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Metabolite genome-wide association studies (mGWASs) are increasingly used to

discover the genetic basis of target phenotypes in plants such as Populus

trichocarpa, a biofuel feedstock and model woody plant species. Despite their

growing importance in plant genetics and metabolomics, few mGWASs are

experimentally validated. Here, we present a functional genomics workflow for

validating mGWAS-predicted enzyme–substrate relationships. We focus on

uridine diphosphate–glycosyltransferases (UGTs), a large family of enzymes

that catalyze sugar transfer to a variety of plant secondary metabolites involved

in defense, signaling, and lignification. Glycosylation influences physiological

roles, localization within cells and tissues, and metabolic fates of these

metabolites. UGTs have substantially expanded in P. trichocarpa, presenting a

challenge for large-scale characterization. Using a high-throughput assay, we

produced substrate acceptance profiles for 40 previously uncharacterized

candidate enzymes. Assays confirmed 10 of 13 leaf mGWAS associations, and a

focused metabolite screen demonstrated varying levels of substrate specificity

among UGTs. A substrate binding model case study of UGT-23 rationalized

observed enzyme activities and mGWAS associations, including glycosylation of

trichocarpinene to produce trichocarpin, a major higher-order salicylate in P.

trichocarpa. We identified UGTs putatively involved in lignan, flavonoid,

salicylate, and phytohormone metabolism, with potential implications for cell

wall biosynthesis, nitrogen uptake, and biotic and abiotic stress response that

determine sustainable biomass crop production. Our results provide new

support for in silico analyses and evidence-based guidance for in vivo

functional characterization.

KEYWORDS

glycosyltransferase, Populus, functional genomics, high throughput, GWAS,
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1 Introduction

Metabolite genome-wide association studies (mGWASs) are

increasingly used in crop breeding and bioengineering programs

to discover the genetic basis of target phenotypes (Ding et al., 2021).

Secondary metabolites, which are involved in defense, signaling,

and lignification, are well suited for mGWASs, because their

biosynthesis is typically controlled by a few loci of large effect and

is highly heritable (Fang and Luo, 2019). The use of mGWASs in

systems biology studies on complex processes is particularly

valuable, because metabolite phenotypes can be directly measured

and reflect whole plant physiology and environmental interactions.

For example, recent studies in the biofuel feedstock Populus

trichocarpa incorporated mGWAS layers in multiomics analyses

to identify candidate genes involved in cell wall biosynthesis and

control of wood traits (Chhetri et al., 2019; Furches et al., 2019;

Chhetri et al., 2020). However, despite their growing importance in

plant studies, few mGWAS associations are experimentally

validated. Here, we present a functional genomics workflow

(Figure 1) for validating mGWAS predictions, focusing on

uridine diphosphate (UDP)–glycosyltransferases (UGTs) in P.

trichocarpa as a case study.

UGTs, the largest family of glycosyltransferases in the plant

kingdom, catalyze sugar transfer to secondary metabolites. Sugar

donors include UDP-glucose, UDP-rhamnose, UDP-glucuronic

acid, UDP-galactose, and UDP-xylose (Louveau et al., 2018;

Wang et al., 2019). The sugar moiety endows new functionality,

directing metabolite localization within cells and tissues, altering

physiological effects [e.g., via inactivation of signaling (Mhamdi,

2019)], influencing metabolic degradation (Bowles et al., 2006;

Wang and Hou, 2009), and facilitating long-distance transport

(Park et al., 2007). Given that UGTs directly affect the

accumulation or degradation of metabolites in plant tissues,

understanding their function in Populus is important for

genotype selection aimed at improving biofuels, valorizing

biomass, and providing targets for engineering sustainable

metabolites (Salas and Mendez, 2007; Tsai et al., 2006; Payyavula

et al., 2014; Tschaplinski et al., 2019). Previous studies in Populus

showed that UGTs play critical roles in growth–defense trade-offs,

including response to salt, drought (Tschaplinski et al., 2019;

Rehman et al., 2022), and herbivory (Babst et al., 2010; Fellenberg

et al., 2020). UGT activities also aid in the determination of leaf and

stomatal morphology (Chhetri et al., 2019; Chhetri et al., 2020).

However, many Populus UGTs have yet to be characterized, and

most have not been experimentally validated. Characterization of

this large enzyme family presents a challenge due to expansion in

land plants and extensive duplication within the Populus genome

(Geisler-Lee et al., 2006; Yonekura-Sakikibara and Hanada, 2011;

Caputi et al., 2012; Wilson and Tan, 2019).

Here, we validate mGWAS predicted substrates through the

expression of synthetic codon-optimized genes, high-throughput

biochemical assays, and mass spectrometry (MS)-based analysis to

generate metabolic profiles Figure 1. First, mGWASs were used to

detect UGT–metabolite associations. Next, associated metabolites were

used to create a substrate panel for testing the activities of a subset of
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UGTs. Enzymes were expressed in vitro and assayed against predicted

metabolites; confirmed interactions were compared to the mGWAS

network. Lastly, virtual screening predicted the relative binding

affinities of different compounds and rationalized observed enzyme

activities and mGWAS associations. Results confirmed mGWAS

associations and revealed varying levels of substrate specificity among

UGT candidates.
2 Methods

2.1 Sample collection, metabolomics
analysis, and mGWAS

Detailed methods for sample collection, metabolite extraction,

and gas chromatography–mass spectrometry (GC-MS) analysis

were previously described (Weighill et al., 2018). Briefly, leaf

tissue was collected in July 2012 from 851 unique P. trichocarpa

genotypes in a common garden in Clatskanie, Oregon (Weighill

et al., 2018), established from wild accessions in the native range in

the Pacific Northwest (Chhetri et al., 2020). Samples were flash

frozen on dry ice in liquid N2 and stored at −80 °C until analysis.

