumarius were estimated to be 2,333,408 km2 including

France, Germany, Belgium, the Netherlands, the United Kingdom,
FIGURE 2

Distribution area of host of Xylella fastidiosa.
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some neighboring countries, and the northern area of Turkey

(Figure 3B). The largest potential distribution areas were observed

for N. campestris at 3,460,361 km2, reaching northern Europe

(Denmark, Sweden, Norway, and Finland) (Figure 3C). The

potential distribution area of C. viridis was estimated to be

1,854,718 km2, covering France, the United Kingdom, Finland,

and eastern Russia (Figure 3D). With climate change, the potential

distribution areas of the three insect vectors tended to shift

southward, but their sizes decreased drastically (Figures 4A–D).

The potential distribution area of P. spumarius was observed only in

small spots in Italy, Croatia, Albania, Greece, and Georgia, totaling

26,487 km2, which is a 98% decrease from the area under the

current climate. N. campestris is expected to move southward to

Spain, Italy, Greece, and Turkey. However, the area decreased to

1,895,461 km2, equivalent to 55% of the current area. The potential

distribution area of C. viridis shrank to 14,358 km2, which is

approximately 99% less than the potential area under the current

climate and showed small spots in Italy, Greece, and Georgia.

Bioclimatic variables related to climatic variation contributed to

the model performance, suggesting that these pests are sensitive to

climatic conditions (Table 1). Temperature seasonality showed the

highest contribution (65.6%) to the model for P. spumarius,

followed by precipitation in the warmest quarter (9%) and annual

mean temperature (7.4%). For N. campestris, the minimum

temperature of the coldest month showed the highest

contribution (36.3%), followed by isothermality (17.4%) and

temperature seasonality (17.2%). Isothermality contributed the

most (39.3%) to the model of C. viridis, followed by annual

temperature range (16.8%) and precipitation of the warmest

quarter (10.7%).
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3.3 Evaluating the potential risk areas
of Pierce’s disease damage by using
ensemble mapping

High-risk areas where Pierce’s disease could be mediated by

insect vectors were derived by extracting the consensus areas for

Pierce’s disease and insect vectors under current and future climates

(Figure 5). The present high-risk areas, which is estimated to be

849,062 km2, were in southern Europe, such as Spain and Italy, as

well as in eastern France. Based on climate change, risky areas could

expand to 1,731,618 km2, covering most regions of southern

Europe, such as Portugal, Spain, Italy, Greece, and Turkey. This is

because the consensus areas increased as the potential area for

Pierce’s disease moved southward, although the potential

distribution area of the vectors decreased.

Three maps projecting the disease, insect vectors, and hosts

were constructed to identify the most threatened host area

(Figure 5). Because of the southward expansion of potential areas

of Pierce’s disease, the host distribution region was estimated to be

affected more than three-fold due to climate change: 121,637 km2 in

the future from 36,082 km2 under the current climate of 149,286

km2 of host distribution.
4 Discussion

This study used dual-species distribution modeling of

mechanistic and correlative algorithms for an ensemble spatial

analysis of the potential distribution of Pierce’s disease. Ensemble

models have recently been used to build reliable models by
FIGURE 3

Potential risk area under the current climate of (A) Xylella fastidiosa, (B) Philaenus spumarius, (C) Neophilaenus campestris and (D) Cicadella viridis.
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combining the characteristics of different algorithms in cases with

many uncertainties, such as in species distribution modeling

(Stohlgren et al., 2010). The decision on which type of algorithm

to apply to each species should be based on the characteristics of the

target species, the amount of available data, and the purpose of the

prediction (Yoon et al., 2023). Previously, it was shown that SDM

was applicable for evaluating risk areas exposed to X. fastidiosa

distribution according to climate change (Bosso et al., 2016a).

However, the model was developed using the limited coordinates

and outdated climatic variables. Because the correlative SDM highly

depends on occurrence coordinates, the limited number of X.

fastidiosa occurrence records might increase uncertainty of a

modeling result. In addition, the correlative SDM is trained by

values assigned to variables at occurrence coordinates, meaning the

variables that can reflect the current conditions can increase the

model reliability. Thus, it is necessary to compensate these
Frontiers in Plant Science 08
drawbacks by employing additional conditions and updated

variable information. This attempted to decrease model

uncertainty with the ensemble modeling of the disease and insect

vectors as the disease spread is constrained by habitats of them, and

to increase model reliability with the updated climatic variables

recorded by 2018. This study focused on identifying areas exposed

to the risk of Pierce’s disease mediated by insect vectors. Thus, we

aimed to construct a model that incorporates the habitats of actual

vectors with biologically possible regions of disease occurrence,

along with the availability of occurrence data. The climate is an

important factor affecting the outbreak of Pierce’s disease, as the

viability of Pierce’s disease varies with weather conditions, in

addition to the breed or age of the infected host (Feil and Purcell,

2001). Tropical, subtropical, and Mediterranean climates favor the

survival and development of Pierce’s disease, implying that the

probability of the disease occurring is high under favorable climatic
FIGURE 4

Potential risk area under the future climate (2041–2060) of (A) Xylella fastidiosa, (B) Philaenus spumarius, (C) Neophilaenus campestris and
(D) Cicadella viridis.
FIGURE 5

Ensemble mapping to illustrate high risk areas of Pierce’s disease mediated by insect vectors under the (A) current and (B) future climate (2041–2060).
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conditions through vector mediation (Purcell, 1997). For this

reason, the CLIMEX model might be more suitable because it

constructs a physiological niche by analyzing the suitability

within a given climate based on the biological characteristics of a

species, compared with a machine learning-based model that finds a

realized niche that is environmentally similar to the occurrence area

(Kriticos et al., 2015). In contrast, the MaxEnt model was used for

insect vectors because a relatively sufficient number of occurrence

coordinates was available, which is the most important requirement

in developing a reliable machine learning-based model (Phillips

et al., 2004; Elith et al., 2011). Moreover, vectors are affected by

other factors such as host and topology; thus, a model incorporating

different variables other than climate would be suitable. We believe

that ensemble models, which combine different models depending

on data availability and the main targets of prediction, can increase

the reliability of predictions, as opposed to simply applying the

same algorithm to two or more species or applying different

algorithms to one species.

