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Root-knot nematode (RKN) disease is a major disease of tobacco worldwide,

which seriously hinders the improvement of tobacco yield and quality. Obvious

veinal necrosis-hypersensitive responses are observed only in RKN-resistant

lines infected by Potyvirus Y (PVY) MSNR, making this an effective approach to

screen for RKN-resistant tobacco. RNA-seq analysis, real-time quantitative PCR

(qRT-PCR) and functional enrichment analysis were conducted to gain insight

into the transcription dynamics difference betweenG28 (RKN-resistant) and CBH

(RKN-susceptible) varieties infected with PVY MSNR. Results showed that a total

of 7900, 10576, 9921, 11530 and 12531 differentially expressed genes (DEGs)

were identified between the two varieties at 0, 1, 3, 5, and 7 d after infection,

respectively. DEGs were associated with plant hormone signal transduction,

starch and sucrose metabolism, phenylpropanoid biosynthesis, and

photosynthesis-related metabolic pathways. Additional DEGs related to starch

and sucrose metabolism, energy production, and the indole-3-acetic acid

signaling pathway were induced in CBH plants after infection. DEGs related to

phenylpropanoid biosynthesis, abscisic acid, salicylic acid, brassinosteroids, and

jasmonic acid signaling pathway were induced in G28 after infection. Our

findings reveal DEGs that may contribute to differences in PVY MSNR resistance

among tobacco varieties. These results help us to understand the differences in

transcriptional dynamics and metabolic processes between RKN-resistant and

RKN-susceptible varieties involved in tobacco-PVY MSNR interaction.
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Introduction

Biotic stress factors, including phytopathogenic viruses,

bacteria, fungi, and nematodes, can infect plants and lead to

considerable economic loss (Amorim et al., 2017). Plant growth

and yield are seriously affected by plant parasitic nematodes, such as

cysts and root-knot nematodes. The host range of root-knot

nematode (Meloidogyne) species are extensive, and these

organisms have been detected in many plant types, including

industrial and cereal crops, ornamental plants, vegetables, and

weeds (Vos et al., 1998). The major negative effects of infection

with Meloidogyne are stunted growth, withered leaves, and root

knots on the underground portion of plants; the root systems of

infected host plants are severely affected, impairing their water and

nutrient intake. Plants infected by Meloidogyne are also susceptible

to infection by other pathogens (Abad et al., 2003).

Tobacco (Nicotiana tabacum L.) is an important and widely

cultivated industrial crop that can be used to make cigarettes, cigars,

chewing or smoking tobaccos, and snuff. Tobacco is also an

important model plant for molecular biology research and useful

for the study of disease susceptibility in plants of the Solanaceae

family (Nagata et al., 1992; Sierro et al., 2014). Root-knot nematode

(RKN) infection is among the most prevalent diseases of tobacco

worldwide and seriously hinders the improvement of tobacco yield

and quality. A cost-effective, environmentally friendly, and

economical method of controlling RKN damage is to select and

promote RKN-resistant varieties; however, laborious phenotyping

procedures make it difficult for breeding programs to assess

nematode resistance (Giordani et al., 2022), and the identification

of RKN-resistant tobacco is the premise and basis for the breeding

of RKN-resistant tobacco varieties.

With the rapid development of high-throughput sequencing

methods and biotechnology, RKN resistance loci and genes have

been identified in some plants (Williamson and Hussey, 1996;

Claverie et al., 2011; Barbary et al., 2015; Alekcevetch et al.,

2021). Importantly, many RKN resistance genes are pleiotropic;

for example, the Mi RKN resistance gene of tomato also provides

resistance to the potato aphid or whitefly, Bemisia tabaci (Dropkin,

1969; Milligan et al., 1998; Rossi et al., 1998; Vos et al., 1998;

Nombela et al., 2003). Gpa2 and Rx1 are two highly similar CC-NB-

LRR genes located in the same R gene cluster of potatoes but also

confer resistance to two completely different types of pathogens, the

potato cyst nematode and Potato virus X (PVX), respectively

(Bendahmane et al., 1999; van der Vossen et al., 2000; Slootweg

et al., 2017).

