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Deep learning for Chilean native
flora classification: a
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The limited availability of information on Chilean native flora has resulted in a lack

of knowledge among the general public, and the classification of these plants

poses challenges without extensive expertise. This study evaluates the

performance of several Deep Learning (DL) models, namely InceptionV3,

VGG19, ResNet152, and MobileNetV2, in classifying images representing

Chilean native flora. The models are pre-trained on Imagenet. A dataset

containing 500 images for each of the 10 classes of native flowers in Chile was

curated, resulting in a total of 5000 images. The DL models were applied to this

dataset, and their performance was compared based on accuracy and other

relevant metrics. The findings highlight the potential of DL models to accurately

classify images of Chilean native flora. The results contribute to enhancing the

understanding of these plant species and fostering awareness among the general

public. Further improvements and applications of DL in ecology and biodiversity

research are discussed.

KEYWORDS
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1 Introduction

Chile’s expansive geographical territory encompasses a wide array of flora, influenced

by its diverse climatic conditions. However, information regarding native flora is often

restricted to informative panels with minimal details, primarily found in specific physical

locations within national parks and protected areas (Rodriguez et al., 2018). This limited

availability of information hinders visitors from acquiring comprehensive knowledge about

the country’s native flora, resulting in a low societal appreciation of wildlife and an

insufficient understanding of the significance of biodiversity conservation. To address this

issue, it is crucial to comprehend people’s attitudes and intentions towards wildlife and

explore the relationships between humans and various species within local ecosystems. In

this context, technological advancements, such as computers, the internet, television, and

video games, are considered to have contributed to a decrease in personal experiences with

nature, consequently diminishing sensitivity towards environmental issues. In order to

effectively conserve biodiversity, it is crucial to consider the perceptions of individuals
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towards their natural environment. Proposed models of

environmental perception should acknowledge humans as

information processors and organizers, capable of constructing a

coherent representation of the world to address challenges. One

approach that aligns with this perspective is the utilization of

computational image classification methods, which employ Deep

Learning (DL) techniques to accurately recognize and classify

species depicted in images. DL is widely recognized for its

exceptional performance in solving real-world problems, as well

as its capacity to handle large volumes of data. The ease with which

relevant features can be extracted during the learning process,

coupled with the utilization of Graphic Processing Units (GPUs),

further expedites the learning process. DL is extensively employed

by companies to extract knowledge from data generated by

electronic devices, ranging from computers to smartwatches or

activity-tracking bracelets. By leveraging DL, valuable insights

regarding native flora can be obtained, ultimately playing a

pivotal role in the conservation of Chile’s biodiversity (Rodriguez

et al., 2018; Carranza et al., 2020).

Image classification algorithms can be classified into three main

categories: supervised, unsupervised, and weakly supervised. In

supervised classification, the user selects a representative sample

of pixels from an image to train the algorithm. Unsupervised

classification, on the other hand, groups pixels based on common

characteristics without the need for userdefined sample classes.

Weakly supervised classification algorithms utilize weaker forms of

supervision and can employ complete, exact, or inexact supervision.

There are several well-known classification algorithms used in

image analysis. Convolutional Neural Networks (CNNs) have

gained significant attention due to their outstanding performance

in image classification tasks. Artificial Neural Networks (ANNs) are

also widely used, as they mimic the structure and function of the

human brain. Support Vector Machines (SVMs) excel in both

classification and regression tasks, aiming to find an optimal

hyperplane to separate different classes. K-Nearest Neighbors

(KNN) is a straightforward yet powerful algorithm that assigns a

class label to a new data point based on the labels of its nearest

neighbors. Na¨ıve Bayes classifiers rely on Bayes’ theorem and

assume independence among features given the class label.

Finally, Random Forest is an ensemble learning method that

combines multiple decision trees for making predictions.

These algorithms offer diverse approaches to image

classification, each with its own strengths and weaknesses. The

choice of algorithm depends on the specific task requirements,

dataset characteristics, and desired performance. Researchers and

practitioners should carefully evaluate and select the most suitable

algorithm for their specific application to achieve accurate and

reliable classification results (Sen et al., 2020).

When it comes to flora classification, deep learning using CNN

algorithms emerges as the most effective method. Since 2012, CNNs

have established themselves as the primary algorithm for image

classification. They have demonstrated exceptional accuracy in

various visual recognition tasks such as object detection,

localization, and semantic segmentation.

To identify the most suitable CNN for classifying native Chilean

flora, a comparative analysis of renowned CNNs will be conducted.
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This analysis will include Inception, VGG19, MobileNet, and

ResNet 152, all of which will be pre-trained on ImageNet. The

evaluation will be performed on a comprehensive dataset consisting

of over 5000 images of native Chilean flora, incorporating transfer

learning techniques to leverage pre-existing knowledge from the

ImageNet dataset. By examining and comparing the performance of

these CNN models, we aim to determine the optimal choice for

accurate and efficient classification of native Chilean flora.

