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Timely and accurate prediction of crop yield is essential for increasing crop

production, estimating planting insurance, and improving trade benefits. Potato

(Solanum tuberosum L.) is a staple food in many parts of the world and improving

its yield is necessary to ensure food security and promote related industries. We

conducted a comprehensive literature survey to demonstrate methodological

evolution of predicting potato yield. Publications on predicting potato yield

based on methods of remote sensing (RS), crop growth model (CGM), and

yield limiting factor (LF) were reviewed. RS, especially satellite-based RS, is crucial

in potato yield prediction and decision support over large farm areas. In contrast,

CGM are often utilized to optimize management measures and address climate

change. Currently, combined with the advantages of low cost and easy

operation, unmanned aerial vehicle (UAV) RS combined with artificial

intelligence (AI) show superior potential for predicting potato yield in precision

management of large-scale farms. However, studies on potato yield prediction

are still limited in the number of varieties and field sample size. In the future, it is

critical to employ time-series data from multiple sources for a wider range of

varieties and large field sample sizes. This study aims to provide a comprehensive

review of the progress in potato yield prediction studies and to provide a

theoretical reference for related research on potato.

KEYWORDS
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1 Introduction

Global food security is encountering significant challenges from climate change and

increasing resource competition (Godfray et al., 2010). Potato (Solanum tuberosum L.), a

tuberous crop, is cultivated worldwide due to its stable and high yield, wide adaptability,

and complete nutritional composition. Furthermore, it is a pivotal crop for realizing the

United Nations (UN) Sustainable Development Goals (SDGs). Yield of potato and other
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crops is determined interactively by genotype (G), environment (E),

and management practices (M) (Cooper et al., 2021). Analysis and

modeling of key parameters can effectively predict crop yield,

providing crucial guidance and decision support for various

stakeholders, such as farmers, policy makers, and agribusinesses.

In addition, these predictions substantially impact optimizing

planting structure, optimizing trading policies, allocating

resources efficiently, and conducting precision management.

There have been significant strides in both theoretical and

practical aspects of predicting potato yield. Early on, such

prediction relied on field sampling, whereby the number and

weight of potatoes per unit area were measured to calculate the

yield (Dyke and Avis, 1953). Other agronomic traits in subsequent

studies, including petiole potassium content (Holm and Nylund,

1978), also served as useful indicators for potato yield. Nevertheless,

these destructive methods require substantial labor for field

sampling and do not provide complete spatial or temporal coverage.

Remote sensing (RS) has emerged as a popular tool in crop

phenotyping (Araus and Cairns, 2014), growth monitoring (Liu

et al., 2021), and yield prediction (Ma et al., 2021), attributed to it

being non-destructive, high-throughput, and having large spatial

coverage. In 1974, the Large Area Crop Inventory Experiment

(LACIE) program, which showed the possibility of RS for yield

prediction for the first time, was used to assess wheat acreage in the

United States, Canada, and the former Soviet Union combined with

Landsat (MacDonald et al., 1975). In 1977, the LACIE accurately

predicted a declining trend in spring wheat production in the Soviet

Union with precision of 90% leading to a positive impact on the

United States economy (Hill et al., 1980). From 1980 to 1986,

multiple departments involved in the LACIE program collaborated

in the Agriculture and Resources Inventory Surveys Through

Aerospace Remote Sensing (AgRISTARS) initiative (Doraiswamy

et al., 1979). This effort aimed to predict yield for eight crops (not

including potato) within the United States and other countries

worldwide. Satellite-based potato yield prediction commenced later

in the 1980s. Potato acreage was estimated to predict production in

Canada by Landsat (Ryerson et al., 1985). In 1987, the European

Union proposed the Monitoring Agricultural Resources (MARS)

project, which utilized satellite and aerial imagery to continuously

monitor the planting area and growth status of several staple crops

including potatoes (Van der Velde and Nisini, 2019). It also

provided timely prediction results of crop yields for the

European Union.