Potyvirus is the largest genus of plant viruses that cause significant

losses in a wide range of crops. Potato virus Y (PVY) is a species of the

potyvirus genus (family, Potyviridae). PVY isolates can be separated

into three groups based on the reaction of RKN-resistant and RKN-

susceptible tobacco lines to them, as follows: no veinal necrosis-

hypersensitive response (HR) is observed in either RKN-resistant or

RKN-susceptible lines infected by PVYMSMR; obvious veinal necrosis-

HR is observed in both RKN-resistant and RKN-susceptible lines

infected by PVY NSNR; obvious veinal necrosis-HR is observed only

in RKN-resistant lines infected by PVYMSNR. Further, RKN resistance
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genes in tobacco are tightly linked to, or pleiotropic with, genes

involved in veinal necrosis systemic HR in response to infection by

PVYMSNR. Thus, a rapid leaf assay for HR and necrosis to PVYMSNR

can be used to screen for RKN-resistant tobacco (Rufty et al., 1987;

Fellers et al., 2002; Revers and Garcıá, 2015); however, the molecular

mechanism underlying this phenomenon remains unclear.

In this study, an RKN-resistant tobacco variety and an RKN-

susceptible variety were selected and infected with PVY MSNR to

analyze the transcriptome dynamics in leaves from the two varieties

at different stages after infection. The study objectives were to reveal

the underlying molecular mechanisms involved in the veinal

necrosis response of RKN-resistant varieties after PVY MSNR

infection. Our results provide a theoretical basis for screening

RKN-resistant varieties through PVY MSNR infection and lay a

foundation for future breeding of RKN-resistant tobacco.
Materials and methods

Plant growth conditions and
virus treatment

The tobacco varieties used in this study were CBH (RKN-

susceptible) and G28 (RKN-resistant) (Zhu et al., 1989; Li et al.,

2010), which were obtained from the breeding laboratory of Henan

Agricultural University (Henan, China). PVY MSNR was obtained

from the Yunnan Academy of Tobacco Agricultural Sciences

(Yunnan, China). Tobacco seedlings grown to five or six true

leaves were inoculated with PVY MSNR solution (comprising 40

ml ddH2O and 1 g leaves of preserved PVY MSNR diseased plants),

and the leaf surface was lightly rubbed with arenaceous quartz to

cause minor wounds. After infection, plants were placed in growth

incubators with a photoperiod of 12 h light/12 h dark cycle, light

intensity of 1500 lux, with temperatures of 26°C in the light and

22°C in the dark. Tobacco leaves before infection were set as the

control group, and tobacco leaves at 1, 3, 5, and 7 days after

infection were set as treatment groups; each treatment was

repeated three times, and each replicate was prepared by mixing

leaves from five plants in each treatment group.

To measure H2O2, after infection for 7 d with PVY MSNR,

leaves were incubated in 1 mg ml–1 diaminobenzidine (DAB)

solution (pH 3.8) at room temperature for 8 h. Stained seedlings

were then transferred to 70% (v/v) ethanol to remove the

chlorophyll. DAB staining was repeated three times.
RNA extraction, library construction,
and sequencing

RNA isolation was performed using the mirVana miRNA

Isolation Kit (Ambion, Inc., Austin, TX, USA). To determine

the degradation, contamination, concentration, and integrity of

RNA, analyses using 1% agarose gels, a Qubit® RNA Assay Kit

with a Qubit®2.0 Fluorometer (Life Technologies, CA, USA), and

a Bioanalyzer 2100 system (Agilent Technologies, CA, USA) were
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conducted. Subsequent analysis was performed using samples

with an RNA Integrity Number ≥ 7. Library construction was

performed using a TruSeq Stranded mRNA LT Sample Prep Kit

(Illumina, San Diego, CA, USA). Thirty libraries were sequenced

by Shanghai OE Biotech on the Illumina NovaSeq platform

(Illumina, San Diego, CA, USA) to generate 150-bp paired-end

reads. All sequence data were deposited in the NCBI database

(BioProject accession: PRJNA984343).
Quality control and mapping

Trimmomatic version 0.36 was used to process raw reads (raw

data) (Bolger et al., 2014). Low-quality reads and poly-N reads were

filtered out, and high-quality, clean reads were finally obtained.