Metabolites were extracted from pulverized freeze-dried leaves in

80% ethanol with sorbitol as an internal standard, converted to

trimethylsilyl (TMS) derivatives, and characterized using GC-MS as

described previously (Tschaplinski et al., 2012; Weighill et al.,

2018). Full metabolite profiles were collected for each genotype,

and outlier metabolite peaks greater than six median absolute

deviations (MADs) from the population median were removed,

resulting in 818 metabolomics phenotypes.
2.2 mGWAS

The mGWAS has been reported and described previously

(Chhetri et al., 2020). Briefly, single-nucleotide polymorphism

(SNP) data from 869 whole genome resequenced P. trichocarpa

trees were utilized after removing closely related and highly

differentiated genotypes and SNPs with minor allele frequency

(MAF) <0.01 and population call rate >0.75 (Chhetri et al., 2020).

mGWAS was performed using a linkage disequilibrium pruned

genomic relationship matrix and the linear mixed model (LMM)

implemented in EMMAX (Kang et al., 2010) with ADIOS v1.13

(Lofstead et al., 2008) for scaling (see Furches et al., 2019). p-Values

were corrected for multiple testing (Benjamini & Hochberg, 1995)

using a false discovery rate (FDR) threshold of 0.1 (p(i) ≤ (i/m) * Q,

where i is the rank of p-value,m is the number of SNPs = 8,238,357,

and Q is the FDR threshold = 0.1).

A second analysis was performed to identify associations with

rare SNPs (MAF < 0.01). SNPs located within gene boundaries or in

2-kb flanking regions were grouped as a single region and analyzed

jointly (Furches et al., 2019). The Sequence Kernel Association Test

implemented in RVtest (Zhan et al., 2016) was performed on each

annotated gene region (41,335 in P. trichocarpa v3.0). With the use

of LMM, combined region scores were created in which component
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SNPs were MAF-weighted (beta distribution shape parameters: 1,

25). p-Values were corrected for multiple testing using an FDR of

0.1 (p(i) ≤ (i/m) * Q, where i is the rank of p-value, m is the number

of gene regions = 41,335, and Q is the FDR threshold = 0.1).

A third analysis on 1,254 genotypes was performed (Zhang

et al., 2018) after conducting a SnpEff analysis and filtering for SNPs

with MAF > 0.05 using the Efficient Mixed-Model Association

algorithm implemented in EMMAX with kinship as the correction

factor for genetic background effects (Zhou and Stephens, 2012). A

p-value threshold of 6.1 × 10−09 (0.05/8,253,066) was used to

determine significance using the Bonferroni correction for

multiple testing.

In all analyses, SNPs were mapped to the genes in which they

were located or to the nearest neighboring gene. The P. trichocarpa

genome sequence, annotation data, and Gene Atlas expression data

are available at https://phytozome-next.jgi.doe.gov/. P. trichocarpa

SNP and indel data are available at https://cbi.ornl.gov/gwas-dataset/.
2.3 Network analysis and candidate
gene selection

mGWAS networks were created using Python (v3.7.3) and

merged on P. trichocarpa gene and metabolite identifiers (nodes)

and mGWAS associations (edges). Gene annotations from

Phytozome (https://phytozome-next.jgi.doe.gov/) and MapMan

Mercator pipeline (Goodstein et al., 2012; Schwacke et al., 2019)

were incorporated into network metadata. The merged network was

filtered to include genes containing PFAM UDPGT (PF00201:

uridine 5′-diphospho-glucuronosyltransferase) protein domains

(https://pfam.xfam.org/; Mistry et al., 2021) and full-length open

reading frames (ORFs). The network was curated based on

sequence homology and network-based Jaccard index to down-
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select for unique candidates and was visualized using Cytoscape

v3.7.1 (http://cytoscape.org; Shannon et al., 2003).
2.4 Phylogenetic tree and sequence
similarity network

Full-length amino acid sequences were aligned using Clustal

Omega default settings (https://www.ebi.ac.uk/Tools/msa/clustalo/),

and a phylogenetic tree was constructed using EMBL-EBI (https://

www.ebi.ac.uk/Tools/phylogeny/simple_phylogeny/) with neighbor-

joining clustering method, no distance correction, and no gap

exclusion. The phylogenetic tree was visualized in the Interactive

Tree of Life (https://itol.embl.de/) in rectangular mode with branch

lengths displayed. The Enzyme Function Initiative Enzyme Similarity

Tool (EFI-EST, https://efi.igb.illinois.edu/efi-est/tutorial.php) was used

to make the sequence similarity network (SSN), visualized

using Cytoscape.
2.5 Candidate gene transcription

To characterize the tissue-specific expression of candidates, P.

trichocarpa reference Nisqually-1 RNA-seq data was obtained from

the DOE Joint Genome Institute (JGI) Plant Gene Atlas (https://

phytozome.jgi.doe.gov/pz/portal.html) for leaf, stem, root, and bud

tissues at multiple developmental stages. RNA-seq read trimming,

alignment, and transcripts per million (TPM) calculations were

described in Furches et al. (2019). Six outliers were removed that

were inconsistent with tissue type and treatment subgroups. Replicates

were averaged, and a clustered heatmap was created using Seaborn

v0.11.1 (https://seaborn.pydata.org/index.html) with Euclidean distance

metric, Ward clustering method, and normalization across tissues.
FIGURE 1

Project workflow, starting with metabolite–GWAS profiling to inform biochemical assays, which were analyzed using MS-based metabolite profiling.
The results of the assays inform metabolite–GWAS prediction methods for future studies. GWAS, genome-wide association study.
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To characterize population variation in candidate expression, P.