We briefly summarize below our main contributions:
• We create a dataset of Chilean native flora species by

labeling and augmenting images to enhance the model’s

training,

• We conducted a comparative analysis of the most

wellknown CNN models to determine which one

provided better accuracy in the classification task,

• After conducting experiments and evaluations, we

determined which CNN model delivers better results in

the task of classifying native Chilean flora with an accuracy

rate of 90% with transfer learning.
The paper is organized as follows. Section II provides a

comprehensive review of the related work in image classification,

with a specific focus on the classification of Chilean native flora.

This section examines the existing literature, highlighting key

studies and approaches in the field.

In Section III, we present our proposed approach for classifying

native Chilean flora using CNN models. We discuss the selection

and configuration of the CNN models, as well as the preprocessing

steps and training procedures employed in our methodology.

Section IV presents the experimental results of our study. We

provide a detailed analysis of the performance of the CNN models

on the native Chilean flora dataset, including accuracy, precision,

recall, sensitivity, specificity, F-Score, AUC and time in

milliseconds. Additionally, we discuss any notable findings or

insights obtained from the experiments.

Finally, in Section V, we draw our conclusions based on the

outcomes of our research. We summarize the main findings, discuss

their implications for the classification of native Chilean flora, and

highlight potential avenues for future research and development in

this field.

By following this organization, we aim to provide a clear and

structured presentation of our study, allowing readers to easily

navigate and comprehend the content of the paper.
2 Related work

2.1 Convolutional neural networks

Convolutional Neural Networks (CNNs) have garnered

significant attention and have been extensively explored in diverse

domains, including computer vision, natural language processing,

and speech recognition. Within the realm of computer vision,

CNNs have demonstrated remarkable accomplishments in a wide

range of tasks, encompassing image classification, object detection,
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semantic segmentation, and image generation (Sarigul et al., 2019;

Zhou, 2020). Their inherent ability to effectively capture and extract

meaningful features from images has contributed to their

widespread adoption and success in various visual recognition

tasks. The utilization of CNNs has propelled advancements in the

field of computer vision, paving the way for enhanced capabilities

and improved performance in tasks that require sophisticated

understanding and interpretation of visual data (Maggiori et al.,

2017; Ashraf et al., 2019; Hui et al., 2020; Chen et al., 2021; Zelenina

et al., 2022).

In recent years, there has been an escalating interest in

enhancing the performance and efficiency of Convolutional

Neural Networks (CNNs). This has led to significant

advancements in the field, with notable contributions

encompassing the development of novel architectural designs,

including ResNet, Inception, MobileNet, and VGG. These

architectures have been specifically engineered to reduce the

number of parameters while simultaneously preserving or even

improving classification accuracy. In addition to architectural

innovations, other approaches have been explored to optimize the

training process of CNNs. These include leveraging transfer

learning, data augmentation, and regularization techniques.

Transfer learning enables the utilization of pre-trained models on

largescale datasets to improve generalization and efficiency. Data

augmentation techniques enhance model robustness by artificially

expanding the training dataset through various transformations and

perturbations. Regularization techniques, on the other hand,

impose constraints on the model’s parameters to mitigate

overfitting and enhance generalization. Collectively, these research

efforts aim to refine and optimize CNNs, leading to improved

performance and more efficient utilization in various computer

vision tasks (Zhu and Chang, 2019; Pattnaik et al., 2021; Ruchai

et al., 2021; Wang and Lee, 2021; Bahmei et al., 2022; She

et al., 2022).

CNNs have found wide-ranging applications in specific

domains, including medical imaging, wherein they have

demonstrated promising outcomes in critical tasks such as disease

diagnosis, tumor detection, and lesion segmentation. Their ability

to extract intricate visual features has enabled significant

advancements in the field of medical diagnostics. Moreover,

CNNs have made substantial contributions to areas like robotics,

autonomous driving, and other domains that necessitate real-time

visual processing. By leveraging CNNs, researchers and

practitioners have been able to enhance the perception and

decision-making capabilities of intelligent systems, enabling them

to operate effectively and autonomously in dynamic environments.

The utilization of CNNs in these domains showcases their

versatility and efficacy in addressing complex visual challenges

and underscores their potential to revolutionize various fields

reliant on real-time visual analysis (Pham and Jeon, 2017; Aoki

et al., 2018; Kocic et al., 2019; Lim et al., 2020; Lozhkin et al., 2021;

Li et al., 2022; Roostaiyan et al., 2022).

Overall, Convolutional Neural Networks (CNNs) have emerged

as a fundamental tool in the field of computer vision and remain an
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active area of ongoing research and development. Their exceptional

performance in various visual tasks has solidified their importance

and relevance.

In the context of this study, our objective is to conduct a

comprehensive analysis of the four most renowned models

utilized for image classification, particularly focusing on their

applicability in classifying images of native Chilean flora. In the

subsequent sections, we will provide detailed explanations and

insights into these selected models.