Clean reads were mapped to the reference genome using Hisat2

version 2.2.1.0 (Kim et al., 2015).
DEGs identification and gene
function analysis

Differences between G28 and CBH transcriptome data were

assessed by principal component analysis (PCA). Cufflinks version

2.2.1 was used to calculate fragments per kilobase per million reads

(FPKM) values (Trapnell et al., 2010) and htseq-count to obtain

read counts for all genes (Anders et al., 2015). Expression trend

analysis was performed using OmicShare Tools (https://

www.omicshare.com/tools/Home/Soft/trend); FPKM data for

genes in each sample were imported, and the default settings were

used. The R package, DESeq version 1.18.0, was used to identify

DEGs. Significantly differential expression was defined as P < 0.05

and fold-change > 2 or < 0.5 (Anders and Huber, 2010). The Venn

and column diagrams were drawn using TBtools with default

settings (Chen et al., 2020). R packages based on the

hypergeometric distribution (GO and KEGG) were used for gene

function analysis (Kanehisa et al., 2008). The top 20 functional

pathways of each group were selected for Heatmaps plotting. The

heatmaps of functional analysis were based on Log10
(p-value of each

pathway) through OmicShare Tools with the default settings.
Validation of RNA sequencing data

The changes in expression of six randomly selected genes were

confirmed by conducting qRT-PCR using an ABI 7500 fast Real-

Time PCR System (Applied Biosystems, Waltham, MA, USA).

Briefly, the total RNAs were isolated as described previously. A

TranScript All-in-One First-Strand cDNA Synthesis SuperMix for

qPCR Kit (Transgen Biotech, Beijing, China) was employed to

synthesize the cDNA. qRT-PCR was performed following the

protocol of the TransStart Top Green qPCR SuperMix kit

(Transgen Biotech, Beijing, China). The Primer-BLAST online

NCBI tool was used to design primers specific for each DEG

(Table S1). The L25 gene was used as the internal reference to

normalize the relative expression levels. The gene expression level of
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C0 (before infection of CBH) and G0 (before infection of G28) were

set to one, and the 2−DDCt method was used to calculate the relative

expression level of each assessed gene (Livak and Schmittgen, 2001).

Sequencing data were verified by comparing the expression trends

of each gene as determined by qRT-PCR and FPKM values. Three

biological technical replicates were performed to validate the results

of qRT-PCR.
Results

Response of tobacco varieties to PVY MSNR

Leaves of the two tobacco varieties were compared after

infection for 7 d with PVY MSNR. As shown in Figures 1A–D,

the RKN-resistant variety, G28, developed necrosis spots caused by

HR at 7 d, while the RKN-susceptible variety, CBH, did not.

Qualitative analysis of hydrogen peroxide in the two varieties

after infection was conducted by DAB staining (Figures 1E–L).

Hydrogen peroxide content did not change significantly in CBH

leaves after infection; however, hydrogen peroxide staining was

clearly observed in G28 leaves one day after infection and increased

and became more diffuse in the following days.
Overview of RNA-sequencing

RNA sequencing data statistics are presented in Table S2. The

overall gene expression levels of the three biological replicates of

each sample were similar, and the identified genes showed

differences in expression levels on different days after infection in

the two varieties (Figure 2A). The repeatability and differentiation

of each sample were assessed by PCA analysis. The three replicates

of each sample clustered together, and G28 and CBH samples were

easy to distinguish on the PC1 axis (Figure 2B).

Expression trend analysis showed that three and seven

significantly enriched profiles (p < 0.05) were identified in G28

and CBH samples, respectively. Two model profiles (profile 0,

downregulated profile; profile 19, upregulated profile) were

identified as common to both varieties (Figure 3). The potential

functions of genes in profiles 0 and 19 in the two varieties are shown

in Figure S1.
Identification and analysis of DEGs

Numbers of DEGs 1, 3, 5, and 7 d after infection, each compared

with 0 d, were calculated for both plant varieties. More up-regulated

DEGs were found in CBH at each stage, while more genes were

suppressed in G28. The number of DEGs between the two varieties

at different time points is also presented (Figure 4A).

After infection, the number of common upregulated and

downregulated DEGs was relatively higher in G28 (1347 and

3092 DEGs, respectively) than in CBH (1197 and 894 DEGs,

respectively) at 1, 3, 5, and 7 d compared with normal

conditions (Figure 4B).
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GO and KEGG analysis of DEGs

The results of KEGG pathway enrichment analysis for both

varieties after infection for 1, 3, 5, and 7 d compared with uninfected

controls are shown in Figure 5. The ‘Photosynthesis - antenna

protein’, ‘Metabolism of xenobiotics by cytochrome P450’, and

‘Drug metabolism - cytochrome P450’ pathways were common to

both G28 and CBH varieties after inoculation. Further, ‘Plant

hormone signal transduction’ and ‘Phenylpropanoid biosynthesis’

were specifically enriched in CBH after inoculation, while

‘Glyoxylate and dicarboxylate metabolism’, ‘Glutathione

metabolism’, ‘Biosynthesis of amino acids’, and ‘Carbon

metabolism’ were specifically enriched in G28 after infection.