trichocarpa leaf, xylem, and root RNA-seq data collected from a

common garden were obtained from the National Center for

Biotechnology Information Sequence Read Archive (NCBI SRA)

database (www.ncbi.nlm.nih.gov/sra; see Yates et al., 2021, Table

S11, for SRA identifiers). Tissue collection and processing were

described by Zhang et al. (2018) and Yates et al. (2021). Data

processing and TPM calculations were described by Furches et al.

(2019). Outliers were removed using a MAD threshold of seven.

Clustered heatmaps were created using Seaborn with Euclidean

distance metric, Ward clustering method, and normalization

across samples.
2.6 Gene synthesis and expression

Media and buffer components were purchased from Sigma-

Aldrich (St. Louis, MO, USA). Genes were codon-optimized and

synthesized in the pQE-60 vector (Qiagen, Hilden, Germany) by

Biomatik for expression in NEB® Express Iq Escherichia coli (Table

S1). Transformants were incubated at 37 °C and 200 rpm shaking

for 18 h (180 µl of Luria-Bertabi (LB), 100 µg/ml of ampicillin, and

1% v/v glucose). Aliquots (20 µl) of overnight cultures were diluted

into terrific broth (380 µl and 100 µg/ml of ampicillin) and grown to

an optical density (OD) of 0.8 at 30 °C with 300 rpm shaking.

Protein expression was induced with 10 µl of 40 mM isopropyl b-D-
1-thiogalactopyranoside followed by incubation at 30 °C with 300

rpm shaking for 19 h. Cells were harvested by centrifugation (4 °C,

4,750 rpm, 10 min), resuspended in 200 µl of lysis buffer (20 mM of

Tris (pH 8.0), 0.1 mM of CaCl2, 2.5 mM of MgCl2, 1 mg/ml of

lysozyme, 1 mg/ml of polymyxin B sulfate, and DNase I), and gently

shaken at room temperature (rt) for 2 h. Insoluble cell material was

removed by centrifugation (4 °C, 4,750 rpm, 20 min).
2.7 Glycosylation

Substrates and buffer components were purchased from Sigma-

Aldrich. Reaction mixtures were prepared (1 mM of substrate, 5 mM

of UDP-glucose, and 20 mM of Tris-HCl, pH 7.5). Aliquots (30 µl) of

the reaction mixture were added to 10 µl of UGT lysate in 96-well

plates and incubated at rt for 18 h with gentle shaking. Reactions were

quenched by diluting 20 µl of aliquots into 180 µl 50% v/v acetonitrile

(0.1% v/v formic acid). After brief vortexing and centrifugation (4 °C,

4,750 rpm, 10 min), supernatants were diluted 1:4 into liquid

chromatography–mass spectrometry (LC-MS)-grade water for

analysis. For quality control, buffer-only, enzyme-only, and

substrate-only reactions for each enzyme and each substrate were

also analyzed.
2.8 High-throughput detection of
enzyme activity

Multiple reaction monitoring (MRM) methods were built for

each substrate, UDP-glc, and UDP by optimizing fragmentor voltages
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and collision energies for the substrate and applying these parameters

to define transitions (confirmation peaks) for the glucose conjugate(s)

(Table S5). A water–acetonitrile (0.1% v/v formic acid) gradient was

run with an Agilent (Santa Clara, CA, USA) Zorbax Eclipse Plus C18

50 × 2.1 mm column (1.8-µm particle size) on an Agilent 6470 QQQ

MS/MS with a 1260 Prime ultrahigh-performance liquid

chromatograph. Instrument tuning was checked daily using LC/MS

Tuning Solution for electrospray ionization (ESI) (Agilent). The

gradient method was adjusted for each substrate to ensure observed

glucose conjugates eluted with k > 0.5 from the solvent front (Table

S6). Data were analyzed withMassHunter Quantitative Analysis B.09,

and enzyme activity was recorded for a substrate if the product peak

signal-to-noise ratio was >3 and a product confirmation peak was

detected. MRM data are provided in Table S7.
2.9 Virtual screening

Virtual screening to predict relative binding affinities of

substrates used UGT-23, the structure of which was predicted

with AlphaFold (Jumper et al., 2021), and experimentally

validated substrates as a case study. The average predicted local

distance difference test (pLDDT) of 91.5 was obtained for the

model, indicating high accuracy (Mariani et al., 2013). The initial

conformers of trichocarpinene (15), trichocarpin, and 12 other

compounds (Figure 2B) were generated using RDKit (RDKit:

Open-source cheminformatics; https://www.rdkit.org).

The positions of the side chains of a few amino acid residues in

the substrate binding site were manually modified using the

structure of the glycosyltransferase UGT78G1 bound to myricetin

and UDP (PDB_ID: 3HBF), as it is considered to be representative

of the ligand-bound conformation of UGTs (Modolo et al., 2009).

UDP was added to the model using its coordinates in the template.