2.1.1 ResNet152
ResNet152 is a convolutional neural network architecture with

deep layers that was developed by researchers at Microsoft in 2015.

The architecture introduces a novel concept called residual learning,

wherein the network is trained to learn residual functions instead of

directly mapping the input to the output. This innovative approach

enables the network to become significantly deeper than previous

architectures, while still achieving remarkable performance (He

et al., 2016).

ResNet152 is a convolutional neural network architecture that

consists of 152 layers. It utilizes skip connections, also known as

residual connections, to facilitate the flow of gradients during

backpropagation. These skip connections allow the network to

simultaneously learn both low-level and highlevel features,

making it highly effective for image recognition tasks.

Additionally, ResNet152 incorporates batch normalization, a

technique that helps mitigate overfitting and accelerates the training

process. By normalizing the activations within each batch, batch

normalization enhances the network’s stability and enables more

efficient learning.

ResNet152 has demonstrated outstanding performance on

prominent image recognition benchmarks, including ImageNet,

which comprises over a million images across 1,000 classes. Its

exceptional results have made it a state-of-the-art model in the field.

Moreover, ResNet152 has found applications in diverse domains,

such as object detection, image segmentation, and face recognition,

showcasing its versatility and effectiveness across multiple tasks.

2.1.2 VGG19
VGG19 is a convolutional neural network (CNN) model

proposed by the Visual Geometry Group (VGG) at the University

of Oxford in 2014. It is characterized by its architecture, consisting

of 19 layers comprising convolutional and pooling layers, followed

by three fully connected layers.

One of the notable aspects of VGG19 is its extensive use of small

3x3 convolutional filters across the network. This design choice

allows the model to effectively capture local features and their

combinations, enhancing its ability to generalize well to new

images. Moreover, the depth of the VGG19 architecture enables it

to learn increasingly complex features as the network goes deeper.

VGG19 is commonly employed as a pre-trained model for

transfer learning in various computer vision tasks. Pretrained

models, such as VGG19, have already learned weights from large-

scale datasets like ImageNet. Leveraging these pretrained weights as
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a starting point can greatly benefit new tasks that involve smaller

datasets, as it helps accelerate the learning process and

improve performance.

By utilizing VGG19 as a pre-trained model, researchers and

practitioners can leverage the knowledge and representations

learned from vast image datasets, enabling them to tackle new

visual recognition problems more effectively (Simonyan and

Zisserman, 2014).

2.1.3 InceptionV3
InceptionV3 is a convolutional neural network (CNN)

architecture that was introduced in 2015 by researchers at

Google. It is a deep neural network with 48 layers, and it was

designed specifically for image recognition and classification tasks.

InceptionV3 uses a unique module called an “Inception

module” that is able to perform multiple convolutions and

pooling operations at different scales in parallel. This allows the

network to capture both local and global features in the image,

making it more accurate at recognizing complex patterns.

The network was trained on the ImageNet dataset, which is a

large dataset of over 14 million images. During training, the

network learned to classify images into one of 1,000 different

categories, such as “dog”, “cat”, or “car”.

InceptionV3 has been used in many applications, including

object recognition, facial recognition, and medical image analysis.

Its high accuracy and ability to handle complex images make it a

popular choice for deep learning practitioners (Szegedy et al., 2015).

2.1.4 MobileNetV2
MobileNetV2 is an architecture of convolutional neural

network (CNN) introduced in 2018 as an enhancement to the

original MobileNet model. It addresses the need for a lightweight

network that can deliver high accuracy in image classification tasks

while minimizing computational requirements.

The primary concept behind MobileNetV2 involves utilizing a

combination of depthwise separable convolutions and linear

bottlenecks. Depthwise separable convolutions involve breaking

down the standard convolution into two distinct layers: a

depthwise convolution and a pointwise convolution. The

depthwise convolution applies individual filters to each input

channel, while the pointwise convolution merges the outputs

from the depthwise convolution through a linear transformation.

By doing so, the computational complexity of the convolution

operation is reduced while preserving accuracy.

MobileNetV2 also incorporates linear bottlenecks as a

significant element. These bottlenecks serve to diminish the

dimensionality of the feature maps while retaining the maximum

amount of information. They accomplish this by applying a linear

transformation to the feature maps, followed by passing them

through an activation function.

Overall, MobileNetV2 stands as an extremely efficient and

precise CNN architecture, ideally suited for scenarios with limited

resources such as mobile devices and embedded systems. Its

utilization of depthwise separable convolutions and linear
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bottlenecks enables it to strike a balance between computational

efficiency and accuracy, making it a valuable choice in resource-

constrained environments (Sandler et al., 2018).
2.2 Comparison convolutional neural
network architecture

InceptionV3, ResNet152, VGG19, and MobileNetV2 are all

popular convolutional neural network (CNN) models used in

image classification tasks.

