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Cosegmentation and coattention are extensions of traditional segmentation

methods aimed at detecting a common object (or objects) in a group of

images. Current cosegmentation and coattention methods are ineffective for

objects, such as plants, that change their morphological state while being

captured in different modalities and views. The Object State Change using

Coattention-Cosegmentation (OSC-CO2) is an end-to-end unsupervised

deep-learning framework that enhances traditional segmentation techniques,

processing, analyzing, selecting, and combining suitable segmentation results

that may contain most of our target object’s pixels, and then displaying a final

segmented image. The framework leverages coattention-based convolutional

neural networks (CNNs) and cosegmentation-based dense Conditional Random

Fields (CRFs) to address segmentation accuracy in high-dimensional plant

imagery with evolving plant objects. The efficacy of OSC-CO2 is demonstrated

using plant growth sequences imaged with infrared, visible, and fluorescence

cameras in multiple views using a remote sensing, high-throughput phenotyping

platform, and is evaluated using Jaccard index and precision measures. We also

introduce CosegPP+, a dataset that is structured and can provide quantitative

information on the efficacy of our framework. Results show that OSC-CO2 out

performed state-of-the art segmentation and cosegmentation methods by

improving segementation accuracy by 3% to 45%.

KEYWORDS

segmentation, cosegmentation, image analysis, high-throughput plant phenotyping,
image sequences, object state change, multiple features, multiple dimensions
1 Introduction

Segmentation is a widely used technique to extract the foreground object from the

background before information extraction (Langan et al., 1998; Rezaee et al., 2000; Patz and

Preusser, 2012; Fan et al., 2018; Liu et al., 2021). Image segmentation has been used in many

application domains, including medicine (Das and Kundu, 2013; Lian et al., 2019; Zhou
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et al., 2019), traffic safety (Alessandretti et al., 2007; Chang et al.,

2019; Chen et al., 2020), and earth system diagnostics (Hoerser and

Kuenzer, 2020). However, the success of segmentation algorithms

has been limited by the complexity and diversity of the imagery.

Cosegmentation is a technique developed to address the problem of

segmenting an object in a set of images (Rother et al., 2006; Tao

et al., 2015; Ren et al., 2018; Tao et al., 2019). Since its introduction,

it has been used in many domains, including plant imagery

(Quiñones et al., 2021), PET-CT images (Zhong et al., 2019), and

video-based person re-identification (Subramaniam et al., 2019).

Current cosegmentation methods have been developed for RGB

images (Chen et al., 2014a; Lin et al., 2014; Subramaniam et al.,

2019) for objects with no defined quantitative or qualitative features

(e.g., environmental conditions, perspectives, temporality, among

others.) (Quiñones et al., 2021). Currently, datasets lack specific

labeling for cosegmentation, limiting the success and application of

these visualization methods. Furthermore, some methods are

dependent on training data which make them tedious to generate

and time consuming for training (Chen et al., 2014b; Meng et al.,

2016; Hsu et al., 2019).

Although engineered features, such as Scale-Invariant Feature

Transform (Lowe, 2004) and Histogram of Oriented Gradients

(Dalal and Triggs, 2005), have been widely used in conventional

cosegmentation methods, they are no longer optimal

cosegmentation analytics due to their pre-designed network

features. Convolutional neural networks (CNNs), on the other

hand, have demonstrated their effectiveness in producing feature

extraction in image pairs (Krizhevsky et al., 2012). Yuan et al (Yuan

et al., 2017). proposed a CNN-based supervised method for object

cosegmentation that would produce the masks for an object in a

pair of images. However, their method requires additional training

data for the CNN model in the form of object masking.

With the explosion in variety, velocity, and volume of plant

imagery datasets, traditional segmentation algorithms grapple with

processing images and achieving high accuracy due to challenges,

including occlusion and overlap. Cosegmentation algorithms have

the potential to overcome these issues, but they only achieve high

accuracy for the dataset with which they were trained.

This paper presents Object State Change using Coattention-

Cosegmentation (OSC-CO2), an end-to-end trainable unsupervised

coattention- and cosegmentation-based framework for the

increased segmentation of multiple feature objects that undergo

state changes in high-throughput datasets. The state is referred to

the object’s (plant’s) shape, orientation, and size at a specific point

in time. OSC-CO2 is designed to process datasets that contain a

variety of features, such as perspective (V), species (S), temporality

(T), environmental conditions (E) and modality (M) (VSTEM)

(Figure 1). The code for OSC-CO2 is publicly available at: https://

github.com/rubiquinones/OSC-CO2.

OSC-CO2 is systematically evaluated using a VSTEM dataset

retrieved from a high throughput plant phenotyping facility at the

University of Nebraska-Lincoln, USA. This paper will use CosegPP+

[an extension of CosegPP (Quiñones et al., 2021)], which consists of

growth sequences of multiple plants in their early growth period

during which the plant grows, changes shape and appearance,

develops new organs (leaves), and sometimes even rotates about a
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vertical axis for optimal light interception. The plants are grown in a

greenhouse and are imaged daily in a high-throughput imaging

platform using infrared, fluorescence, and RGB cameras with

multiple views. Thus, the dataset exemplifies the VSTEM imagery

and is manifestly more challenging than any dataset used in

cosegmentation research because it categorizes the many features

that pertain to the object while other datasets are random in their

object selection with undefined features. The CosegPP+ dataset is

available at: https://doi.org/10.5281/zenodo.6863013.

The specific contributions of this research include:
• An end-to-end unsupervised deep learning algorithm, OSC-

CO2, to cosegment VSTEM imagery,

• Novel cosegmentation and temporal loss functions to adapt to

the challenges of a high volume and variety VSTEM dataset,

• The demonstration of the efficacy of OSC-CO2 in a complex

application domain – plant phenotyping. What makes

plant phenotyping a complex domain is the dynamic

growth and environmental interaction of an object (plant).
The literature is summarized in the next section, with a

discussion on open problems, dataset biases, and how OSC-CO2

addresses these research gaps. The metrics used to evaluate the

efficacy of the cosegmentation algorithms are also briefly described.