Although satellites have the advantage of covering large areas of

farmland, they are greatly affected by the revisit interval and low

resolution. To address the growing demand for site-specific crop

monitoring and yield prediction among farmers, research into

proximal RS technologies such as unmanned aerial vehicle (UAV)

and ground-based RS has increased rapidly. In contrast to satellites,

UAVs possess tremendous potential for site-specific phenotype

acquisition, yield prediction, and precision management, which is

attributed to their low cost, convenience, and high spatial resolution

(Yang G. et al., 2017). Additionally, ground-based methods are

increasingly being utilized for more detailed phenotypic analyses in

a variety of specific scenarios. In general, RS is capable of rapidly

monitoring fields without damaging them. However, it employs
Frontiers in Plant Science 02
empir i ca l mode l ing methods most o f which lack a

robust mechanism.

Crop growth model (CGM) aim to describe the process of

potato development before harvest. POTATO (Ng and Loomis,

1984) is the first CGM for potato with a complete mechanism.

Between the 1990s and early 2000s, potato CGM became more

comprehensive with the incorporation of additional parameters,

such as water and nitrogen modules (Tang et al., 2021). During this

period, various models were developed, including DSSAT-

SUBSTOR (Ritchie et al., 1995) and LINTUL-NPOTATO (Van

Delden et al., 2003). Although these models are mechanistic and

have high precision, they require a substantial number of input

parameters. Furthermore, the calibration and validation of these

models rely on ground-truth data, which can be laborious

to acquire.

During the 2010s, sensor technology, machine learning (ML),

digital image analysis, and data mining techniques developed

rapidly. Additionally, mechanisms underlying potato growth and

development, yield quality formation principles, and interactions

between crop-environment-management measures were better

understood, encouraging improvement in theories of potato

yield prediction.

Yield prediction requires multidisciplinary knowledge at the

intersection of agronomy, meteorology, statistics, economics, and

computer science. Several studies have reviewed the advancements

made in yield prediction for diverse crops such as rice (dela Torre

et al., 2021) and maize (Tandzi and Mutengwa, 2020). In contrast,

yield prediction for potato differs from other major crops because

its edible part is located belowground. Currently, there is no

comprehensive literature survey of potato yield prediction due to

complex model types and application scenarios. To tackle these

issues, this paper provides an overview of the advancements in and

prospects for potato yield prediction. First, we present a summary of

the commonly used methodologies and compare them. Second,

after thoroughly evaluating the existing methods, we envision the

future development of potato yield prediction. This review

comprehensively evaluates the progress made in potato yield

prediction and provides the corresponding theoretical references.
2 Literature survey

A total of 276 articles including the keywords “potato”, “yield or

production or output”, and “estimat* or forecast* or predict* or

simulat*” were identified in the Web of Science™ database

(Clarivate Analytics) through January 11, 2023. To encompass a

broader scope of relevant studies, we also conducted a literature

survey with the abovementioned keywords on the Scopus database

and retrieved 152 publications. After eliminating duplicates and

irrelevant studies, 160 publications were included in this study. As

depicted in Figure 1A, the number of pertinent studies has

progressively increased since the 2010s. Furthermore, Figure 1B

demonstrates a growing number of annual citations for these

publications, indicating increased interest in this research domain.

Through literature review, we classified studies on potato yield

prediction into three categories including methods based on RS,
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CGM, and yield limiting factor (LF). Methods with LF include those

based on agronomic and environmental parameters. Figure 2

displays the numbers of the three approaches in potato yield

prediction studies over the past 50 years. Initially, RS and CGM

were less used for potato yield prediction. CGM-based methods

have a long history with the key period of research and development

occurring in the 1980s and 1990s. Since the 21st century, CGM have

been widely applied, with research efforts focused on the

parameterization of models under various conditions. The CO2

response module is integrated with climate models to assess the

impact of climate change on future yields. With the development of

advanced information technology, RS-based methods have emerged

in the study of crop yield prediction, utilizing next-generation

sensors, UAVs, and ML algorithms. For instance, in 2020, there
Frontiers in Plant Science 03
were 17 publications relating to potato yield prediction, of which

ten were dedicated to RS-based methods. These publications

contain RS-based yield prediction at multiple carrying platforms

for sensors, ranging from satellites and aerial, to ground-based

methods (Figure 3), achieving site-specific yield prediction across

multiple spatial scales. Finally, to facilitate comprehension of

readers, we have produced a nomenclature (Table 1).
3 Remote sensing for potato
yield prediction