InceptionV3 was introduced by Google in 2015 and is a deep

CNN with 48 layers. It uses a unique architecture of Inception

modules, which are multi-branch convolutional blocks that allow

the network to learn both spatial features and channel-wise

correlations at different scales. InceptionV3 is known for its high

accuracy and is often used in complex image recognition tasks.

ResNet152 is a residual network introduced by Microsoft in

2016. It is a very deep CNNmodel with 152 layers that uses residual

connections to address the problem of vanishing gradients, which

can occur in very deep networks. These connections allow the

gradient to flow through the network more easily, which improves

training and accuracy. ResNet152 has achieved state-of-the-art

performance in many image recognition tasks.

VGG19 is a CNN model introduced by the Visual Geometry

Group (VGG) at the University of Oxford in 2014. It has 19 layers

and uses a simple architecture of repeated convolutional layers

followed by max pooling and fully connected layers. VGG19 is

known for its simplicity and ease of implementation, and it has

achieved high accuracy in many image recognition tasks.

MobileNetV2 is a CNN model introduced by Google in 2018. It

is designed for mobile and embedded devices and has a small

footprint and low computational cost. It uses depthwise separable

convolutions to reduce the number of parameters and

computational complexity while maintaining high accuracy.

MobileNetV2 is often used in real-time image recognition

applications on mobile devices.

When comparing these four CNN models, it is important to

consider the specific requirements of the image classification task at

hand. In general, InceptionV3 and ResNet152 are more suitable for

complex and high-accuracy tasks, while VGG19 and MobileNetV2

are more suitable for simpler tasks with less computational

resources available.
2.3 Classification models for flora images

The classification of flora images has experienced notable

advancements in recent years, primarily due to the progress made

in deep learning techniques, notably convolutional neural networks

(CNNs) (Lopez-Jimenez et al., 2019; Ibrahim et al., 2022). State-of-

the-art models for flora image classification often employ pre-

trained CNNs, which demonstrate the ability to accurately

recognize intricate image patterns. Furthermore, transfer learning,
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which involves finetuning pre-trained CNNs using new datasets,

has proven to be an effective approach in enhancing the accuracy of

flora image classification.

Several widely used CNN models have been successfully

employed in flora image classification, including InceptionV3,

ResNet152, VGG19, and MobileNetV2. Recent research studies

have demonstrated the high accuracy rates achieved by these

models in the classification of flora images (Kattenborn et al.,

2020). For instance, a study focusing on the classification of

Brazilian flora images using deep learning models reported

classification accuracies reaching up to 93% for InceptionV3 and

ResNet152 (Figueroa-Mata et al., 2022).

In order to overcome the challenges arising from limited labeled

data in flora image classification, researchers have explored various

techniques, including weakly-supervised and semi-supervised

learning methods (Heredia, 2017). Moreover, recent studies have

concentrated on enhancing accuracy by incorporating additional

data sources, such as spectral and hyperspectral information, and

leveraging more advanced CNN architectures (Lazarescu et al.,

2004; Singh et al., 2009; Wang et al., 2009).

Overall, the state-of-the-art of classification models for flora

images is constantly evolving, and we anticipate further

advancements in the near future. The selection of an appropriate

model may vary depending on the unique characteristics of the

dataset and the specific requirements of the classification task at

hand (Sulc and Matas, 2017; Hasan et al., 2020; Ball, 2021;

Filgueiras, 2022).
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3 Proposed method

The objective of this paper is to conduct a comparative analysis

of various deep learning (DL) models for the classification of native

Chilean flora images. The models under evaluation encompass

InceptionV3, VGG19, ResNet152, and MobileNetV2, all of which

have been pre-trained using the Imagenet dataset.
3.1 Data collection

In the process of data collection, the primary source of images was

the internet, with careful consideration given to certain limitations and

requirements to ensure the preservation of the classes and to obtain a

high-quality dataset. To ensure accuracy and avoid interference from

external factors such as other flowers, trees, animals, or plants, images

were selected based on specific criteria. These criteria includedminimal

noise, a predominant focus on native species, and the absence of

elements that could hinder species identification (refer to Figure 1).

Furthermore, only real photographs were included, while illustrations

of the species were intentionally excluded. Images that contained

watermarks or copyright protection preventing their usage, even for

non-commercial purposes, were also excluded from the dataset.

The creation of the dataset primarily relied on specialized websites

dedicated to documenting flora, such as iNaturalist, Fundacion´ RA

Philippi, and Chilebosque. These sources were selected for their

comprehensive coverage of native Chilean flora. Additionally, websites
B

C D

A

FIGURE 1

Some samples of chosen and rejected images.
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focused on general photography, including Pinterest, Flickr, and Alamy,

were utilized as secondary sources to enhance the dataset. In cases where

the initial results from specialized websites were insufficient in terms of

capturing the required flora species, the dataset was augmented with the

best results obtained from Google Images while ensuring compliance

with the aforementioned specifications and criteria.