Section 3 presents the problem definition, introduces our overall

framework, and provides details of the different parts of the

framework. Section 4 discusses the quantitative and qualitative

results based on our evaluation using the precision and Jaccard

index measures. Section 5 provides a final discussion, our

conclusions, and potential directions for future work.
2 Literature review

This section summarizes the traditional and learning-based

approaches for segmentation and cosegmentation algorithms and

the datasets used for their evaluation. We also identify the research

gaps and how our work addresses some of them.
2.1 Traditional segmentation algorithms

Traditional segmentation algorithms use a sequence of common

image-processing steps to obtain a semantic and instant region of

interest in an image. One technique is called frame differencing and is

most used in high-throughput plant phenotyping systems since it is

capable of imaging plants in a constant fixed camera, and lighting. It

has been used by researchers (Woebbecke et al., 1992; Das

Choudhury et al., 2017; Choudhury et al., 2018; Das Choudhury

et al., 2020) by subtracting a fixed background image that only

includes an empty pot, from an image that includes the plant while

ensuring the background is constant. Although the segmentation

technique is quick and low in computational demands, it does require

images to come from a high-throughput system and is susceptible to

residual noise around the plant region.
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Color-based segmentation can address the issue of residual

noise in imagery while having the flexibility to be used without a

high-throughput system. This technique partitions parts of the

image into different color regions based on its color features while

assuming the color features are homogenous. Different color-based

segmentations algorithms use either RGB (red, green, and blue),

Lab (where L represents lightness, a indicates the red (positive) or

green (negative), and b represents the yellow (positive) and blue

(negative), or HSV (hue, saturation, and value) depending on the

color space application. It was first inspired by Woebbecke et al.

(1992), which used the green and red channels to derive the

normalized difference index. Then, other researchers leveraged

this idea by utilizing the red channel to derive the excess red

index (Meyer and Neto, 2008), red, green, and blue channels to

derive the color index of vegetation (Kataoka et al., 2003), and

others (Hunt et al., 2005; Meyer and Neto, 2008; Zheng et al., 2009).

It is a common technique to use for semantic analysis since a

majority of a plant can be green compared to the background, but it

does not handle multiple-colored objects (common in stress-

induced plants) or when the background color is like the object.

Shape modeling-based segmentation is commonly used for leaf

or stem semantic analysis (Yin et al., 2014; Agapito et al., 2015;
Frontiers in Plant Science 03
Thorp et al., 2016; Chen et al., 2017; Li et al., 2017; Chen et al., 2019;

Roggiolani et al., 2023; Williams et al., 2023), flower instant analysis

(Thorp et al., 2016; Zhang et al., 2022; Mahajan et al., 2023), and

fruits (Grift et al., 2017; Fu et al., 2019). Chen et al. (2017) had RGB

images as an input to their framework, where it transformed the

images into a polar coordinate system by using a plant’s density

center as the origin. Thorp et al. (2016) used RGB images as input

and transformed them into an HSI (hue, saturation, intensity) color

space and then segmented the flowers using a Monte Carlo

approach. Pape and Klukas (2015) attempted to reduce the

impacts of illumination variability by modeling 3D histograms of

LAB color space to aid in the segmentation process for rosette

plants. Scharr et al. (2016) applied a super pixel-based unsupervised

approach that can extract various regions of interests by

implementing a seeded region growing algorithm. These

techniques usually do not produce a high segmentation accuracy

with varying accuracies of 40% to 80% (with superficial image edits,

such as cropping, to improve the segmentation).

In addition to color being an obstacle for segmenting the region

of interest from the background, the irregular physical

characteristics of a plant and inconsistencies in lighting during

data acquisition limit the effectiveness of simple, traditional
FIGURE 1

A preview of a VSTEM Dataset. This work will use the CosegPP dataset (Quiñones et al., 2021) and modify it as CosegPP+ and categorize it as a
VSTEM dataset for our problem definition. The first row shows the growth sequence of a Buckwheat plant from 3rd July 2019 to 27th July 2019. The
second row shows the three modality types of a Buckwheat plant on 27th July 2019. The third row shows the four different side views of a
Buckwheat plant on 27th July 2019.
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segmentation methods. Therefore, approaches based on

thresholding (Otsu, 1979; Sezgin and Sankur, 2004; Meng et al.,

2019), frame differencing (Choudhury et al., 2018), color-based

(Woebbecke et al., 1992; Zheng et al., 2009), and morphological

operations (Zhou et al., 2021) have, in general, proven to be

ineffective for segmentation in high-throughput plant imaging

datasets. These techniques are unable to overcome image

acquisition inconsistencies, including lighting variation, shadows,

and plant positions, and more significantly, do not consider or

leverage the dynamic nature of the plants’ evolving physical

characteristics (Choudhury et al., 2018; Choudhury, 2020).
2.2 Learning-based
segmentation algorithms

Learning-based segmentation algorithms are the preferred

method especially since traditional segmentation algorithms often

yield unsatisfactory results due to the plant being a complex object

(Yin et al., 2014). Traditional segmentation algorithms also have

issues overcoming common computer vision problems such as

occlusion and large-scale lighting variations.

Clustering-based segmentation is a classification technique that

attempts to find relational information among pixels in an image

and classify them based on a similarity measure. These algorithms

are the prerequisite for pursuing further complex phenotypic traits.

They can eliminate noisy spots (Lee et al., 2018; Guo et al., 2021)

and obtain homogenous regions (Ojeda-Magaña et al., 2010; Liu

et al., 2018). Some segmentation algorithms target the semantic

segmentation of plants, while others target the instant segmentation

of plant parts, such as leaves, flowers, and fruit. Liu et al (Liu et al.,

2018). utilized a 3D point cloud and spectral clustering to

semantically segment Ixora, Brassica, Wheat, and Basic plants.