Agricultural RS was primarily applied in the resource survey,

and in crop growth monitoring, yield prediction, disaster
FIGURE 2

Distribution of strategies for potato yield prediction using CGM, RS, and LF-based methods since 1970s to 2020s.
A B

FIGURE 1

Literature counts (A) and citations (B) for potato yield production since 2003 to 2023.
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estimation, and loss assessment (Weiss et al., 2020). The LACIE

program in the 1970s was representative of RS-based yield

prediction in other crops; related applications in potatoes have

been relatively delayed. In the 1980s, researchers employed satellite

imagery to estimate potato acreage and combined it with yield data

to estimate production (Ryerson et al., 1985). Nonetheless, during

this period, yield data were still obtained through interviewing

farmers, rather than direct evaluation of RS imagery. In 1992, potato

yield was estimated by combining process-based crop models with

leaf area index (LAI) data collected by handheld multispectral

sensors (Finke, 1992). However, the spatial coverage of the

handheld instruments was incomplete, which made it challenging

to capture the yield variability of the entire field. In the early 21st

century, several studies were conducted using non-destructive and

convenient UAVs and satellites, which provided more

comprehensive spatial coverage, for potato yield estimation

(Yokobori et al., 2004; Bala and Islam, 2009). Currently, the

technology for RS-based potato yield prediction has significantly

advanced with the emergence of new-generation platforms, sensors,

and advanced algorithms.

In this section RS-based yield prediction methods were

reviewed from three perspectives: the acquisition of RS

information, the selection of modeling parameters and the

evolution of yield prediction models.
3.1 Acquisition of RS information

The RS system is comprised of a platform and integrated

sensors. Different types of RS platforms offer unique benefits for

specific application scenarios. According to the type of platform, we
Frontiers in Plant Science 04
divided the potato yield prediction method based on RS into

satellite-based, aerial-based, and ground-based methods

for evaluation.

3.1.1 Satellite-based RS
Primarily, satellites equipped with spectral sensors can obtain

ground vegetation spectral information over large areas for the

purposes of land resource surveying, crop growth monitoring, and

yield prediction (Nakalembe et al., 2021). Since 1972, satellites such

as the Landsat-1, which is equipped with a Multispectral Scanner

(MSS) containing four spectral bands, have been successfully

launched. As a result, humanity began monitoring global

resources and environmental factors on a large scale. Landsat

imagery was used to estimate potato acreage by Statistics Canada

in New Brunswick from 1980 to1982. They found that potato

acreage could be estimated accurately using Landsat images, with

a coefficient of variation of around 5.5% (Ryerson et al., 1985). A

series of weather observation satellites, such as NOAA-6 with the

Advanced Very-High-Resolution Radiometer (AVHRR), has been

operated by the National Oceanic and Atmospheric Administration

(NOAA) since 1979. These satellites have provided an ample

amount of RS imagery for accurate potato yield prediction

(Akhand et al., 2016).

Even the revisit time of NOAA satellites equipped with AVHRR

sensors is 12 hours, the spatial resolution is only 1.1 km. In 1999, the

Earth Observing System (EOS) program launched Terra, which

carries five specially designed sensors for monitoring environmental

and climate change. Terra carries a Moderate Resolution Imaging

Spectroradiometer (MODIS) capable of receiving spectral

information of 36 bands between 0.4 and 14.4 mm with a spatial

resolution of 250-1000 m. The potato yield was estimated using
FIGURE 3

Distribution of RS Platforms adopted for potato yield prediction.
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TABLE 1 Nomenclature: abbreviations and corresponding full names.