The modified structure bound to UDP was relaxed via a short (50

ps) molecular dynamics simulation using GROMACS-2019

(Abraham et al., 2015). The CHARMM36 force field (Hart et al.,

2012; Huang & MacKerell, 2013) was used for the protein and

adapted for the ligand. TIP3P (Jorgensen et al., 1983) water

molecules were added to build a solvation layer of 10-Å minimum

thickness. Energy minimization was performed with the steepest

descent for 5,000 steps. The particle mesh Ewald method was

applied to treat periodic electrostatic interactions using a cutoff

distance of 12 Å. The Lennard–Jones potential was smoothed in the

range of 10–12 Å. All bonds involving hydrogen atoms were

constrained using LINCS (Hess et al., 1997). System equilibration

was conducted in the NpT ensemble using the Berendsen barostat

and applying a compressibility of 4.5 × 10−5 bar−1 and a time

constant of 1.0 ps. Temperature control was performed using the

velocity rescaling method with a stochastic term (Bussi et al., 2007).

Since our goal was to relax the conformation of the amino acid

residues that were manually modified and not to sample

conformations at thermodynamically relevant conditions, the

temperature was gradually increased to 90.15 K. The relaxed

structure of UGT-23 bound to UDP was used as the receptor for

virtual screening, which was performed using AutoDock Vina

(Trott and Olson, 2010). The search space was defined as a box
frontiersin.org
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encompassing exposed residues in the substrate binding site with 1-

Å grid spacing and an exhaustiveness parameter of 20.
3 Results

3.1 Candidate selection

Analysis of the mGWAS network revealed that 106 hypothetical

UGTs had one or more significant mGWAS phenotype associations.

Downselection for full-length ORFs and maximum uniqueness

resulted in 40 UGT candidates (Figures 3A, B; Tables 1, S1), which

were associated with 67 unique metabolites, including benzenoids

(specialized metabolites of the Salicaceae family), phenylpropanoids

(lignans and flavonoids), and their glycoconjugates (Figure 3C;
Frontiers in Plant Science 05
Table S2). We calculated one to eight associations per UGT, with a

mean of 2.4 ± 1.4.
3.2 Functional annotation

UGTs were annotated with 10 Enzyme Classification (EC)

Numbers (Figure S1), seven Kyoto Encyclopedia of Genes and

Genomes (KEGG) Orthology (KO) identifiers, and five MapMan

Bins (Figure S3, Tables 1, S2). All candidates shared the

following annotations: Pfam PF00201, GO terms GO:0008152

and GO:0016758, KOG classification KOG1192, and Panther

Family PTHR11926. No additional Pfam domains were present

among candidates, strongly suggesting that the genes

encode UGTs.
A B

C

FIGURE 2

Representations of enzyme and metabolite–enzyme relationships. (A) Phylogenetic tree and (B) sequence similarity network with an e-value of −60
of the 40 Populus trichocarpa UGTs in this study. Diameter of the circle in panel B is proportional to the length of the protein sequence. (C)
Associations of 40 UGT genes with P. trichocarpa leaf metabolites in a metabolic genome-wide association study (GWAS). Genes are indicated by
blue circles, and metabolites are indicated by yellow diamonds. Gray lines indicate connections predicted by the GWAS analysis with an FDR-
corrected p-value <0.1, green lines indicate GWAS connections that were confirmed in biochemical assays, and red lines indicate that biochemical
assays did not support the predicted metabolite–GWAS relationship. Gallic acid (8) and dihydromyricetin (36) connections were validated by Glc-3
products. The trichocarpin and UGT-23 connection was inferred by observation of the diglucoside product of 15. FDR, false discovery rate.
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3.3 Gene transcription

UGTs in the Gene Atlas heatmap dendrogram (Figure S2)

formed four major clusters exhibiting the following expression

patterns (top to bottom): broad expression across tissues and

developmental stages (e.g., UGT-23), highest expression in

mature leaf tissues (e.g., UGT-32), highest expression in root

tissue (e.g., UGT-1), and highest expression in actively growing

tissue (buds, young leaves, and root tips; e.g., UGT-11). Two minor

clusters exhibited the highest expression in dormant buds (UGT-28

and UGT-33) and stem tissues (e.g., UGT-39). These results

indicate that some candidates exhibit tissue and developmental

stage specificity, while others are ubiquitously expressed.
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In population RNA-seq analyses, expression varied significantly

among UGTs, across the population, and within and across tissues

(Figures S4–S6). For example, UGT-18 expression was variable in

root tissue, but low or absent in leaf and xylem tissue, whereas

UGT-35 exhibited relatively high expression across the population

in all three tissues. In some cases, tissue-specific patterns in the

Gene Atlas analysis were consistent with population-scale analyses.