The primary objective of this study is to compare the performance

of different convolutional neural network (CNN) models, with a focus

on analyzing their classification capabilities for Chilean native flora. As

such, the resolution of each image used in the study did not

significantly impact the CNN models’ classification task. This can be

attributed to the following reasons: (i) Focus on model comparison: The

main objective of this study is to compare the performance of different

convolutional neural network (CNN) models. The focus is on

analyzing how these models perform in classifying Chilean native

flora, regardless of the resolution of the images used. Therefore, the

resolution of the images is not a critical factor for evaluating the

models’ ability to perform classification. (ii) Adaptation of images to

specific input values: Regardless of the resolution of each image, all

images need to be adapted to the specific input value required by each

CNNmodel. This means that all images are resized to the desired input

size, ensuring that all images are processed uniformly, regardless of

their original resolution. (iii) Variability in image quality on the web:

Images collected from different sources on the internet can have a wide

range of resolutions and visual quality. Setting a specific resolution

standard for all collected images would be impractical and could

restrict the diversity and representativeness of the image sample used

in the study.

Accordingly, all images are resized to the required input size,

and the focus is on evaluating the models’ ability to perform

classification effectively. The details of the selected images are in

the Table 1.
3.2 Native Chilean flora species selected

The chosen flora species are geographically distributed across

the country, representing at least one species for each of the main
Frontiers in Plant Science 06
regions (North, Central, and South). Although there are several

variations within each species, the selected classes primarily consist

of widely recognized varieties, excluding those with minor

differences in color tones of the petals or other negligible

variations (e.g., number of petals or small spots). Additional

details regarding the selected images can be found in the

provided Table 2.

Our selection of flora species was carefully chosen to represent a

diverse range of regions in Chile see Figure 2 while also presenting

specific shared traits to add complexity to the classification task.

One notable common characteristic among these selected species is

the presence of yellow or orange pollen stamens, accompanied by

pointed petals rather than rounded ones. The Copihue, Ana˜ nuca,˜

and Chilco classes present a unique challenge in the classification

process due to their vibrant red coloration and the potential for

their shapes to appear remarkably similar from different angles.

These characteristics add complexity to the task of accurately

distinguishing and classifying these species (refer to Figure 3 for

visual reference).

Finally, the dataset was divided into two distinct sets: the

training set, which comprised 80% of the data, and the testing set,

which encompassed the remaining 20%. The decision regarding this

split was made based on a careful consideration of various factors,
TABLE 1 The details of the selected images.

Website # Selected
Images

# Discarded Total
Images

iNaturalist 1000 320 1320

RA Philippi 500 250 750

Chilebosque 500 250 750

Pinterest 1500 850 2350

Flickr 1000 320 1320

Alamy 500 150 650

Total
Images

5000 2140 7000
TABLE 2 Detail our dataset of mages of various species of native Chilean flora.

# Clase Specie Selected # Total Images Region

1 Copihue (Lapageria Rosea) 500 South

2 Chilco (Fuchsia magellanica) 500 South

3 Ana˜ nuca˜ de Fuego (Phycella cyrtanthoides) 500 Central

4 Azulillo (Pasithea caerulea) 500 North

5 Chagual (Puya alpestris) 500 Central

6 Maqui (Aristotelia chilensis) 500 Central/South

7 Lingue (Persea lingue) 500 Central/South

8 Canelo (Drimys winteri) 500 North

9 Quila (Chusquea quila) 500 South

10 Notro (Embothrium coccineum) 500 Central
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such as the size of the dataset, the desired balance between training

and testing data, and the need to ensure a representative sample for

evaluating the performance of the classification models (Mohanty

et al., 2016).
3.3 Data training

During this phase, we initiated the training process by utilizing

the ImageNet dataset (Deng et al., 2009), which consists of 1.2

million images distributed across 1000 categories. This served as a

starting point to initialize the weights of our convolutional neural

networks (CNNs) before fine-tuning them with our specific dataset

of native Chilean flora.

To accomplish this, we employed Transfer Learning, a

technique that allows the transfer of knowledge from one or more

domains to a different domain with a distinct task. In our case, we

fine-tuned the pre-trained models on our native Chilean flora

dataset. This involved replacing the pre-trained output layer with
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a new layer that matched the number of classes in our dataset.

Consequently, the last three layers of the pre-trained model, which

included a fully-connected layer, a softmax layer, and a

classification output layer, were substituted.

By utilizing pre-trained CNNmodels, we benefited from faster and

more efficient training compared to starting with randomly initialized

weights. Furthermore, pre-trained models exhibited lower training

error rates in comparison to artificial neural networks (ANNs) that

were not pre-trained. We thoroughly assessed the performance of

various CNN architectures in addressing the classification task for

native Chilean flora (Zizka et al., 2009).

CNN architectures are typically composed of specific elements

that vary across different models. Figure 4 presents an overview of

the general structure of a CNN, highlighting key components such

as the input layer, convolutional layer, pooling layer, and flattening

process. The output of the flattening process is then passed through

a series of dense layers, culminating in the final output layer.