Abbreviations Full Name Abbreviations Full Name

ABA Abscisic Acid MCARI Modified Chlorophyll Absorption Ratio Index

AEZ Agro-Ecological Zone MCYFS Mars Crop Yield Forecasting System

AgRISTARS Agriculture and Resources Inventory Surveys Through Aerospace Remote
Sensing

ML Machine Learning

AI Artificial Intelligence MLR Multiple Linear Regression

ANFIS Adaptive Neuro-Fuzzy Inference System MME Multi-Model Ensembles

ANN Artificial Neural Network MODIS Moderate Resolution Imaging
Spectroradiometer

APE Agro-Pastoral Ecotone MRE Mean Relative Error

APSIM Agricultural Production System Simulator Next Generation MS Multispectral

AVHRR Advanced Very-High-Resolution Radiometer MSE Mean Squared Error

CC Canopy Cover MSS Multispectral Scanner

CGM Crop Growth Model MTY Marketable Tuber Yield

CGMS Crop Growth Monitoring System NDVI Normalized Difference Vegetation Index

CI Chlorophyll Index NOAA National Oceanic and Atmospheric
Administration

CI1 Red-Edge Chlorophyll Index 1 NRCT Normalized Relative Canopy Temperature

CI2 Red-Edge Chlorophyll Index 2 OLI Thematic Mapper Plus

CIP International Potato Center PAR Photosynthetically Active Radiation

CT Computed Tomography PPI Potato Productivity Index

CV Computer Vision PROSPECT Leaf Optical Properties Spectra Model

DL Deep Learning RF Random Forest

EnKF Ensemble Kalman Filter RS Remote Sensing

EOS Earth Observing System RVI Ratio Vegetation Index

ETM+ Enhanced Thematic Mapper Plus SAIL Scattering By Arbitrarily Inclined Leaves
Model

EVI Enhanced Vegetation Index SAR Synthetic Aperture Radar

FAO Food And Agriculture Organization SAVI Soil-Adjusted Vegetation Index

FPAR Fraction Of Absorbed Photosynthetically Active Radiation SDGs Sustainable Development Goals

GA Genetic Algorithm SLR Simple Linear Regression

GF-1 Gaofen-1 SVM Support Vector Machine

GLUE Generalized Likelihood Uncertainty Estimation TCI Temperature Condition Index

HI Harvest Index TIR Thermal Infrared

HS Hyperspectral TM Thematic Mapper

IIASA International Institute for Applied Systems Analysis UAV Unmanned Aerial Vehicle

LACIE Large Area Crop Inventory Experiment UN United Nations

LAI Leaf Area Index VCI Vegetation Condition Index

LF Limiting Factor VI Vegetation Index

LiDAR Light Detection and Ranging WDVI Weighted Difference Vegetation Index

LSTM Long Short-Term Memory Networks WOFOST World Food Studies

(Continued)
F
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Normalized Difference Vegetation Index (NDVI), LAI, and

Fraction of Absorbed Photosynthetically Active Radiation (FPAR)

extracted from Terra-MODIS with an average error rate at 15%

compared with actual yield by Bala and Islam (2009).

Despite significant enhancements in the resolution of MODIS

imaging sensor compared with the NOAA satellites, the mixed

image components comprising of different objects such as soil and

potato canopy remain challenging to be discriminated. Low-

resolution satellite imaging encounters the obstacle in estimating

potato yields in relatively smaller regions. Landsat 4 and subsequent

satellites equipped with Thematic Mapper (TM), Enhanced

Thematic Mapper Plus (ETM+), or Operational Land Imager

(OLI), featuring a spatial resolution from 30 to 120 meters. The

ongoing Landsat 8 and Landsat 9 observation missions each offer a

revisit cycle of around 16 days. The joint utilization of both satellites

has the potential to halve the revisit period to 8 days. Similarly, the

Sentinel-2 of Copernicus Programme captures images of the same

region every 10 days with a high spatial resolution ranging from 10

to 60 meters. Furthermore, the successful integration of Sentinel-2A

and Sentinel-2B has the capability to reduce the revisit interval to a

mere 5 days.