Then, they further segmented down to each of the plant part’s

leaves and stem. Their technique was unique, and their framework

was capable of segmenting a variety of plant species. Valliammal

et al (Valliammal and Geethalakshmi, 2012). proposed a study

where they applied wavelet transformation and fuzzy clustering to

segment leaves. They was able to provide good segmentation results

while achieving high identification of the leaf’s edges. Another study

(Wang et al., 2018) proposed a framework that combined the Sobel

operator and the Chan-Vese model to segment cucumber leaves

with complex background and occlusion issues. A downside to

these algorithms is that they are sensitive to high levels of noise and

gray inhomogeneity and are difficult to determine the initial

parameters (Li et al., 2020).

Researchers have begun using Convolutional Neural Networks

(CNNs) in their applications since 2012 due to their promising

performance in semantic and instance segmentation (Jiang and Li,

2020) by utilizing the foreground object’s features. Most

applications combine CNNs with deep learning libraries such as

Caffe (Pound et al., 2017), TensorFlow (Koh et al., 2021), PyTorch

(Zhou et al., 2021), and Keras (Gong et al., 2021) for their analysis.

Researchers have attempted to utilize neural network-based
Frontiers in Plant Science 04
segmentation algorithms to count plant organs that have replaced

some traditional-based and clustering-based algorithms. Most of

these neural network-based algorithms (Bolya et al., 2019; Chen

et al., 2020; Kirillov et al., 2020) require plenty of images with pixel-

level annotation and available training data. Neural network-based

algorithms are also used for data augmentation strategies for plant

organ identification, segmentation, and counting (Das Choudhury

et al., 2017; Das Choudhury et al., 2020; Mazis et al., 2020). Studies

that have used CNNs have shown to have achieved accuracies from

87% to 99% for stress-based application and classification (Mohanty

et al., 2016; Cruz et al., 2017; DeChant et al., 2017; Fuentes et al.,

2017; Lu et al., 2017; Wang et al., 2017; Barbedo, 2018; Barbedo,

2018; Ferentinos, 2018; Liu et al., 2018; Suh et al., 2018; Nazki et al.,

2020) but with manual or naïve modifications of the binary masks

after processing.
2.3 Cosegmentation algorithms

Merdassi et al. (Merdassi et al., 2020), categorized cosegmentation

algorithms into eight categories: Markov Random Fields-based

Cosegmentation (MRF-Coseg), Co-Saliency-based Cosegmentation

(CoS-Coseg), Image Decomposition-based Cosegmentation (ID-

Coseg), Random Walker-based Cosegmentation (RW-Coseg),

Maps-based Cosegmentation (M-Coseg), Active Contours-based

Cosegmentation (AC-Coseg), Clustering-based Cosegmentation (Cl-

Coseg), and Deep Learning-based Cosegmentation (DL-Coseg). They

quantified that almost all algorithms in these categories used only

color and texture features. This presents an issue because if the

algorithms are intended to only recognize color and features, then

the algorithm cannot detect a heterogeneous object that may consist

of multiple distinctive regions. Complex, objects, such as plants, are

heterogenous and can vary in color and texture as time progresses.

Several DL-Coseg studies (Hsu et al., 2018; Li et al., 2018; Meng

et al., 2019) have found that using a CNN-based framework is

optimal for detecting, extracting, and map-generating an object’s

features for a set of images. Hsu (Hsu et al., 2019) used CNNs to

detect co-peaks for an image pair and its features to determine

segmentation masks. Li (Li et al., 2018) utilized a CNN-based

Siamese encoder-decoder architecture to extract semantic features

of the objects in a set of images. Hsu (Hsu et al., 2018) generated

heat maps for each image and transformed the results for

cosegmentation via dense CRFs. These algorithms require a large-

scale set of images to achieve results, but that is extremely time-

consuming. Although some algorithms tackle this problem, they

end up being semi-serviced learning-based methods (Kim et al.,

2011; Wang and Liu, 2013).

Recent cosegmentation algorithms have tackled important

issues such as occlusion (Jerripothula et al., 2021; Meng and

Zhao, 2022) by leveraging a combination of techniques to aid in

object detection. Also, the literature supports incipient

cosegmentation applications in pancreas research (Liu et al.,

2022). Other sources of imagery, such as UAV-based high

throughput platforms (Rico et al., 2020; Rico et al., 2021) or
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applications to improve the predictability of phenotypes (Sarzaeim

et al., 2022; Sarzaeim et al., 2023), illustrate the potential of the use

of cosegmentation algorithms and datasets for a variety of

object types.
2.4 Cosegmentation datasets

Several datasets to demonstrate the efficacy of cosegmentation

algorithms have been proposed in the literature, including iCoseg

(Batra et al., 2010), MSRC (Winn et al., 2005), Internet (Rubinstein

et al., 2013), Flickr-MFC (Kim and Xing, 2012), and PASCAL-VOC

(Everingham et al., 2010). However, these datasets do not reflect the

complexity in many application domains where the shape of the

objects change over time (temporality), the objects are imaged in

different imaging sensors (modality), and under different

environmental conditions. These datasets are extremely big in

image count that it is difficult to parse or even provide ground

truth data for them. Furthermore, most of the objects in the datasets

are random and have yet to be used in domain-specific research.

The datasets are also limited in their ability to be used in current

problems that require temporality, object state change, and multiple

modalities for a diverse set of data points. CosegPP (Quiñones et al.,

2021), on the other hand, contains many features that could be

leveraged to aid current problems to advance cosegmentation

research in general and in application-specific work–

plant phenotyping.