Therefore, the characteristics of the architectures used are

described in the Table 3. It is important to highlight that (CNN).
FIGURE 3

Comparison of similarities between Copihue and Añañuca.
FIGURE 2

Sample of images depicting ten distinct species of Chilean native flora.
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The InceptionV3 model utilizes a convolutional neural network

(CNN) architecture that requires a larger input image size

compared to other CNN models, specifically 299x299 pixels. This

distinctive image size for InceptionV3 is specifically optimized for

the tasks and datasets on which it was trained. It represents a careful

balance between maximizing performance on those specific tasks

and efficiently managing computational resources.

The choice of a larger input image size, such as 299x299, in

InceptionV3 offers several advantages. Firstly, it allows the model to

capture more fine-grained details and intricate features within the

input images, potentially enhancing its ability to recognize complex

patterns. Secondly, the larger image size enables the network to

effectively handle a wider range of object scales, accommodating

both small and large objects within the same image.

It is essential to note that the specific image size of 299x299 for

InceptionV3 is a deliberate design decision based on empirical

evaluations and experimentation conducted during its development.

This optimization aims to ensure that InceptionV3 performs optimally

for the given tasks and datasets it was trained on, providing a balance

between accuracy and computational efficiency.

In order to ensure a fair comparison between the experiments, we

made an effort to standardize the hyperparameters across all the

experiments. The specific hyperparameters used in our experiments

are detailed in Table 4. The inclusion of these hyperparameters was

essential for optimizing the performance of the deep learning models.

Hyperparameters play a crucial role in controlling different

aspects of the training process, including the learning rate,

momentum, batch size, and others. By carefully tuning these

hyperparameters, our objective was to find the optimal

configuration that would facilitate better convergence and

improved accuracy of the models.

Standardizing the hyperparameters allowed us to establish a

consistent framework for evaluating and comparing the
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performance of the different CNN architectures. It also ensured

that any observed differences in performance were primarily

attributed to the architectural variations rather than the

hyperparameter settings.

We believe that by employing standardized hyperparameters,

we have fostered a more reliable and meaningful comparison

between the models, enabling us to draw robust conclusions

regarding their relative performance in classifying the images of

native Chilean flora.

Deep learning (DL) has revolutionized many research areas.

Among optimization algorithms, Stochastic Gradient Descent with

Momemtum (SGDM) has emerged as the most widely used due to

its balance between accuracy and efficiency (Kleinberg et al., 2018).

SGDM is simple and effective, but requires careful tuning of

hyperparameters, particularly the initial learning rate, which

determines the rate at which weights are adjusted to obtain a

local or global minimum of the loss function. Momentum is used

to accelerate SGDM in the appropriate direction and reduce

oscillations (Ruder, 2016). Regularization is also important to

prevent overfitting, with L2 Regularization being the most

common type. Combined with SGDM, it results in weight decay,

in which the weights are scaled by a factor slightly smaller than one

at each update (Van Laarhoven, 2017). To train our models, we

used 30 epochs, based on the findings of Mohanty et al. (2016), who

reported consistently converging results after the first learning rate

decrease. Finally, all CNNs were trained using a batch size of 32.

Training these CNN architectures is extremely computationally

intensive. Therefore, all the experiments are carried out on a

workstation, presenting the details summarized in Table 5.
TABLE 4 Hyper-parameters of the experiments.

Hyper-Parameters Value

Optimization algorithm SGDM

Momentum 0.9000

Initial learning rate 1x10−3

L2 Regularization 1x10−4

Epochs 30

Batch size 32
Stochastic gradient descent with momentum (SGDM).
FIGURE 4

Representation of the architecture of a convolutional neural network (CNN).
TABLE 3 Summary of the utilized architectures.

Network Depth Parameters
(Millions)

Image Input
Size

VGG19 19 143 224 x 224

ResNET152 152 60 224 x 224

InceptionV3 48 23.9 299 x 299

MobileNetV2 53 3 224 x 224
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3.4 Evaluation

The proposed method’s performance is evaluated by comparing

pre-trained models using different metrics. The quality of learning

algorithms is commonly assessed by how well they perform on test

data (Japkowicz and Shah, 2011). One of the metrics used is the

Receiver Operating Characteristic Curve (ROC), which is also

known as the Area Under the Curve (AUC). The AUC is a

widely used performance measure for supervised classification

tasks, and it is based on the relationship between sensitivity and

specificity (Hanley and McNeil, 1982).

In this work, we used a generalized version of AUC for multiple

classes, as defined by Hand and Till (2001). This function calculates

the multiclass AUC by taking the mean of several AUC values 1. To

use this function, a data frame is passed as a predictor, and the

columns must be named according to the levels of the response.

AUC =
1

C(C − 1)o
C

i=1
o
C

j≠i
AUCij (1)

where C is the number of class in the multiclass problem, AUCij

presents the binary AUC between i and class j.