Significant functional differences among DEGs between G28 and

CBH at each stage after infection are shown in Figure 5C.

Photosynthesis-related metabolic pathways (‘Porphyrin and

chlorophyll metabolism’, ‘Carbon fixation in photosynthetic
Frontiers in Plant Science 04
organisms’, ‘Photosynthesis’, and ‘Photosynthesis - antenna

proteins’), ‘Plant hormone signal transduction’, ‘Starch and

sucrose metabolism’, and ‘Phenylpropanoid biosynthesis’ were the

main metabolic pathways that differed between the two varieties.

GO enrichment analysis was also performed to identify the

putative function of the DEGs after infection (Figures S2–S4).
DEGs between infected CBH and
G28 related to plant hormone
signal transduction

DEGs involved in abscisic acid (ABA) signal transduction were

identified. Further, four and three PYL genes were highly expressed

in CBH and G28 leaves, respectively. Notably, all identified ABF,

ABI, and PP2C-like genes were expressed at higher levels in G28,

and the expression levels of SnRK genes showed opposite trends in
B C D

E F G H

I J K L

A

FIGURE 1

Phenotypic and physiological changes after infection of G28 and CBH tobacco leaves with PVY MSNR. (A) G28 leaf before infection. (B) G28 leaf
after infection for 7 d. (C) CBH leaf before infection. (D) CBH leaf after infection for 7 d. (E–H) DAB staining of CBH leaves after infection for 1, 3, 5,
and 7 d. (I–L) DAB staining of G28 leaves after infection for 1, 3, 5, and 7 d.
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B

A

FIGURE 2

Overview of the transcriptomes of G28 and CBH tobacco varieties after infection with PVY MSNR. (A) Expression density of genes in the two varieties
after infection. (B) Principal component analysis of genes identified from 30 samples analyzed by RNA-seq.
FIGURE 3

Expression trend analysis of expressed genes after infection of G28 and CBH tobacco varieties with PVY MSNR. The top number represents
the total number of genes in each profile. The bottom number represents the p-value. The line represents the gene expression trends of
each profile.
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the two varieties (Figure 6A). DEGs involved in the brassinosteroid

(BR) signal transduction pathway were obtained, of which CYCD3,

BKI1, and one gene were highly expressed in CBH; two BSK genes

(BSK8-1 and BSK8-2) were highly expressed in G28; and BZR2-1

was highly expressed in CBH, while BZR2-2 was highly expressed in

G28 (Figure 6B). DEGs involved in the cytokinin (CK) signal

transduction pathways were obtained; almost all ARR genes were

highly expressed in CBH (Figure 6C). All identified DEGs in the

ethylene, gibberellin, and salicylic acid (SA) signal transduction

pathways were highly expressed in G28 (Figures 6D–F). Moreover,

most indole-3-acetic acid (IAA) signal transduction pathway genes

were highly expressed in CBH (Figures 6G, H).
Frontiers in Plant Science 06
DEGs between infected CBH and G28
related to starch and sucrose metabolism

In general, most SUS and CWINV genes were expressed at

higher levels in G28 than in CBH samples (Figure 7), while levels of

SUS1, SUS4, and SUS5 showed the opposite trend in the two

varieties. SUS2, SUS3, CWINV4-1, and CWINV4-3 expressions

gradually decreased after infection in both varieties. CWINV4-2

gene expression also presented a reduced trend in CBH but began to

increase at 3 d after infection in G28, reaching a peak at 5 d after

infection. The BGL, PGI, and PGMP genes were all highly expressed

in CBH relative to G28 leaves. Most BGL, PGI, and PGMP genes
B CA

FIGURE 5

Functional analysis of DEGs in various comparison groups. KEGG pathway analysis of DEGs in (A) CBH and (B) G28 after 1, 3, 5, and 7 d infection
with PVY MSNR compared with control samples. (C) KEGG pathway analysis of DEGs at each stage in G28 compared with CBH. Changes in p-value
are indicated by a change in color. The darker color is used to represent the smaller p-value.
BA