Overall, UGTs were broadly expressed across the common

garden population with some exhibiting tissue-specific

transcription, but tissue-specific patterns in the Gene Atlas

analysis could not be generalized across the population. Although

possibly due in part to a technical error (i.e., RNA-seq read mapping

issues given the high identity of many UGTs), the timing of tissue
D

A

B

C

FIGURE 3

Prediction of activity of trichocarpinene (15) via virtual screening of metabolites against UGT-23. (A) Proposed electron flow (dashed blue arrows) in
the glycosylation of aromatic metabolites by UGTs. In the example, quercetin (34), bound to UGT-23, interacts with His21, which acts as the general
base to initiate the nucleophilic attack at C1′ of glucose-UDP. The cutoff distance d used to filter out unproductive conformations generated via
molecular docking is depicted with a red line. (B) Virtual screening of 17 metabolites against UGT-23. For each of the nine conformations generated
for these metabolites, the AutoDock Vina-predicted binding affinity and the cutoff distance d are shown with circles and squares of different colors,
as labeled. These values are also depicted for the top-ranked conformation of trichocarpinene (red square). In the plot on the right, which shows
only results with lower d values, the symbols corresponding to the active compounds in UGT-23 are highlighted with a dashed circle, namely,
(+)-catechin (37), chlorogenic acid, pinosylvin monomethyl ether (23), quercetin, and trichocarpinene (predicted to be active). Top-ranked structure
of trichocarpinene (C) and trichocarpin (D) bound to UGT-23 (orange cartoon) predicted with AutoDock Vina (Trott & Olson, 2010). The key residues
for catalysis, His21 and Asp118, are depicted (yellow carbon, licorice representation). The distances between Nϵ2 in the His21 and the hydroxyl
oxygen in 15 and between the phosphatidyl oxygen in the uridine diphosphate (UDP) and C1′ in the glucose-UDP are depicted in parentheses (red).
The UDP coordinates were transferred from the aligned structure of UGT78G1 (PDB_ID: 3HBF [Modolo et al., 2009]). The region that would be
occupied by a glucosyl moiety attached to the UDP in panel (C) is represented with a violet circle.
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TABLE 1 Populus trichocarpa candidate UGTs, predicted enzymatic activity based on functional annotations, and GWAS-associated metabolites.

UGT ID Gene Model UGT Subfamily Functional Annotation GWAS Associated Metabolites

UGT-1 Potri.001G030600 UGT91A1-RELATED
soyasaponin III
rhamnosyltransferase

4-hydroxyacetophenone (14), benzyl-coumaroyl-glucoside, malic
acid

UGT-2 Potri.002G162200
soyasaponin III
rhamnosyltransferase

3-O-caffeoyl-quinate

UGT-3 Potri.004G123500
trans-zeatin O-beta-D-
glucosyltransferase

fructose, partial_id

UGT-4 Potri.004G214100
trans-zeatin O-beta-D-
glucosyltransferase

gentisic acid-2-O-glucoside, glyceric acid

UGT-5 Potri.006G179700
anthocyanidin 3-O-
glucosyltransferase

gentisic acid-2-O-glucoside, trichocarpin, partial_id

UGT-6 Potri.007G030500
anthocyanidin 3-O-
glucosyltransferase

partial_id

UGT-7 Potri.007G132400
cyanohydrin beta-
glucosyltransferase

partial_id

UGT-8 Potri.009G077400
trans-zeatin O-beta-D-
glucosyltransferase

2-hydroxyglutaric acid

UGT-9 Potri.009G133300 UGT78D1-RELATED
anthocyanidin/Flavonol 3-O-
glucosyltransferase

partial_id

UGT-10 Potri.010G182600
soyasaponin III
rhamnosyltransferase

6-hydroxy-2-cyclohexenone-1-carboxylic acid, partial_id

UGT-11 Potri.014G088400
soyasaponin III
rhamnosyltransferase

partial_id

UGT-12 Potri.016G016600 UGT71D1-RELATED
anthocyanidin 3-O-
glucosyltransferase

threonine, partial_id

UGT-13 Potri.016G017400
anthocyanidin 3-O-
glucosyltransferase

partial_id

UGT-14 Potri.016G019400 UGT82A1
trans-zeatin O-beta-D-
glucosyltransferase

secoisolariciresinol,1,2-cyclohexanediol-glucoside, partial_id

UGT-15 Potri.016G020800 UGT85A24
7-deoxyloganetin
glucosyltransferase

secoisolariciresinol, partial_id

UGT-16 Potri.016G022000
cyanohydrin beta-
glucosyltransferase

secoisolariciresinol, partial_id

UGT-17 Potri.016G022100
cyanohydrin beta-
glucosyltransferase

secoisolariciresinol, partial_id

UGT-18 Potri.016G057300 UGT55-RELATED
trans-zeatin O-beta-D-
glucosyltransferase

ribulose, partial_id

UGT-19 Potri.017G042800
soyasaponin III
rhamnosyltransferase

Z-9-heptadecosene

UGT-20 Potri.018G008900 UGT90A1-RELATED
flavonol 3-O-
glucosyltransferase

partial_id

UGT-21 Potri.018G140400 UGT91A1-RELATED
soyasaponin III
rhamnosyltransferase

1,2-cyclohexanediol-glucoside, partial_id

UGT-22 Potri.003G210400
glucosyl/glucuronosyl
transferases†

luteolin, partial_id

UGT-23 Potri.006G171200
flavonol-3-O-
rhamnosyltransferase‡

benzyl-coumaroyl-glucoside, benzyl alcohol, trichocarpin,
trichocarpinene (15), partial_id

UGT-24 Potri.007G030400 UGT72E
coniferyl-alcohol
glucosyltransferase

stearic acid, tremuloidin conjugate, partial_id

(Continued)
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collections, or fine-scale differences in developmental stages among

samples, observed differences likely have a genetic basis. More work

is needed to understand the specific conditions under which

transcription occurs.
3.4 Validation of mGWAS associations

Nine commercially available substrates in the mGWAS network

were assayed against all candidate UGTs: tyrosol (12), salidroside

(13), 4-hydroxyacetophenone (14), luteolin (33), dihydroquercetin

(35), dihydromyricetin (36), (−)-secoisolariciresinol (42), gallic acid

(8), and trichocarpinene (15) (Figure S7; Table 2). The biochemical

assays were designed to be high throughput, using lysates

containing overexpressed UGTs combined with each substrate.
Frontiers in Plant Science 08
An autosampler connected to an LC-MS/MS, coupled with

automated data processing using MRM of known substrates and

products, improved assay analysis time.