Satellites with greater spatial resolution and shorter revisit

cycles showed better potential in predicting potato yield. Al-Gaadi

et al. (2016) compared the accuracy of yield estimation for potato

using Landsat-8 and Sentinel-2. Landsat-8 exhibited a range of

prediction errors, ranging from 7.9% to 13.5%, along with R2 values

ranging from 0.39 to 0.65 at different sites. In contrast, Sentinel-2

demonstrated a lower prediction error, falling between 3.8% and

10.2%, though there was no significant improvement in R2, which

was between 0.47 and 0.65.

Ultra-high-resolution satellites with meter and sub-meter

spatial resolution have emerged in recent years providing high-

quality RS imaging data for monitoring crop development. RS

employed in satellites has recently undergone substantial

development, resulting in significant advancements in spatial,

spectral, and temporal resolution. Nevertheless, the current cost

of high-precision images acquired by commercial satellites remains

high, and it is challenging for free satellite imagery at low spatial

resolution to provide high-accuracy yield prediction. Moreover,

apart from resolution and cost, weather conditions like cloud cover

can also limit the data quality of obtained vegetation spectra. Site-

specific potato dry matter yield was estimated using GeoEye-1 with

an R2 value of 0.60 (Elmetwalli et al., 2014). Due to the cost

reduction in satellite launch, a number of commercial companies

have launched small satellites that can be leveraged for Earth

observation. PlanetScope, launched by Planet comprising 130

small satellites that can capture daily multispectral images at 3-

meter resolution. PlanetScope images were utilized to develop
Frontiers in Plant Science 06
potato yield prediction models in Idaho and applied them to

assess yield differences between Norkotah and Russet varieties in

Lebanon (Abou Ali et al., 2020). Table 2 displays several satellites

and sensors that have been utilized for potato yield prediction in

recent times. Meanwhile, we present some cases of potato yield

prediction with satellites in Table 3.

For the past decades, RS employed in satellites has undergone

substantial development, resulting in significant advancements in

spatial, spectral and temporal resolution. Nevertheless, the current

cost of high-precision images acquired by commercial satellites remains

high, and it is challenging for the free satellite imagery at low spatial

resolution to provide high-accuracy yield prediction. Moreover, apart

from resolution and cost, weather conditions like cloud cover can also

limit the data quality of obtained vegetation spectra.

3.1.2 Aerial-based RS
Aerial-based RS platforms include aerial vehicles at high

altitudes and UAVs at low altitudes. A fixed-wing aerial plane

Piper Seneca equipped with multispectral cameras was used to

capture images of southern Idaho to estimate irrigated potato yield,

which can be performed as a flexible and effective tool for yield

prediction (Sivarajan, 2011). However, the cost for fuel and

professional pilot is high. Recently, UAVs has become an

important tool for RS-based yield prediction owing to its

advantages of high resolution, high throughput, and low cost

(Yang G. et al., 2017). Compared with satellites and manned

aircraft, UAVs equipped with high-resolution sensors are able to

acquire more detailed vegetation phenotypic information to predict

yield. Most of the UAVs for field phenotyping fly at an altitude of

below 150 m (Stöcker et al., 2017), and the image resolution can

reach the centimeter level. There are several kinds of UAVs used in

agriculture, such as multi-rotor UAVs, fixed-wing UAVs and

unmanned helicopters. Multi-rotor UAVs are able to hover and

turn flexibly in the air (Fu et al., 2020) but with high power usage,

which lead to short battery life mostly within 30 minutes. In

addition, multi-rotor UAV can carry limited number and types of

sensors due to the small payload. Fixed-wing UAVs can fly at high

speed with longer battery life, allowing them to cover a large area of

farmland in a short period of time. In addition, fixed-wing UAVs

with large wings typically have larger payloads which can offer a

wider sensor option. However, it is impossible for fixed-wing UAV

to capture data in small-scale farms because of the long runways

required for takeoff and landing, and the inability to hover and turn

flexibly in the air. Multi-rotor UAV is mostly used for potato yield

forecasting, which is also for current mapping operations. Although

we have not yet found the application offixed-wing drones in potato

yield prediction, they have great potential for large-scale potato field

monitoring due to their high speed, long endurance, and large loads.
TABLE 1 Continued