FIGURE 4

Numbers of specific DEGs in different comparison sets after infection of G28 and CBH tobacco varieties with PVY MSNR. (A) Numbers of up- and
down-regulated DEGs. (B) Venn diagrams highlighting unique DEGs.
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showed an increased trend in CBH but decreased continuously in

G28. Expression levels of four SPS genes presented a reduced trend

in G28 leaves but gradually increased and reached peak expression

levels at different stages after infection in CBH. Two HXK genes
Frontiers in Plant Science 07
(HXK2-1 and HXK2-2) were downregulated after infection in CBH,

with minimum levels at 1 d. In contrast, both HXK genes were

upregulated after infection in G28, with the maximum levels at 7

and 1 d, respectively. One FPK gene was downregulated after
FIGURE 7

Heatmap analysis of genes associated with starch and sucrose metabolism after infection of G28 and CBH tobacco varieties with PVY MSNR. Changes in
expression level are indicated by a change in color. Red is used to represent the up-regulation of the genes, and blue is used to represent the down-
regulation of the genes.
B C D

E F

G

H

A

FIGURE 6

Heatmap analysis of genes associated with (A) ABA, (B) BR, (C) CK, (D) IAA, (E) ETH, (F) GA, (G) SA, and (H) JA signal transduction after infection of
G28 and CBH tobacco varieties with PVY MSNR. Changes in expression level are indicated by a change in color. Red is used to represent the up-
regulation of the genes, and blue is used to represent the down-regulation of the genes.
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infection in CBH, with minimum levels at 7 d; however, its

expression was upregulated after infection in G28, with the

highest levels at 5 d. Four AGPS genes were identified and

increased after infection in CBH with maximum levels at 1 d

(AGPS1-1, 1-2, and 1-3) and 5 d (AGPS1-4). AGPS gene levels

decreased after infection in G28, with the lowest levels at 3 d

(AGPS1-1 and 1-2) and 7 d (AGPS1-3 and 1-4). Levels of all six SS

genes were similar to those of AGPS in the two varieties. Two SBE

genes (SBE1 and SBE2) decreased after infection in the two varieties

but were expressed at higher levels in CBH than in G28 samples.

SBE3 was also downregulated after infection in CBH but showed an

increased trend in G28, with maximum levels at 5 d.
DEGs between infected CBH and G28
related to phenylpropanoid biosynthesis

Fifty-six DEGs involved in phenylpropanoid biosynthesis were

identified (Figure 8). All of the six PAL and three 4CL genes were

expressed at higher levels in G28 than in CBH strains, particularly

before infection. PAL gene expression levels gradually decreased

after infection in CBH, while in G28, PAL1, PAL2, PALA1, and

PALA2 presented maximum expression levels before infection, with

PAL3 and PAL6 reaching peak levels at 5 d. Levels of the 4CL genes

gradually decreased after infection in both CBH and G28 plants. In

CBH, four CAD genes were induced suddenly after infection and

presented maximum expression levels at 1 d, followed by a decline.

CAD genes gradually decreased after infection in G28, except for

CAD1-2, which showed the highest expression level at 5 d.
Frontiers in Plant Science 08
DEGs between infected CBH and G28
associated with photosynthesis-related
metabolic pathways

The levels of DEGs associated with photosynthesis-related

metabolic pathways are shown in Tables S3–S6. Ninety-one DEGs

related to photosynthesis were identified, most of which were

induced after infection in CBH, and had maximum expression

levels at 1 d, followed by 5 d. These genes were expressed at lower

levels in G28 after infection, with minimum levels from 3 to 7 d

after infection. Sixty DEGs related to antenna proteins were

identified. Most genes were reduced at 1 d, then increased at 3 d

after infection and reached peak levels at 5 or 7 d in CBH. In G28,

levels of these genes decreased significantly after infection and

remained low until 7 d. Seventy-three DEGs involved in carbon

fixation in photosynthetic organisms were obtained, of which most

levels were reduced after infection in CBH and decreased

significantly after infection in G28. Fifty-one DEGs related to

porphyrin and chlorophyll metabolism were identified; the

majority were induced after infection and reached maximum

levels at 1 d, then declined in CBH. In G28, expression of these

genes was significantly reduced after infection and remained low for

7 days.
Verification of RNA-seq data by qRT-PCR

Six DEGs were randomly selected for validation of sequencing

data by qRT-PCR. The qRT-PCR assay results exhibited general
FIGURE 8

Heatmap analysis of genes associated with phenylpropanoid biosynthesis after infection of G28 and CBH tobacco varieties with PVY MSNR. Changes
in expression level are indicated by a change in color. Red is used to represent the up-regulation of the genes, and blue is used to represent the
down-regulation of the genes.
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and high consistency with the sequencing data, indicating that our