Of 13 predicted metabolite–UGT associations, nine were

supported based on MS detection of the monoglycosylated product

(Figure 3C). Dihydromyricetin was accepted by the fewest and

secoisolariciresinol was glycosylated by the greatest number of

UGTs (2 vs. 25). Except for UGT-4 and UGT-12, all enzymes

screened in the high-throughput assay were confirmed to have

glycosyltransferase activity under the conditions tested. No single

enzyme, however, was able to glycosylate all nine of these substrates.

As UGTs are known to produce metabolites with multiple

glucose moieties, MS data were analyzed for evidence of multiple

glycosylations (Table S3). Some reactions (e.g., UGT-31 and gallic

acid) only produced multiply glycosylated products, while others
TABLE 1 Continued

UGT ID Gene Model UGT Subfamily Functional Annotation GWAS Associated Metabolites

UGT-25 Potri.011G097900 UGT79B1
anthocyanidin 3-O-glucoside
2'''-O-xylosyltransferase

partial_id

UGT-26 Potri.017G052400
7-deoxyloganetin
glucosyltransferase

tyrosol (12), 6-hydroxy-2-cyclohexenone-1-carboxylic acid,
benzoyl-salicyloylsalicin, salidroside (13), tyrosol-4-O-glucoside

UGT-27 Potri.002G236400 UGT75C1
anthocyanidin 3-O-glucoside
5-O-glucosyltransferase

partial_id

UGT-28 Potri.004G119700 UGT83A1
UDP-glycosyltransferase
83A1

tremulacin, partial_id

UGT-29 Potri.006G022500 UGT85A24
7-deoxyloganetin
glucosyltransferase

benzyl alcohol, partial_id

UGT-30 Potri.006G055600 crocetin glucosyltransferase partial_id

UGT-31 Potri.009G095500
(indol-3-yl)acetate beta-D-
glucosyltransferase§

fructose, gallic acid (8)

UGT-32 Potri.013G143900 UGT78D1-RELATED
anthocyanidin/Flavonol 3-O-
glucosyltransferase

salicyltremuloidin, partial_id

UGT-33 Potri.014G175000 UGT74B1
salicylic acid
glucosyltransferase§

dihydromyricetin, galactinol, salicyltremuloidin, partial_id

UGT-34 Potri.015G071900 UGT74B1
N-hydroxythioamide S-beta-
glucosyltransferase

dihydroquercetin, partial_id

UGT-35 Potri.016G014100 UGT71B2-RELATED
similar to hypostatin
glucosyltransferase¶

catechol, partial_id

UGT-36 Potri.016G016100 UGT71D1-RELATED
UDP-glycosyltransferase
71D1-related†

partial_id

UGT-37 Potri.016G016800 UGT71D1-RELATED
similar to hypostatin
glucosyltransferase¶

threonine, partial_id

UGT-38 Potri.017G032700 UGT74D1
salicylic acid
glucosyltransferase§

tyrosol-4-O-glucoside, partial_id

UGT-39 Potri.017G077800
glucosyl/glucuronosyl
transferases†

tyrosol (12)l, (Z,Z, Z)-9,12,15-octadecatrienoic acid, ethyl ester,
5-oxo-proline

UGT-40 Potri.018G096000
anthocyanidin/Flavonol 3-O-
glucosyltransferase

partial_id
UGT IDs were arbitrarily assigned and specific to this project. Predicted UGT subfamily identifiers, where available, were obtained from Phytozome. Functional annotations were based on
Enzyme Classification (EC) Numbers except where otherwise indicated:
†Phytozome, ‡MapMan, §KEGG Orthology, ¶Arabidopsis Best Hit Ortholog. Metabolites in bold were selected for enzyme assays. Association with one or more partially identified metabolites is
indicated by “partial_id”; for a full list and further details, see Table S2.
GWAS, genome-wide association study.
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TABLE 2 Observed monoglycosylation of substrates by UGTs in vitro.
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% UGTs processing substrate 50% 8% 53% 33% 60% 60% 5% 63% 45%

U
G
T
ID

UGT-1 1 0 1 0 0 0 0 0 0

UGT-2 1 0 0 0 0 0 0 0 0

UGT-3 0 0 0 0 1 0 0 1 0

UGT-4 0 0 0 0 0 0 0 0 0

UGT-5 0 0 0 0 1 0 0 0 0

UGT-6 1 0 0 0 0 0 0 1 0

UGT-7 1 0 0 0 0 0 0 0 0

UGT-8 1 0 1 0 0 1 0 0 0

UGT-9 1 0 0 0 0 1 0 1 0

UGT-10 0 0 0 0 1 0 0 0 0

UGT-11 ND 0 0 ND 0 1 ND 0 0

UGT-12 0 0 0 0 0 0 0 0 0

UGT-13 1 0 1 1 1 1 0 1 1

UGT-14 1 0 0 0 1 0 0 1 0

UGT-15 ND 0 0 ND 0 0 ND 1 0

UGT-16 0 0 1 1 1 0 0 1 0

UGT-17 0 0 1 0 1 1 0 1 0

UGT-18 0 1 1 0 0 1 0 1 0

UGT-19 ND 0 0 ND 0 1 ND 0 0

UGT-20 1 0 1 1 1 1 0 1 0

UGT-21 1 0 0 0 0 1 0 1 0

UGT-22 1 0 1 1 0 1 0 1 0

UGT-23 1 0 1 1 0 0 0 1 1

UGT-24 1 0 1 1 1 1 0 1 1

UGT-25 0 0 0 1 1 1 0 1 0

UGT-26 0 1 1 0 1 1 0 1 1

UGT-27 0 0 1 1 1 1 0 0 1

UGT-28 1 0 0 0 1 1 0 1 1

UGT-29 1 0 1 1 1 1 0 1 1

UGT-30 1 0 1 0 1 1 1 1 1

UGT-31 0 0 0 0 1 1 0 0 1
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F
rontiers
 in Plant Science
 09
 frontier
sin.org