Abbreviations Full Name Abbreviations Full Name

LUE Light Use Efficiency WP Water Productivity

MARS Monitoring Agricultural Resources 4DVAR Four-Dimensional Variational Data
Assimilation
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Compared to satellites that carry a fixed number and type of

sensors, UAVs can readily change to appropriate sensors to meet

specific needs. For example, it is feasible to extract information such

as vegetation structure and reflectance from high-resolution RGB

images for growth monitoring and biomass estimation. In contrast

to digital RGB cameras that can function in the visible range,

multispectral (MS) cameras obtain images at multiple spectral

bands, including near infrared, which provides supplemented

spectral information to estimate yield by calculating vegetation

indexes (VIs). With the relatively low price of RGB and MS

cameras, researchers often choose affordable small or medium-

sized UAVs to conduct field trials. Most MS can only acquire a

small amount of spectral information with low spectral resolution

in the visible and near-infrared bands. In contrast, hyperspectral

(HS) cameras provide higher spectral resolution with more

continuous spectral information than MS. The above-mentioned

spectral sensors have specific requirements for weather conditions

when performing their tasks; in particular MS and HS need to

acquire images in clear and cloud-free conditions.

Relative to passive sensors, active sensors can obtain highly

accurate phenotypic information, such as plant height and biomass,

independent of sunlight (ten Harkel et al., 2020). Light Detection

and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) are

typical active sensors available on the market today. LiDAR obtains

3D and echo intensity information of vegetation to monitor crop

growth based on the backward scattering characteristics of the light

feature (Raj et al., 2020). SAR is a high-resolution active microwave

imaging detection sensor that can penetrate clouds to obtain crop

phenotypic information independent of atmospheric conditions

and solar radiation (Lyalin et al., 2018). Active sensors such as

LiDAR and SAR have not been applied in potato yield prediction.

Due to the high cost of HS imaging sensor, reliable UAVs, such as

the DJI Matrice 600 Pro (DJI Technology Co., Shenzhen, China) is
Frontiers in Plant Science 07
preferred. Despite the advantages of UAVs for yield estimation at a

large scale, there are still fewer studies on the application of UAV

for potato yield prediction comparing to other staple crops. For

reference, we summarize some previous studies of potato yield

prediction combined with UAVs in Table 4.

3.1.3 Ground-based RS
Ground-based methods provide higher resolution and more

angular image data for crop field phenotype. Many ground-based

platforms have been developed, such as handheld or bracketed

devices, ground carriers, tracks, ropeways, and fixed towers. They

have their own unique advantages for different applications.

Handheld or bracketed devices are simple and flexible in

acquiring data. Tracks, ropeways, and fixed towers provide

continuous observation of the same plot with high-precision

sensors. However, they can only acquire data of specific plant

samples. In contrast, ground carriers can perform data acquisition

tasks over relatively larger areas.

According to our literature review, handheld or bracketed

devices are still the most applied ground-based platforms for

potato yield prediction. Different sensors have been used to

predict potato yield by correlating various factors with yield.

Zaeen et al. (2020) combined chlorophyll index (CI) and multiple

VIs obtained by active sensors (Crop Circle™ and GreenSeeker™)

to improve the performance of potato yield prediction. Their results

indicated that the 18th and 20th leaf growth stages were the optimal

period for data collection. No significant difference in accuracy

between active spectral sensor and passive sensor was found for

yield prediction in the early season by comparing handheld active

sensors (Crop Circle™ and GreenSeeker™) with the portable MS

Altum (MicaSense, Seattle, WA, USA) equipped on UAVs (Jasim

et al., 2020). To the best of our knowledge, active sensors such as

SAR and LiDAR have not been applied in potato yield prediction.
TABLE 2 Satellites that have previously been used to predict potato yields.