RNA-seq analysis findings are reliable (Figure S5).
Discussion

Due to the pleiotropy of RKN resistance genes or their tight

linkage with PVY MSNR resistance genes, it is established that only

RKN-resistant tobacco develops obvious veinal necrosis-HR after

infection by PVY MSNR; however, the underlying molecular

mechanisms are poorly understood. HR occurs when plants are

infected with microbial pathogens, and infection typically results in

rapid cell death near the infection site. A series of defense reactions

between the initial infection site and surrounding cells are initiated

to restrict pathogen growth and represent a form of programmed

cell death (PCD) (Heath, 2020; Lam et al., 2021). The resistance of

many crops to virus and RKN is closely related to HR induced by

reactive oxygen species (ROS) accumulation (Milligan et al., 1998;

Melillo et al., 2006; Oliveira et al., 2012). In this study, the RKN-

resistant variety, G28, generated necrosis spots caused by HR at 7 d,

while the RKN-susceptible variety, CBH, did not. Furthermore,

hydrogen peroxide content increased and diffused in G28 in the

days after infection, as shown by DAB staining, but did not

significantly increase in CBH leaves.

The gene expression and metabolic differences between G28

and CBH induced by PVY MSNR were studied using high-

throughput sequencing. In G28, the numbers of identified DEGs

increased gradually after infection, suggesting that gene expression

was more significantly affected as the infection persisted, while this

trend was not observed in CBH leaves. The KEGG analysis showed

that photosynthesis- related metabolic pathways, plant hormone

signal transduction, starch and sucrose metabolism, and

phenylpropanoid biosynthesis were common differential

metabolic pathways altered in the two varieties at all stages

after infection.

During infection, microbes attempt to obtain sugar from plant

species, causing the plant to require more nutrients (Berger et al.,

2007; Xiao et al., 2022); therefore, plant carbohydrate allocation and

signaling pathways are significantly changed following microbial

infection (Bezrutczyk et al., 2018). Genes involved in sugar

metabolism were induced in a susceptible variety of sugarcane

after infection with the sugarcane mosaic virus, while only a few

genes were upregulated in resistant varieties; some genes related to

starch synthesis were specifically upregulated in the susceptible

variety (Akbar et al., 2021). In our study, more DEGs related to

starch and sucrose metabolism were induced in CBH leaves after

infection. In addition, we found that DEGs related to energy

production (photosynthesis) were markedly induced at different

stages after infection in CBH, indicating that the virus may

manipulate plant energy generation and metabolism for its own

needs in this susceptible variety. We hypothesize that G28

resistance to PVY MSNR may be due to the limitation of energy

production through necrosis spots caused by HR, leading to

inhibited virus diffusion.

The phenylpropanoid pathway contributes to plant responses to

biotic stressors, such as viruses, fungi, and root-knot nematodes
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(Li et al., 2017; Behr et al., 2020; Kavil et al., 2021; Arraes et al.,

2022). PAL is considered a chemical marker of induced resistance in

many plants; for example, PAL1 expression improved disease

resistance to cassava brown streak virus in cassava (Kavil et al.,

2021). Further, in Brachypodium distachyon, PAL can promote

antiviral defenses against the panicum mosaic virus and its satellites

(Pant et al., 2021). In the present study, most DEGs related to the

phenylpropanoid pathway were expressed at higher levels in G28

than in CBH. In addition, two PAL genes (PAL3 and PAL6) were

specifically induced in G28 samples, indicating that PAL genes may

play a key role in resistance to PVY MSNR.