Sensitivity or recall corresponds to the accuracy of positive

examples and indicates how many positive class examples were

correctly labeled. This can be calculated using Equation 2, where TP

represents the true positives, which are the number of positive

instances correctly identified, and FN represents the false negatives,

which are the number of positive cases as negative.

Sensitivity( Re call) =
TP

TP + FN
(2)

Specificity is a measure of the conditional probability of true

negatives given a secondary class, which approximates the

probability of the negative label being true. It can be calculated

using Equation 3, where TN represents the number of true

negatives, i.e., the negative cases that are correctly classified as

negative, and FP represents the number of false positives, i.e., the

negative instances that are incorrectly classified as positive cases.

Specificity =
TN

TN + FN
(3)

To evaluate the overall classification performance, accuracy is

the most commonly used metric. During the evaluation stage,

accuracy was calculated every 20 iterations. This metric calculates

the percentage of samples that are correctly classified, and it is

represented by Equation 4:
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Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision is an important metric that evaluates the correctness

of a model by measuring the number of true positives divided by the

sum of true positives and false positives. In other words, precision

measures how many of the predicted positive cases are actually

positive, and it assesses the predictive power of the algorithm. The

precision score is calculated using Equation 5

Precision =
TP

TP + FP
(5)

The F-score is a metric that combines precision and recall, and

is defined as the harmonic mean of the two, as shown in Equation 6.

It is a measure that focuses on the analysis of the positive class, and

a high value of this metric indicates that the model performs better

on the positive class.

F − score = 2 ∗
Precision ∗Recall
Precision + Recall

(6)

Finally, the data was separated into two sets, containing 80% of

the data in the training set and the remaining 20% in the testing set.

The choice of the split is based on (Mohanty et al., 2016).
3.5 Results

In this study, we evaluated the performance of state-of-theart

pre-trained models for the classification of Native Chilean flora. The

main objective of this research was to compare the CNN models

and assess their accuracy, precision, sensitivity, specificity, F-Score,

and AUC through fine-tuning. The results of this evaluation are

presented in Table 6.

All models demonstrated similar and statistically significant

performance. In terms of AUC, VGG19 and MobileNetV2 yielded

the lowest results at 90.81% and 92.89%, respectively, followed by

InceptionV3 with 94.82%. The highest AUC result was achieved by

ResNet152 with 96.02%, indicating excellent classification.

Conversely, VGG19 exhibited the lowest precision metric result at

90.81%, with MobileNetV2 and InceptionV3 following at 92.73%

and 95.01%, respectively.

The highest precision was achieved again by ResNet152 at

95.73%. In measures of sensitivity, specificity, and F-score,

VGG19 showed poor performance at 90.48%, 91.07%, and

90.77%, respectively. In contrast, ResNet152 had the highest

percentage in all previous metrics at 95.23%, 95.87%, and 95.85%,

respectively. While all models had statistically significant

performance, ResNet152 achieved the highest percentage.

Additionally, considering the processing time required by each

convolutional neural network (CNN) for the classification task,

MobileNetv2 exhibited the best performance with the shortest

processing time. This indicates a higher level of efficiency

compared to the other CNN architectures. It is worth noting that

although MobileNetv2 showed a slight disadvantage in terms of

measurement statistics, the difference was not significant when

compared to the results obtained by other CNNs, such as

InceptionV3, which had the longest processing time. One possible
TABLE 5 Hyper-parameters of the experiments.

Hardware and Software Characteristics

Memory 16 Gb

Processor Intel Core i7-7700 CPU @ 3.60 GHz

Graphics GeForce GTX 1070 X 8 Gb

Operating Systema Windows 10, 64 bits
Stochastic gradient descent with momentum (SGDM).
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explanation for this observation is that InceptionV3 has a deeper

and more complex architecture compared to the other models.

Deeper and more complex architectures typically incur a higher

computational load, resulting in longer inference times. Thus, it

could be considered to accept a minimal decrease in precision in

exchange for improved processing efficiency.

Additionally, Figure 5 presents the confusion matrix, which

visually represents the performance of the classifiers and highlights

the classes distinguished by all models used in this study. Each row

corresponds to the predicted class, while each column corresponds to

the true class. The cells on the diagonal represent correctly classified

observations, while the off-diagonal cells indicate misclassifications.
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The ResNet152 model has demonstrated superior performance

in classifying native Chilean flora compared to the VGG19,

InceptionV3, and MobileNet models. This can be attributed to its

deep architecture, which enables it to effectively capture complex

features and fine details in images.

The ResNet152 architecture utilizes a deep neural network

structure with residual layers, allowing it to learn more intricate

representations of visual characteristics in plants. This enhanced

representation capability enables the ResNet152 model to accurately

capture and distinguish the subtle variations and differences among

species of native Chilean flora, resulting in higher classification

accuracy compared to VGG19, InceptionV3, and MobileNet.
TABLE 6 Performance measures (%) for every pre-trained model.