Platform Sensors Bands
Number

Bands range* Revisit interval
(days)

Spatial Resolution (m/
pixel)

Cost Running state on
orbit

NOAA AVHRR 5-6 VIS, NIR, MIR, TIR 0.5 1100 Free In progress

Landsat 5 TM 7 VIS, NIR, SWIR, TIR 16 30, 120 Free Decommissioned in
2013

Landsat 7 ETM+ 7 VIS, NIR, SWIR, TIR,
PAN

16 15, 30, 60 Free Decommissioned in
2021

Terra MODIS 36 VIS, NIR, SWIR,
MIR, TIR

1-2 250, 500, 1000 Free In progress

IRS P6 LISS-3 4 VIS, NIR 24 23.5 Paid In progress

GeoEye-1 – 4 VIS, NIR 3-5 0.41-1.65 Paid In progress

Landsat 8, 9 OLI/TIRS 11 VIS, NIR, SWIR, TIR,
PAN

16 15, 30, 100 Free In progress

PlanetScope PS2, PS2-
SD

4-5 VIS, RE, NIR 1-2 3-4 Paid In progress

Sentinel-
2A/2B

MSI 13 VIS, RE, NIR, SWIR 10 10, 20, 60 Free In progress
*Meaning of the abbreviations. MIR, Mid-Infrared; MW,Microwave; NIR, Near Infrared; PAN, Panchromatic; RE, Red edge; SWIR, Shortwave Infrared; TIR, Thermal Infrared; VIS, Visible Spectrum.
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TABLE 3 Summary of satellite-based potato yield prediction.

Testing
year

Country Satellite Sensor
Type

Sensor
Model

Cultivars Parameters Modelling
Method

Accuracy Sample
size

References

2005/06-
2006/07

Bangladesh Terra MS1 MODIS – Regional level:
NDVI2,
LAI3,
FPAR4,
Field level:
mean NDVI

SLR23 Regional
level:
R2 (NDVI)
= 0.79;
R2 (LAI) =
0.87;
R2 (FPAR)
= 0.83;
Field level:
R2 (mean
NDVI) =
0.66

6
(Regional)
50 (Field)

Bala and
Islam, 2009

2004-2005 United
States

Landsat 5 MS TM – ISAVI5,
cumulative
ET6

MLR24 R2 (2004) =
0.97;
R2 (2005) =
0.75

9 (2004)
13 (2005)

Sivarajan,
2011

2011 Libya GeoEye-1 MS – – NDVI SLR R2 = 0.60 24 Elmetwalli
et al., 2014

1980-2014 Bangladesh NOAA MS AVHRR – VCI7, TCI8 ANN25 error % <
10%

24 Akhand et al.,
2016

2016 Saudi
Arabia

Landsat 8,
Sentinel-2A

MS OLI/
TIRS,
MSI

– NDVI, SAVI,
cumulative
NDVI,
cumulative
SAVI

SLR R2 (Landsat
8) = 0.39-
0.65
R2

(Sentinel-
2A) = 0.47-
0.65

60 Al-Gaadi
et al., 2016

2010/11-
2015/16

Bangladesh Landsat 5,
7, 8

MS TM,
ETM+,
OLI/TIRS

– Mean NDVI SLR R2 = 0.81 6 Newton et al.,
2018

2016-2018 Spain Sentinel-
2A, 2B

MS MSI – ARI29, CRI210,
IRECI211,
LCC12, NDVI,
PSRI13,
WDVI14, S2
bands15

GLM26,
rqlasso27,
LeapBack28,
svmL29,
svmR30,
MARS31,
kknn32, RF33,
avNNet34

The best
three
algrithoms:
R2 (rqlasso)
= 0.90;
R2

(LeapBack)
= 0.89;
R2 (svmR)
= 0.93

33 Gómez et al.,
2019

2012/13-
2017/18

India IRS P6 MS LISS-3 – VCI, climate
data

Step wise
regression

RMSE =
9.8-21.8%

– Kumar et al.,
2019

2017 United
States,
Lebanon

PlanetScope MS PS2, PS2-
SD

Russet
Burbank,
Norkotah

SAVI OLS35 R2 (Russet
Burbank) =
0.44;
R2

(Norkotah)
= 0.57

– Abou Ali
et al., 2020

2004-2018 Mexico Terra MS MODIS – NDVI,
Harvested last
year, climate,
irrigation

RF, svmP,
svmL, svmR,
GLM

R2 (RF) =
0.757-0.839;
R2 (svmR)
= 0.733-
0.837;
R2 (svmL)
= 0.692-
0.863;
R2 (svmP)
= 0.717-
0.858;
R2 (GLM)