The climate is a dominant factor affecting the distribution of

insect species (Björkman and Niemelä, 2015). In our analysis, some

areas shared the potential distribution of all three insect vectors,

indicating a common climatic factor that confined their habitats.

Isothermality (Bio3) contributed significantly to the MaxEnt model

of the three insect vectors, which quantified the ratio of the annual

maximum and minimum temperature differences to the monthly

average daily temperature difference (O’donnell and Ignizio, 2012).

All insect vectors were highly likely to occur at approximately 30%

or higher, suggesting that small seasonal differences favored their

occurrence of the insect vectors. The three species used in this study

are mainly distributed in the southern and western regions of

Europe, where the isothermality is high enough to aid the spread

of X. fastidiosa. The annual temperature range in Europe is between

approximately 15 and 25°C, and this range is included within the

maximum and minimum temperatures (5–28°C) observed in the

actual outbreak area of Pierce’s disease. This indicates that favorable

conditions for the disease and vectors are consistent (Yoon and Lee,

2023). Interestingly, N. campestris was the only one of three vectors

that could potentially mediate Pierce’s disease under climate

change, while the habitats of two other species in Europe were

predicted to decrease significantly. This may be due to the

differences in the dominant factors that contributed the most to

the model. In the model of N. campestris, the minimum

temperature of the coldest month (Bio6) showed the highest

contribution. It was found that the probability of occurrence was

high in areas where Bio6 was 0 or more, and the occurrence area

appeared to move to the Mediterranean coast where Bio6 was above

0 due to climate change. N. campestris overwinters as eggs and

develops into larvae in spring; therefore, warm temperatures due to

global warming may lead to the early hatching and development of

the pest (Elbeaino et al., 2014). This is consistent with a previous

SDM study which showed that the lowest temperature in the coldest

month was a main explanatory variable for X. fastidiosa distribution

(Raffini et al., 2020). This suggests that winter climate not only

serves as an important model variable for predicting the spread of

diseases mediated by insect vectors but also indicates its significance

as a factor in forecasting disease outbreaks necessary for
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implementing control measures. In contrast, temperature

seasonality (Bio4), a major variable of P. saltuarius, decreased

with climate change, leading to an unsuitable environment for

pest occurrence, whereas C. viridis was expected to decrease

because of a decrease in isothermality (Bio3) due to climate change.

Among the hosts affected by Pierce’s disease, vineyards and olive

groves play a significant role in Europe, a major wine-producing

country (Bisson et al., 2002). The optimal temperature for growing

grapes is 25–32°C, and they are largely cultivated near the

Mediterranean coast (Hochberg et al., 2015; Gutiérrez-Gamboa

et al., 2021). Temperatures below 12°C and above 34°C limited the

growth and survival of X. fastidiosa, which is similar to the optimal

temperature for growing grapes (Feil and Purcell, 2001). Growth

Index (GI) is an indicator of population growth potential during the

favorable season in the CLIMEX model, showing high values in the

spring and fall seasons by avoiding hot and dry environments that

can delay symptoms (Feil and Purcell, 2001). Although there are

differences depending on the vector biology, adult emergence occurs

between April and June or between July and October (Bodino et al.,

2019). This is similar to the peak GI period, worsening the spread of

Pierce’s disease; consequently, it is necessary to pay particular

attention during this period. Pierce’s disease eventually occurs in an

environment where both the host and vector are available.

Unfortunately, the favorable climate and time for growing hosts are

consistent with the requirements for disease and vector development.

From this point of view, countries along the Mediterranean coast and

western France are at high risk of Pierce’s disease occurrence

regardless of climate change, whereas southern Spain is projected

to become the most at-risk region for the disease due to climate

change. Consequently, intensive pest and disease control before

disease outbreaks outbreak is necessary for these countries (Janse

and Obradovic, 2010; Raffini et al., 2020; Morelli et al., 2021).
5 Conclusion

This study applied different algorithms for disease and insect

vectors and predicted the potential occurrence areas of Pierce’s

disease that vary with climate change using an ensemble modeling

approach by spatially relating the model results with the host

distribution. The main occurrence areas in Europe were predicted

to be near the Mediterranean coast. However, it could expand

southward, mediated by insect vectors due to climate change,

causing severe damage due to consistency between areas of

disease occurrence and host cultivation. Therefore, it is possible

to effectively identify high-risk areas for the potential occurrence of

the disease in advance and to implement intensive monitoring and

control to suppress the spread of the disease and minimize the

potential damage that may increase due to climate change. From the

perspective of SDM, this study is significant because it predicts

Pierce’s disease and it methodologically proposes an ensemble

model by integrating individual models of disease and vectors

with the host as a model variable. Although this model does not

consider changes in host distribution owing to climate change,

integrating a model that considers host changes can further enhance

its reliability.
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