Measures VGG19 ResNet152 InceptionV3 MobileNetV2

Accuracy 90.29 95.87 94.98 92.45

Precision 90.81 95.73 95.01 92.74

Sensitivity 90.48 95.23 94.38 92.68

Specificity 91.02 95.87 94.85 93.01

F-Score 90.77 95.85 94.62 93.14

AUC 90.81 96.02 94.82 92.89

Time (milliseconds) 182.12 342.12 652.3 150.23
B

C D

A

FIGURE 5

Confusion matrix derived from the ResNet152 model, featuring the following classes: (1) Copihue; (2) Chilco; (3) Añañuca de Fuego; (4) Azulillo; (5)
Chagual; (6) Maqui; (7) Lingue; (8) Canelo; (9) Quila; and (10) Notro.
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On the other hand, MobileNet stands out for its computational

efficiency and processing speed. It achieves this through the use of

lighter convolution operations and parameter reduction techniques,

resulting in a more lightweight and faster architecture. Although

MobileNet may have slightly lower accuracy compared to

ResNet152, its processing speed is significantly faster.

The choice between ResNet152 and MobileNet depends on the

specific requirements of the application scenario. If achieving the

highest accuracy is of utmost importance, and processing time is of

secondary concern, ResNet152 would be the preferred choice due to

its superior performance in classifying native Chilean flora. However,

if reducing processing time is critical, and a slight decrease in

accuracy can be tolerated, MobileNet may be the more suitable

option due to its computational efficiency and faster processing speed.

Finally, the ability of the ResNet152 model to accurately or

inaccurately predict images of Copihue with Chilco and Canelo

with Lingue can be attributed to several factors. The following are

some possible explanations:(i) Visual similarity: The ResNet152

model has been trained to recognize and distinguish specific visual

features of different flora classes. However, it is possible that images

of Copihue and Chilco, as well as those of Canelo and Lingue, share
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similar visual characteristics. These similarities can lead to

confusion in the model, resulting in both correct and incorrect

predictions. (ii) Intraspecific variability: Within the same species,

such as Copihue and Chilco, or Canelo and Lingue, there may be

variations in the appearance and characteristics of individual plants.

These variations can pose challenges for precise classification, as the

model may encounter examples that exhibit atypical or unusual

features within the species. In some cases, the model may adapt

correctly to these variations and make accurate predictions, while in

other cases, it may become confused and make erroneous

predictions. (iii) Quality and diversity of the training dataset: The

performance of the ResNet152 model heavily relies on the quality

and diversity of the training dataset. If the dataset contains a wide

variety of images of Copihue, Chilco, Canelo, and Lingue, capturing

different variations and characteristics of each species, it is more

likely that the model can make accurate predictions. However, if the

dataset is limited in terms of species representativeness or does not

adequately cover the intraspecific variability, the model may

struggle to make precise predictions in all cases.

It is important to note that the performance of the model can be

improved through additional techniques such as fine-tuning and
FIGURE 6

Examples of correct and incorrect predictions on our dataset based on ResNet152.
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optimization of hyperparameters, collecting more representative

training data, and including images that encompass a greater variety

of species characteristics. These approaches can help reduce

prediction errors and enhance the model’s ability to accurately

distinguish between Copihue and Chilco, as well as between Canelo

and Lingue see Figure 6.
3.6 Conclusions

In conclusion, this study focused on the creation of a dataset

consisting of images of native Chilean flora and the subsequent

comparative analysis of different convolutional neural network

(CNN) models. The dataset aimed to provide a comprehensive

representation of the diverse flora found in Chile, capturing the

variations and characteristics of different species.

Through the comparative study, we evaluated the performance

of four CNN models: ResNet152, VGG19, InceptionV3, and

MobileNet. Our findings indicate that the ResNet152 model

exhibited superior performance in classifying native Chilean flora

compared to the other models. This can be attributed to its deep

architecture, which enabled the model to capture complex features

and fine details in images more effectively. The ResNet152 model’s

ability to accurately distinguish between species contributed to its

higher classification accuracy.

However, it is worth noting that the MobileNet model

showcased exceptional computational efficiency and processing

speed. While it may have slightly lower accuracy compared to

ResNet152, MobileNet’s faster processing speed makes it a suitable

choice for scenarios where reducing processing time is crucial and a

slight compromise in accuracy can be tolerated.

The study highlighted the importance of the quality and

diversity of the training dataset in achieving accurate predictions.

Additionally, factors such as visual similarity and intraspecific

variability within species were identified as potential challenges in

classification tasks.

Overall, this study provides valuable insights into the

classification of native Chilean flora using CNN models. The

findings can contribute to the development of more accurate and

efficient systems for flora recognition and classification, with

potential applications in biodiversity conservation, ecological

research, and environmental monitoring. Further research can

explore advanced techniques to enhance the performance of CNN

models and expand the dataset to encompass a broader range of

native plant species.
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