Traditional and learning-based algorithms are not advanced

enough to handle a VSTEM dataset since they currently rely on

naïve modifications or are unable to leverage the necessary

information for deeper plant analysis. Cosegmentation algorithms

tend to overcome the issues with traditional and feature-based

algorithms and address complex challenges, such as occlusion, but

are only efficient for a specific type of dataset. An overview of

cosegmentation datasets suggests that they may not be useful for

domain-specific applications and motivates the need for domain-

specific datasets. Our work introduces an end-to-end unsupervised

deep learning framework and a VSTEM dataset that is 1) high
Frontiers in Plant Science 05
dimensional, and 2) contains a small number of (7 to 14) images.

Furthermore, it is the first cosegmentation-based algorithm

proposed and tested for plant phenotyping.
3 Methods

OSC-CO2 uses an information fusion approach by leveraging

the outputs from multiple segmentation and cosegmentation

methods to learn and refine the segmentation of VSTEM images.

Specifically, for the images in a VSTEM image dataset, the object of

interest will exhibit a variety of state changes over time (but

captured at specific temporal points) and is captured in multiple

imaging modalities at multiple views. All the available information

can be leveraged to aid segmentation. Iteratively, the whole VSTEM

dataset is segmented by OSC-CO2 by determining the object using

coattention and then cosegmenting the object with one pair of

images. A novelty in OSC-CO2 is that, unlike traditional CNNs, it is

completely unsupervised, which suggests that no additional data

annotations are needed. OSC-CO2 is implemented in three stages:

Object Mask Generation (OMG), Object Mask Refinement (OMR),

and Final Joint Mask Generation (FJMG). Figure 2 shows the three

stages and how they are processing the dataset input and sending

information across stages to generate the metric output.
3.1 Problem definition

The problem including VSTEM imagery can be formally

defined as follows:

Given a plant P, imaged at m time points, omodalities, and in p

side views, i.e., P = fPijkg, 1 ≤ i ≤ m, 1 ≤ j ≤ o, 1 ≤ k ≤ p, where

Pijk   is the image of plant P at time i, view j, and modality k,

determine R = fRijk  g, 1 ≤ i ≤ 0, 1 ≤ j ≤ p, 1 ≤ k ≤ m, where Rijk is

the final segmented mask for the plant Pijk.

The proposed OSC-CO2 algorithm incorporates a dynamic and

expandable approach using coattention and cosegmentation

analytics. It consists of three stages: (1) Object Mask Generation,
FIGURE 2

Block diagram of OSC-CO2. This method contains three stages. The Object Mask Generation stage takes imagery, P, and produces binary imagery,
M. The Object Mask Refinement stage takes the imagery, M, and processes it through the Coattention Map Producer, CoMP, generating an HM set
of heat maps. Then, the maps go through the Feature Constructor, FC, to produces a two-column tensor of feature information of the background
and object. The two-column tensor is used as input to the coattention loss (lca) (Hsu et al., 2018), and our novel cosegmentation (lcs) and temporal
(lt) loss. This stage stops after the epoch max is reached. For the Final Joint Mask Generation stage, we adopted dense conditional random fields
(CRFs) as our refinement taking HM and P as input for Krähenbühl’s algorithm, then giving a final dataset, R, after computing Jaccard index similarity
between S and P.
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(2) Object Mask Refinement, and (3) Final Joint Mask Generation.

This model is designed to handle high-throughput image datasets to

generate accurate separation of dynamic and evolving objects using

a deep learning framework. This approach generates an ensemble of

binary masks for a VSTEM image set and addresses some common

challenges in segmentation, including background noise and the

evolution of the object’s morphology. The proposed OSC-CO2

framework is summarized in Algorithm 1 below.
Fron
Input:P = fPijkg,   1 ≤ i ≤ o, 1 ≤ j ≤ p, 1 ≤ k ≤ m, where Pijk is

the image of plant P at time I, in view j, modality  k.

 Cjk is the class at modality k, and view j. A =

 fA1,A2,…,Ar,…,Ang,   where Ar is the rth segmentation

algorithm that takes a plant image and generates its

mask.

Output: R = fRg,   1 ≤ i ≤ m, 1 ≤ j ≤ o, 1 ≤ k ≤ p, where Rijka is

the refined binary masks for the plant Pijka

Stage 1: Object Mask Generation (P,  A)

Begin

For 1   ≤ a ≤ n do

For 1   ≤ i ≤ o do

For 1   ≤ j ≤ p do

For 1   ≤ k ≤ m do

Mr
ijk = Segment(Ai ,Pijk);

Return (M)

End

Stage 2: Object Mask Refinement (M)

Begin

For 1 ≤ i ≤ o   do

For 1 ≤ j ≤ p   do

For 1 ≤ k ≤ m   do

For 1   ≤ a ≤ n do

Begin//process the image temporal sequence.

Initialize (CoMP,  FC)

For 1 ≤ k ≤ m − 1 do

Begin

Iprev = Mr
i,j,k ;Icurrent = Mr

i,j,(k+1)

Lca = Lco = Lt = 0

Repeat

HMr
i,j,ka = COMP(Iprev ,  Icurrent) //heat maps

Fr
i,j,ka = FC(Iprev ,  Icurrent) //features

Compute Lca using Eq. (1)

Compute Lcs using Eq. (4)

Compute Lt using Eq. (7)

LossTotal = 1*Lca + 0:5*Lco + 0:5*Lt

Backpropagate loss and update weights

Until epoch max is reached

End

End

End

Return (HM)

End

Stage 3: Final Joint Mask Generation (P,  HM)

For 1 ≤ i ≤ o   do
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For 1 ≤ j ≤ p   do

For 1 ≤ k ≤ m   do

For 1   ≤ a ≤ n do

Sr
ijk   =  Krähenbühl(Pijk ,  HM

r
ijk)

Jr
ijk   =  computeJaccard(Sr

ijk,  Pijk)