https://doi.org/10.3389/fpls.2023.1210146
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Saint-Vincent et al. 10.3389/fpls.2023.1210146
(e.g., UGT-23 and trichocarpinene) contained products in multiple

glycosylation states. Altogether, enzymatic assays confirmed 10 of

13 predicted metabolite–UGT relationships when considering

multiple glycosylation states.
3.5 Survey of accepted substrate classes

Forty additional metabolites, which were selected based on

structural similarity to the original nine compounds or to the

backbones of other uncharacterized network metabolites and because

of their roles in plant stress response or cell wall biosynthesis, were

tested as substrates for glycosylation (Figure S7). Nearly all metabolites

tested were monoglycosylated by a subset of UGTs (Tables S3, S4;

Figure S8), with an average of 15 ± 10 (38% ± 25%) UGTs processing

each substrate. Of the 49 total substrates tested, none were glycosylated

by every UGT, although quercetin (34) was processed by the greatest

percentage (90% or 36 UGTs). Although coumarins were, on average,

monoglycosylated by more UGTs than other classes (49% ± 14%) and

phenylpropanoids by the fewest (30% ± 24%), differences between

metabolite classes were not significant (p > 0.05) (Figure S8).

For most substrates, multiple glycosylation states were

observed, such as in the case of trichocarpinene, for which both

mono- and diglycosylated products were observed (Table S3).

Monoglycosylated indole-3-acetic acid (43; IAA) was not detected

in any reaction, but 11 total unique UGTs were able to di-, tri-, or

tetra-glycosylate the phytohormone. In the case of salidroside, 13

UGTs had activity when expanding the search criteria to include the

diglucoside, although 11 of 18 UGTs with detectable
Frontiers in Plant Science 10
monoglycosylated product were not able to produce the

diglucoside under the assay conditions.

UGTs with shared metabolite profiles were compared using a

phylogenetic tree (Figure 3A; Table S4). No obvious relationship

between gene sequence similarity and substrate acceptance profile

was noted, reinforcing the notion that substrate specificity and

enzymatic activity cannot be simply deduced or predicted from the

amino acid sequence.
3.6 UGT-23 docking analysis

AutoDock Vina-predicted binding affinities (Trott and Olson,

2010) were used to rank order substrates using nine conformations for

each metabolite. Cutoff distance, defined based on the likely reaction

mechanism, was used to filter out bad poses (Shao et al., 2005). With

the use of UGT-23 as a representative UGT, catalytic residues were

identified: His21 acts as the general base that potentializes aromatic

hydroxyl oxygen in the substrate, which causes the nucleophile to

react with C1′ of glucose-UDP (Figure 2A). Interaction of His21 with

Asp118 assists in the initialization of electron transfer.

The distance cutoff for best docking poses was 5.5 Å between the

aromatic hydroxyl oxygens in the glucose acceptor and Nϵ2 in

His21. Within the distance cutoff, pinosylvin monomethyl ether

(23), trichocarpinene, (+)-catechin (37), chlorogenic acid (24), and

quercetin had the lowest predicted binding affinity values (i.e.,

strongest binders) among known active compounds of UGT-23

(Figure 2B). Molecular docking of trichocarpin, the glucoside of

trichocarpinene, and a predicted substrate of UGT-23 (Figure 3D)
TABLE 2 Continued
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UGT-32 0 0 0 0 0 0 0 1 1

UGT-33 1 0 1 1 1 1 0 0 1

UGT-34 0 0 1 0 1 0 0 0 1

UGT-35 0 0 1 0 1 1 0 1 1

UGT-36 1 0 1 1 1 1 0 1 1

UGT-37 1 0 1 1 1 0 0 1 1

UGT-38 0 1 1 1 1 1 1 1 1

UGT-39 1 0 0 0 1 1 0 1 1

UGT-40 0 0 1 0 1 1 0 0 1
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predicted a top-ranked conformation in the binding site that is

appropriately oriented as the product of the glycosylation of

trichocarpinene (Figure 2C), confirming in vitro assay results that

demonstrated that UGT-23 glycosylates trichocarpinene.
4 Discussion

High-throughput biochemical assays were used to validate an

mGWAS network. Forty UGT genes were selected from the merged

mGWAS network based on sequence diversity and the likelihood that

candidates encoded unique functional UDP-glycosyltransferases.

RNA-seq analyses confirmed that all candidates exhibited

expression, and functional annotation strongly indicated that

glycosylation is the native role of these enzymes in P. trichocarpa.

All UGTs were active on five or more substrates (Table S3).