Phytohormones have been extensively investigated for their role

in response to viral infection. Four hormones, including ABA, SA,

BR, and JA, have positive effects on plant defenses against biotic

stress. ABA stimulates resistance to antiviral diseases; hence,

treatment with ABA can increase resistance against viruses

(Mauch-Mani and Mauch, 2005; Alazem et al., 2014). In abi4

mutants, a higher accumulation of TMV-cg was observed (Chen

et al., 2013). Cell-to-cell movement of viruses is inhibited by PP2C

in soybean (Seo et al., 2014). The expression of ABA signaling

pathway-related genes is higher in RKN-resistant materials, which

may be closely associated with eggplant resistance to RKN (Zhang

et al., 2021). In our study, the expression level of ABI5 and PP2C-

induced protein (HAI2, HAB1, HAI3-1, and HAI3-2) were

increased after infection in G28; nevertheless, CBH did not alter

the expression of these genes significantly. The SA signaling

pathway is important for limiting viral spread at infection sites

through increasing ROS and pathogenesis-related proteins and by

triggering HR and PCD (Dinesh-Kumar et al., 2000; Baebler et al.,

2014). Endogenous SA also plays an important role in RKN

resistance (Li et al., 2018; Zhang et al., 2023). Some SA signaling

pathway genes, such as NPR, PRB, and TGA, were significantly

induced in G28 leaves after infection but showed a downward trend

in CBH samples in this study. BRs can enhance plant resistance to

viruses (Zhang et al., 2015). In this study, BSK and BZR expression

levels were strongly induced in G28 samples after infection. The JA

signaling pathway can also enhance resistance to biotic stress.

SlWRKY45 attenuates RKN-regulated JA biosynthesis and

represses defense against RKN (Huang et al., 2022). COI1

knockdown accelerated the development of symptoms and

accumulation of viral particles during the early stages of infection

(Garcia-Marcos et al., 2013). After infection with PVY MSNR, COI

expression levels were specifically induced in G28 leaves. In plants,

viruses interact directly with auxin/IAA proteins through the

helicase domain to enhance virus phloem loading and

accumulation, resulting in abnormal plant development (Jay et al.,

2011; Collum et al., 2016). Consistent with this finding, our results

indicated that more auxin-related genes were induced after

infection in CBH samples. The findings of research on the role of

ethylene in plant virus resistance have been inconclusive. In some

plant-pathogen interactions, ethylene increases plant resistance,

while in others it promotes viral infection (Santner et al., 2009;

Zhu et al., 2014; Zhao et al., 2017). In the present study, almost all

DEGs related to ethylene signaling were induced in G28 after

infection, while no significant changes were observed in CBH

samples, indicating that ethylene also has a positive effect on the
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defense of tobacco against PVY MSNR. CK positively modulates SA

signaling and contributes to virus resistance in plants (Choi et al.,

2011). In our study, the expression of CK signaling pathway-related

genes differed from that previously reported, in that most genes in

the CK signaling pathway were induced in the susceptible variety,

CBH, indicating that CK may have negative effects on PVY MSNR

resistance. Together, the results described above indicate that the

functions of phytohormone signaling pathways in response to

viral infection are complex and involve interactions among

multiple hormones.
Conclusion

In summary, the RKN-resistant variety, G28, developed an

obvious veinal necrosis-HR after infection with PVY MSNR to

prevent the spread of the virus. This resistance process may be

achieved through the following regulatory processes: (1) expression

of genes associated with energy and carbohydrate metabolism was

down-regulated in G28 compared to CBH after infection, limiting

further spread of biotic stress; (2) higher expression of genes

involved in phenylpropanoid biosynthesis, particularly PAL, in

G28 enhances its resistance to biotic stress; (3) induced

expression of genes related to ABA, SA, BR, and JA signaling

pathways had positive effects on defense of G28 against biotic

stress. This study provides a new understanding of the molecular

mechanisms involved in veinal necrosis responses of RKN-resistant

varieties after PVYMSNR infection. Moreover, PVYMSNR infection

is a useful tool for screening RKN-resistant varieties and also

provides a theoretical basis for RKN-resistant tobacco breeding.
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GO enrichment analysis of DEGs in CBH after infection at 1, 3, 5, and 7 d

compared with normal conditions.
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GO enrichment analysis of DEGs in G28 after infection at 1, 3, 5, and 7 d
compared with normal conditions.
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GO enrichment analysis of DEGs between G28 and CBH at each stage

after infection.

SUPPLEMENTARY FIGURE 5

Quantitative real-time PCR (qRT-PCR) validation and RNA-seq data. Data

shown were the mean of three independent repeated experiments ±
standard deviation. Error bars represent standard deviations from three

independent biological replicates.
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