End

Rijk   =  Sijkx :Jijkx > Jijky   ∀   1 ≤ y ≤ n   and x ≠ y

End

End

End

Return (R)
Algorithm 1. Proposed OSC-CO2 framework.
3.2 Overview

Given a set of images of a single plant P in different modalities

and views at different time points, we start with a set of basic

segmentation algorithms to generate initial masks. Segmented

images in the temporal sequence are reconciled in order using

deep neural networks with novel loss functions. The final

segmentation results are derived by analyzing the refined

segmentation results from different algorithms. Figure 2 shows an

overview of the OSC-CO2 framework. As shown in the figure, OSC-

CO2 consists of three key stages: initial mask generation, mask

refinement, and final mask creation.
3.3 Object mask generation

The goal of the OMG stage is to generate the initial

segmentations for all the images of the plant, including all

modalities, views, and time points. The masks are generated for

each segmentation algorithm and are used in Stage 2 to refine them.

In the OMG stage, the input images, P, are processed through a set

of algorithms selected by the user defines to produce a set of binary

images, M, for all the algorithms. This stage has no limit to the

number of algorithms and images that it can handle, but it could be

limited by a computer’s processing power.
3.4 Object mask refinement

The OMR stage takes the binary imagery, M, through a neural

network called the Coattention Map Producer, (CoMP), to create

heat maps for each image. Our definition of a heat map is shown in

Figure 3. The heat maps are passed through another network called

the Feature Constructor (FC) that computes the features of the

estimated objects and the background. The Coattention Map

Producer CoMP learns by optimizing multiple loss functions

designed to address the challenges in cosegmenting a VSTEM

dataset with evolving objects. The three functions are temporal,

cosegmentation, and coattention loss. Temporal loss measures the

inter-image object difference defined by the distance between the
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feature pairs of the current image and that of the previously

computed image. The cosegmentation loss measures the

foreground-background discrepancy within each image. The third

is coattention loss adapted from (Hsu et al., 2018), which enhances

inter-image object similarity and intra-image figure-ground

distinctness per image. Finally, the P and HM imagery are inputs

to the FJMG stage to the dense conditional random fields (CRFs)

cosegmentation algorithm to produce our framework’s final joint

masks, R.

As shown in Figure 4, the OMR module is composed of two

collaborative CNN modules to produce the heat maps (heat maps

that differentiate between the object and background) and feature

pairs (descriptive correlation between an image’s foreground and

background). They are described below.
Fron
• Coattention Map Producer (CoMP): This module produces

heat maps.

• Feature Constructor (FC): Generates feature information for

the object and background in each image that can be used

by the loss functions for optimization.
The details of the modules and their architecture are described

in detail below.
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3.4.1 Coattention map producer
The CoMP is a fully convolutional network (FCN) (Long, 2015)

that has a modified ReLu layer to avoid modifying the data directly

and avoid allocating any additional memory. An FCN was used

since the architecture does not contain any dense layers, meaning

the FCN can handle a wide range of image sizes since all

connections are local. This is useful for VSTEM datasets that

contain hundreds of images due to the temporal resolution. For

each input image to CoMP, it estimates its heat map, i.e., HMr
ijk =

CoMP(Mr
ijk). We used the VGG-16 (Simonyan and Zisserman,

2015) setting of the FCN (Long et al., 2020) to create CoMP.

Following (Hsu et al., 2018) we replaced the last activation

function softmax layer with a sigmoid function layer which

provides the heat maps as output. We also kept the learning rate

set to 10−6 and fixed it during the optimization process following

(Hsu et al., 2018).

3.4.2 Feature constructor
FC is a Resnet50 (He et al., 2016) that takes in a segmented

image, HMr
ijk, and computes the semantic features object (Ion) and

background (Ibn) using Equations 2 and 3. A Resnet50 architecture

was used since it has many layers that can be trained easily without

increasing the training error while overcoming the vanishing
BA

FIGURE 3

Our heat maps follow the standard color definition where purple and blue is the “coldest” (weak object prediction), and red and yellow is the
“hottest” (strong object prediction). (A) Shows some binary imagery with its heat maps (B).
FIGURE 4

A detailed block diagram of Stage 2: Object Mask Refinement using Coattention. The inputs are simplified in this block diagram to show only the
previous and current image with its corresponding imagery for the selected algorithms. These images are inputs to the CoMP and the FC. The
generated heat maps from CoMP, and the numerical pairs from FC are used to compute the three losses. These losses are propagated back into
CoMP, and this process repeats the number of epochs that is defined in the architecture.
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gradient problem in the VGG-16 architecture in CoMP. This

approach is useful for our imagery since our evolving objects

contain many parts, textures, shadows, and colors. These features

are from the last fully connected layer of FC (Hsu et al., 2018) since

VGG-16 (Simonyan and Zisserman, 2015) sometimes suffers from

the vanishing gradient problem. Our method recognizes that early

heat maps are too unstable and compensates with resilient

adjustments. Furthermore, FC is an off-the-shelf model pre-

trained with ImageNet (Deng et al., 2009). We have set the

features extracted in FC as inputs to the last fully connected layer.

3.4.3 Loss functions
A novel contribution of OSC-CO2 is a loss function developed

to address the unique properties of the VSTEM datasets. The overall

loss function is defined as

LEMVS = 1 ∗ Lca + 0:5 ∗ Lcs + 0:5 ∗ Lt ,

where Lcs is the coattention loss, Lcs is the cosegmentation loss,

and Lt is the temporal loss.

The coattention loss is designed to enhance both inter-image

object similarity and intra-image figure-ground distinctness in each

image, aiding in extracting our object type. Our novel

cosegmentation loss optimizes the images by using the object and

background’s features for a high foreground object similarity across

the output masks and a high foreground-background dissimilarity

within each image. This loss will aid in extracting information

across the different views and modalities. Our novel temporal loss

optimizes the similarity of the foreground objects across two

sequential images. This loss will help in providing information

about a specific object’s type for each environmental condition. All

these losses target all the aspects of a VSTEM dataset.