Substrate scope varied from five (UGT-7, UGT-12, and UGT-15)

to 38 (UGT-36) with a mean of 18 ± 10 (38% ± 20%)

monoglycosylated products (Table S3). The nine substrates from

the mGWAS network were glycosylated by more UGTs than the

network predicted, suggesting relaxed substrate specificity in our

assays. Substrates included benzenoids, phenylpropanoids,

phytohormones, and terpenoids, which function in development,

defense response, cell wall biosynthesis, pigmentation, and creation of

aromatic scents (Le Roy et al., 2016). No single substrate class was

significantly glycosylated compared to other classes, suggesting P.

trichocarpa UGTs have evolved to process a wide variety of

metabolites. Also, differences in glycosylation patterns of

structurally similar compounds suggest that the UGTs have

different requirements for substrate structure, or that other factors,

such as co-localization within the plant or expression conditions, may

be involved in substrate acceptance. Protein phylogeny was not

correlated with the number or type of substrates processed, which

indicates that nuanced differences in the binding pocket structure,

and not protein sequence alone, may dictate substrate specificity.

Quercetin was the most widely accepted substrate, with 36 of 40

UGTs producing quercetin glucoside. This substrate was selected

because it is structurally similar to dihydroquercetin, an antifungal

flavonoid identified in the mGWAS network, and because a

quercetin conjugate of unknown structure was associated with

UGTs 13–17 in the mGWAS network (Figure 3C). While only

two of these five enzymes glycosylated dihydroquercetin, four

glycosylated quercetin, highlighting the differences in substrate

acceptance of highly similar molecules. These enzymes may also

glycosylate the quercetin conjugate, although metabolite isolation,

structure elucidation, and testing are needed for confirmation.

Interestingly, none of the enzymes produced IAA-

monoglucoside; only multiply glycosylated IAA was detected in

UGT reactions (Table S3). IAA is an important phytohormone in

plant growth and development, and it serves as a quorum sensing or

communication molecule in bacteria (Estenson et al., 2018). IAA

gluco-conjugates are thought to form as a way to remove excess

signaling molecules (Yamaguchi et al., 2010). Multiple glucose

moieties are common in natural product biosynthesis and can

trigger different response pathways in the plant (Thibodeaux

et al., 2007; Williams et al., 2008). Tests to identify which
Frontiers in Plant Science 11
glycoconjugate is the major product of each UGT-substrate pair

could provide additional insight into the relative weights of

relationships in the metabolite-gene network.

Trichocarpinene and trichocarpin, which differ by a glucose

moiety, were associated with UGT-23 in the mGWAS network

(Figure 3C). While trichocarpin was not directly tested as a substrate,

both mono- and diglycosylated products of trichocarpinene were

observed. Virtual screening of active compounds with UGT-23

indicated that trichocarpinene has a strong binding affinity compared

to other substrates and that trichocarpin is the product of the enzyme-

catalyzed glycosylation of trichocarpinene, rationalizing the predicted

and experimentally validated association between trichocarpin and

UGT-23.

Like previous studies (Chen et al., 2020; Kurze et al., 2022; Salas

and Mendez, 2007; Zhang et al., 2006), we observed relaxed substrate

acceptance profiles, suggesting that P. trichocarpa UGTs are not

specific for particular substrates. However, biochemical assays often

over- or under-represent in vivo enzyme activity, depending on

reaction conditions. The high-throughput design of this workflow

prevented extensive testing of various conditions, which could reveal

nuances in associations and activities. This may also explain why

three metabolite-gene associations were not reflected in enzyme

assays. Assaying substrate processing under alternate reaction

conditions (e.g., additives or effectors in the reaction mixture, and

different reaction temperatures and times) would further inform

predicted metabolite-gene relationships and substrate specificity,

and incorporating kinetic assays and substrate competition assays

into the workflow would reveal preferred substrates (Wang et al.,

2019; Tan et al., 2022). Furthermore, investigating the variability in

tissue-specific UGT activity reflected in the RNA-seq analyses, as well

as determining the subcellular location of glycosylation reactions,

would provide valuable information regarding in vivo specificity.

Another limitation of our approach is that it is unlikely to identify

the function of enzymes involved in protein–protein interactions or

heterocomplexes (e.g., Maszczak-Seneczko et al., 2012). Furthermore,

the workflow is limited to enzymes that can be expressed in a

heterologous host and to metabolites that have been positively

identified and are commercially available or easily synthesized.

Nevertheless, this functional genomics workflow enabled the

characterization of the substrate acceptance of a set of enzymes, and

it also validated predicted associations in an mGWAS network. As

biologists increasingly turn to predictive models to study

metabolite-gene associations, reliable methods to test the models

are necessary. Such validation studies can aid in improving

functional genomics models and identify gene targets for

manipulating metabolite production.

In conclusion, an increasing number of studies leverage whole

genome sequencing data in combination with high-throughput

phenotyping to identify candidate genes (Chen et al., 2020;

Rehman et al., 2020; Wei et al., 2021; Li et al., 2001; Wu et al.,

2016). However, downstream functional characterization remains a

bottleneck: most GWAS-led studies validate two or fewer

candidates, with many studies omitting validation altogether.

Here, we demonstrated the use of mGWASs to prioritize

significant metabolite-gene associations, which we validated using

high-throughput biochemical assays. The identified functional
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P.trichocarpa UGTs are putatively involved in lignan, flavonoid,

salicylate, and phytohormone metabolism with implications for cell

wall biosynthesis, nitrogen uptake, and biotic and abiotic stress

responses that determine sustainable biomass crop production. Our

results provide direction for further in vitro and in vivo functional

characterization in which enzyme activities and downstream effects

can be interrogated. These studies have implications for identifying

enzymes that can transform secondary metabolites with utility in

biomedical and bioenergy applications.
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