3.4.3.1 Coattention Loss

The coattention loss is defined by Hsu et al. (2018) and is meant

to guide CoMP ’s training of optimal coattention masks by referring

to the current object and background features that are computed by

FC. The loss function is defined below:

lc( Inf gNn=1;w) = −oN
i=1oj≠1log(pij) (1)
3.4.3.2 Cosegmentation Loss

One assumption we made about the VSTEM dataset is that the

object relatively stays in the same position but grows outwards. We

exploit this advantage to aid in object alignment. The proposed

cosegmentation loss is designed to guide CoMP to generate a high

foreground object similarity across the images and high

foreground-background dissimilarity within each image. Given

the current and previously computed image pairs (IA,   IB) with

the current and previously computed generated mask pairs from

CoMP   (SA,   SB), we produce the object and background features.

We generate the object (Ion) and background (Ibn) features by

Ion = FC(In ⊗ Sn) and (2)
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Ibn = FC In⊗(1 − Sn)ð Þ for   n ∈ A,Bf g, (3)

where ⊗ denotes the pixel-wise multiplication between the two

operands. The cosegmentation loss (Lcs) is defined by

Lcs(IA,  IB,  F) = d+AB + d−AB, (4)

where d+AB and is defined as

d+AB =
1
c

F(IoA) − F(IoB)k k2 and (5)

d−AB = max  (0,m − (
1
2c

(jjF(IoA) − F(IbA)jj2 + jjF(IoB)

− F(IbB)jj2)) (6)

The margin m enlarges the difference between classes to

enhance classification ability. If the margin is too large, the

probabilities become unreliable, leading to a large loss for almost

all samples (Zhang et al., 2019). For our framework, it is set to 2 as

the cutoff threshold. Eq. (5) aims to minimize inter-image

foreground object distinctiveness, and Eq. (6) maximizes the

intra-image foreground-background discrepancy. Even though the

cosegmentation loss Lcs is like the loss described in (Chen et al.,

2020), there is a significant difference. Our cosegmentation loss

measures the mean squared error (MSE) (squared L2 norm)

between each element in the input x and target y (the variable

definition used by PyTorch) instead of using the dimension of the

features as the constant c. In addition, since MSE penalizes

prediction that is far away from the previously computed by

applying a squared operator, we used that as our criterion to stop

the computation of our losses when near convergence. To the best

of our knowledge, computing a loss with results from previous

iterations to model the temporal effect has not been explored.

3.4.3.3 Temporal Loss

This loss assumes that there exists an object that changes in

shape due to environmental conditions, thus, insinuating a

discrepancy between the foreground and background as time

progresses. The temporal loss is designed to measure the inter-

image object distance between the current and previously computed

image feature pairs of (IA,   IB). We generate the object (Ion) and

background (Ibn) features based on Eq. (2) and (3). The temporal

loss (Lt) is defined by

Lt( Inf gNn=1) = −oN
i=1oj≠ilog(pij), (7)

where pij is defined as

pij =
exp ( − ob+ij)

exp ( − ob+ij) + exp ( − ob−ij)
, (8)

ob+ij =
1
c
jjF(IoB,i) − F(IoB,j)jj2 ,  and (9)

ob−ij =
1
c
(jjF(IoA,i − F(IoA,j)jj)2 (10)
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CoMP generates heat maps to optimize low inter-image object

distances for both current and previously computed feature pairs

using Eq. (9) and (10). Our temporal loss is motivated by Hsu’s

(Hsu et al., 2018) coattention loss, but the difference is that ours

ignores the intra-image figure-ground dissimilarity and computes

the inter-image object distance with the current and previously

computed image feature pairs.
3.5 Final joint mask generation

This stage uses the dense CRF approach proposed in

(Krähenbühl and Koltun, 2011), where the unary and the

pairwise terms are set to the two heat maps generated from the

results of two segmentation algorithms and bilateral filtering,

respectively. For each pixel in the heat maps, we define a

probability that the pixel belongs to undefined classes. The

hyperparameters for the network are summarized in Table 1. This

stage outputs the final binary masks, R, by computing and selecting

the mask with the highest Jaccard index similarity between the plant

imagery dataset, P, and the segmented masks dataset, (S), using the

dense CRF approach (Krähenbühl and Koltun, 2011).
3.6 Optimization process

OSC-CO2 uses the ADAM optimizer to derive its hyperparameters

due to its widespread use and its rapid convergence (Hsu et al., 2018;

Mehta et al., 2019; Melinte and Vladareanu, 2020) properties. The final

parameters determined by ADAM include a 0.01 learning rate and a

0.0005 weight decay for CoMP 0 s parameters. At the start of processing

each one-pair of images, the optimizer sets all the gradients to zero.
3.7 The data repository creation

The VSTEM imagery used to evaluate the performance of OSC-

CO2 is based on the CosegPP data repository (Quiñones et al.,

2021). The data repository has plant images with a large inter-class

variation and background noise. The images were captured using

the LemnaTec Scanalyzer at the University of Nebraska-Lincoln,

USA. It contains two buckwheat plants, where one underwent

drought stress, and the other remained the control, and two
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sunflower plants, where one underwent drought stress, and the

other remained the control. Each plant represents a dataset that has

four side views (0°, 72°, 144°, 216°), and three modalities

(fluorescence, infrared, and visible) with 7 to 14 time points.

We created an extension of CosegPP’s datasets, which we will

refer to as CosegPP+, by processing all four plant datasets through

segmentat ion using Otsu ’s method (Otsu, 1979) and

cosegmentation using Subdiscover (Meng et al., 2016). These two

methods were chosen since (Quiñones et al., 2021) defined these as

the top methods for being able to segment some of the challenging

features of computer vision. CosegPP+ is publicly available at

https://doi.org/10.5281/zenodo.6863013.

We replaced the original images with the outputs generated by

Otsu’s method and Subdiscover. Meaning that each time point i will

have at most a binary images where a is the number of algorithms

(i.e., Otsu’s method and Subdiscover) used. Some groups do not

contain Subdiscover binary masks due to the method’s limitation in

not being able to segment the original images.
3.8 Implementation

OSC-CO2 allows for the dynamic input of epoch runs, but we

used 10 epoch runs for CosegPP+. It is worth noting that CosegPP

began overfitting after 7 epochs. OSC-CO2 also requires a minimum

2 epochs to allow for the heat maps to generate stable proposals and

generate the coattention loss based on pixel-wise averaging of the

masks. The cosegmentation loss and temporal loss activates at the

final epoch. The batch size is set to a(the number of algorithms used

as input with their binary masks). Also, all input images are resized

to 384 �  384 pixel resolution prior to subsequent processing

because FC can only be applied to images of the same size while

using 3� 3 kernels with a stride of 3 and 3 for height and width,

respectively, and with an initial learning rate of 0.001. After the

cosegmentation, we resized the images back to their original sizes

for performance evaluation.
4 Results and discussion

In this section, we describe the dataset, performance metrics,

experimental design, and evaluation results for OSC-CO2. The

results are compared with several existing methods to

demonstrate the efficacy of OSC-CO2.
4.1 Evaluation metrics

Our experiment uses two widely used metrics, Precision (P) and

Jaccard index’s (J) similarity (also known as IoU) to evaluate the

final estimated masks for each time point. Precision is the

measurement that identifies the percentage of correctly segmented

pixels. Jaccard index is the measurement for the intersection area

ratio between the detected object and ground truth. Both metrics

will range from 0 to 1 where 1 is the ideal value. We chose these two

metrics due to their continuous use in coattention and
TABLE 1 Hyperparameter values of the dense CR network approach
(Gong et al., 2021).

Hyperparameter Value

Weight of the bilateral term 10

Spatial standard deviation 80

RGB standard deviation 13

Weight of the spatial term 3.0

Spatial standard deviation 3

Number of iterations 5.0
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cosegmentation analytics (Dong et al., 2015; Meng et al., 2016;

Wang and Shen, 2016; Li et al., 2018; Merdassi et al., 2020).
4.2 Quantitative results

Table 2 summarizes the performance of OSC-CO2 on the

CosegPP+ data repository. The precision and Jaccard index

similarity scores for the four plants are presented for each of

the three modalities (visible, fluorescence, and infrared). For

each modality, the scores for each of the four views are also

reported. Finally, the average scores for each plant over all the

views and for all the modalities are presented. OSC-CO2

produces the highest precision and Jaccard index similarity
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scores for the fluorescence and visible modality for the

buckwheat species and high scores for the infrared modality

for the sunflower species.

Table 3 compares the performance of OSC-CO2 against Otsu’s

method, a widely used algorithm in the plant phenotyping domain,

and Subdiscover, a leading cosegmentation method. The

performance results for Otsu’s algorithm and Subdiscover are

derived from our previous research (Quiñones et al., 2021).

Table 3A summarizes the effectiveness of our method, OSC-CO2,

under normal growth conditions and under drought for buckwheat

images. Table 3A shows that the performance of OSC-CO2 is

comparable to other algorithms based on the precision score; it is

slightly lower in fluorescence and infrared modality but the same or

higher for visible imagery. However, the Jaccard index similarity
TABLE 2 The performance of our OSC-CO2 on the CosegPP+ data repository.

Fluo
0°

Fluo
72°

Fluo
144°

Fluo
216°

IR
0°

IR
72°

IR
144°

IR
216°

Vis
0°

Vis
72°

Vis
144°

Vis
216°

Fluo
Avg

IR
Avg

Vis
Avg

All
Avg

BC
P 0.93 0.93 0.93 0.92 0.90 0.90 0.90 0.90 0.99 0.99 0.99 0.99 0.93 0.90 0.99 0.94

J 0.39 0.39 0.39 0.38 0.32 0.31 0.29 0.29 0.37 0.42 0.35 0.33 0.39 0.31 0.37 0.36

BD
P 0.92 0.92 0.93 0.93 0.89 0.89 0.89 0.89 0.98 0.95 0.98 0.97 0.93 0.89 0.97 0.93

J 0.43 0.44 0.47 0.46 0.35 0.35 0.34 0.34 0.33 0.27 0.30 0.38 0.45 0.35 0.32 0.37

SC
P 0.93 0.86 0.86 0.87 0.92 0.95 0.95 0.95 0.91 0.90 0.92 0.91 0.88 0.95 0.91 0.91

J 0.36 0.31 0.32 0.34 0.41 0.37 0.37 0.36 0.43 0.34 0.44 0.43 0.33 0.38 0.41 0.37

SD
P 0.95 0.88 0.88 0.91 0.98 0.98 0.99 0.98 0.89 0.92 0.92 0.92 0.91 0.99 0.92 0.94

J 0.23 0.27 0.28 0.27 0.34 0.31 0.31 0.29 0.27 0.26 0.26 0.35 0.27 0.32 0.29 0.29
frontier
BC, Buckwheat (Control); BD, Buckwheat (Drought); SC, Sunflower (Control); SD, Sunflower (Drought); P, Precision; J, Jaccard index similarity; Vis, Visible imagery; Fluo, Fluorescence
imagery; IR, Infrared imagery. The best average Precision and Jaccard index similarity per dataset are shown in bold.
TABLE 3 The comparative evaluation of OSC-CO2 with Otsu’s algorithm and Subdiscover.

A. Performance comparison on buckwheat species

Buckwheat (Control) Buckwheat (Drought)

Fluo IR Vis Fluo IR Vis

P J P J P J P J P J P J

Otsu 0.97 0.38 0.90 0.05 0.93 0.14 0.97 0.37 0.90 0.05 0.93 0.14

Subdiscover – – – – 0.99 0.34 – – – – 0.97 0.23

OSC-CO2 (ours) 0.93 0.39 0.91 0.31 0.99 0.37 0.93 0.45 0.89 0.35 0.97 0.32

B. Performance comparison on sunflower species.

Sunflower (Control) Sunflower (Drought)

Fluo IR Vis Fluo IR Vis

P J P J P J P J P J P J

Otsu 0.87 0.26 0.91 0.31 0.92 0.30 0.87 0.12 0.93 0.20 0.93 0.14

Subdiscover 0.84 0.10 0.94 0.19 0.98 0.47 0.84 0.00 0.98 0.09 0.98 0.16

OSC-CO2 (ours) 0.92 0.39 0.92 0.35 0.96 0.37 0.92 0.36 0.94 0.34 0.95 0.35
s

BC, Buckwheat (Control); BD, Buckwheat (Drought); SC, Sunflower (Control); SD, Sunflower (Drought); P, Precision; J, Jaccard index similarity; Vis, Visible imagery; Fluo. Fluorescence
imagery; IR. Infrared imagery. The best average Precision and Jaccard index similarity per dataset are shown in bold. “—” means the algorithm did not generate an output.
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measures for OSC-CO2 are significantly superior to other

algorithms. This implies that OSC-CO2 can properly detect the

object’s pixels, but at the expense of a very slight reduction

in precision.

Table 3B compares the performance of OSC-CO2 for the

sunflower species. The results are like those for the buckwheat

species. The performance for the fluorescence and infrared

modality is slightly lower for precision, but significantly better

overall for Jaccard index similarity. However, Subdiscover

clearly outperformed OSC-CO2 in the visible modality. This

may be due to the inconsistent appearance of sunflower images

due to the presence of flowers (yellow) with green stems

and leaves.
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4.3 Qualitative results

Figure 5 shows some sample images from the CosegPP+ data

repository and their corresponding segmentations generated by

OSC-CO2. For the buckwheat images, OSC-CO2 removes most of

the background imaging chamber (background noise in plant

phenotyping) while leaving the object (plant) intact. However, the

infrared modality was not as accurate in this case. Sunflower images

show similar patterns. However, it is noticeable with the Visible

light modality that it came at a cost by removing most of the plant

itself from the object since those temporal points began to include

the flowers. Furthermore, the sunflower displays an empty result for

the drought environmental conditions on the last temporal point
FIGURE 5

Illustration of qualitative performance of OSC-CO2 on the CosegPP data repository. This preview shows only three temporal points (start, middle,
end), and one side view for all modalities.
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leading to the assumption that it overfitted too soon. Thus,

suggesting the future work of a dynamic epoch cutoff.

As evident from Figure 5, the sunflower plants tend to have

thicker stems and hence, generate more discernable infrared

imagery, resulting in better segmentation accuracy than

buckwheat. Furthermore, since buckwheat plants were imaged

during the vegetative state only, they were green throughout the

imaging period. In contrast, sunflower plants have yellow flowers,

sometimes several, during the later stages of growth. Therefore,

visible images for buckwheat were more consistent, leading to the

highest accuracy. Similarly, the green organs in buckwheat in

fluorescence imagery, which serves as a proxy for chlorophyll

level, have higher segmentation accuracy in this modality.
5 Conclusion and future work

In this paper, we achieve our first contribution of designing an

unsupervised method for cosegmenting binary plant imagery by

using CNNs that outperformed previous works (Otsu, 1979; Meng

et al., 2016) by improving segmentation accuracy by 3% to 45%.

The model has three stages. The first stage is the Object Mask

Generation which produces the necessary binary imagery from a set

of user-defined algorithms. The second stage is the Object Mask

Refinement which uses FCN32, VGGNet, and ResNet50. We also

achieved our second contribution by designing two novel

unsupervised cosegmentation and temporal loss for stage two

with one unsupervised coattention loss from literature. The third

stage is Final Joint Mask Generation which refines the binary image

output by using the heat maps. The experimental results

demonstrate a promising new technique that can learn and

enhance binary masks, without training data, to refine the masks

leading to higher segmentation accuracy for further object analysis.

Using CNNs for evolving objects at different temporal stages

shows promising development in increasing accuracy that it may

replace some traditional methods for plant phenotyping. This paper

creates an unsupervised coattention and cosegmentation method

for high-throughput datasets with defined quantitative and

qualitative features that leverage the information from multiple

algorithms’ binary output. Within this framework, we have

proposed two novel loss functions: cosegmentation and temporal

loss that aids the coattention loss by helping the discovery of the

foreground object while removing background noise.

For our third contribution, experimental evaluations of OSC-CO2

on CosegPP+ demonstrate the method’s great capabilities of being

able to recognize the evolving, moving object. This also introduces a

base analysis for different types of modalities that are being used more

in plant phenotyping analytics. Our method was able to leverage these

object features to produce and demonstrate its optimal performance

among different modalities and environmental conditions.

This paper is a critical contribution to image segmentation to

high-throughput multi-modal image segmentation because it

eliminates the need for researchers to perform naïve image pre-

processing, such as image cropping that may skew an algorithm’s

performance by eliminating the complex aspect of an image that

may challenge, and push future algorithmic development.
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Future work includes implementing a dynamic epoch cutoff

algorithm tailored to dataset varieties in terms of environmental

conditions and species. An adjustment of the coattention

framework can be made to include the selection of flowers and

merge it with the object. This could significantly improve

segmentation accuracy. Finally, hyperparameter weights can be

implemented for the different dimensions in the dataset so that

the algorithm can leverage more of the appropriate dimension for

higher segmentation accuracy.
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