838 Salvador
et al., 2020

(Continued)
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Proximal handled thermal infrared (TIR) imaging sensors could

obtain canopy temperature at higher accuracy, but the accuracy

decreased to ±5°C when integrating with UAV due to the impact of

environmental conditions for potato yield prediction (Kelly et al.,

2019). By capturing imaging data with combining a handheld

infrared camera (Ti-32, Fluke Thermography, Glottertal,

Germany) and a digital RGB camera (D5100 reflex, Kodak,

Tokyo, Japan), an integrated adaptive neuro-fuzzy inference

system with a genetic algorithm (ANFIS-GA) was used to predict

yield of two potato varieties in a dry crop trial in Egypt (Elsayed

et al., 2021). Similarly, we list some studies for potato yield

prediction by ground-based RS in the Table 5. Other platforms

were not identified for potato yield prediction.
3.2 Selection of RS-based
modeling parameters

The spectral, structural, thermal, and textural information of

crop canopies are important indicators to explain yield variability

(Maimaitijiang et al., 2020). Reflected light from the canopy allows

us to estimate the photosynthetic capacity and other crop growth

conditions of plants to predict yield. VIs highlight image spectral
Frontiers in Plant Science 09
features to analyze crop phenotypic traits by fusing reflectance

information from two or more bands; the normalized difference

vegetation index (NDVI) is the most used VI in agriculture RS

(Huang et al., 2021). In addition to NDVI, other VIs such as Soil-

Adjusted Vegetation Index (SAVI), Ratio Vegetation Index (RVI)

and Enhanced Vegetation Index (EVI) are also used in the field of

potato yield prediction. Recently, Potato Productivity Index (PPI),

calculated based on the two bands at 490 to 945 nm bands

considering the key role of water stress on potato tuber

development and yield formation, was designed for potato

production practices by Gómez et al. (2021). All bands of

Sentinel-2, NDVI, PPI, coupled with a random forest (RF) model

were adopted to predict potato yield, with the R2 of 0.77. In addition

to moisture, temperature is also an important environmental factor

affecting potato tuber development. TIR cameras can generate

thermal indices such as normalized relative canopy temperature

(NRCT) to monitor temperature change on canopy to monitor

drought tolerance (Elsayed et al., 2021). The difference between

canopy temperature and air temperature can also reveal the water

stress status of potato. The full spectral bands obtained by HS

cameras provide more spectral information in visible and near

infrared region for potato yield prediction than the spectral index

above. Potato yield was predicted by using full-band spectra
TABLE 3 Continued

Testing
year

Country Satellite Sensor
Type

Sensor
Model

Cultivars Parameters Modelling
Method

Accuracy Sample
size

References

= 0.612-
0.834

2016-2019 Spain Sentinel-2 MS MSI Monalisa,
Spunta,
Rudolf

NDVI,
PPI16, S2
bands

RF, SVM S2 & PPI:
R2 (RF) =
0.77;
R2 (SVM)
= 0.63
S2 &
NDVI:
R2 (RF) =
0.66;
R2 (SVM)
= 0.64

40 Gómez et al.,
2021

2019-2020 United
Kingdom

Sentinel-2 MS MSI Maris
Piper,
Amora,
Pentland
Dell

NDVI,
SLAVI17,
NDMI18,
CIG19

SLR R2 = 0.65,
NRMSE =
0.16

94 Mhango et al.,
2021

2020 India Sentinel-2 MS MSI – NDVI SLR R2 = 0.692 50 Singha and
Swain, 2022

2016-2018 Belgium Sentinel-2 MS MSI – NDVI
integral,
Tmax20, P21,
SDrz22

RF R2 (Late
potato) =
0.57;
R2 (Early
potato) =
0.68

723 Vannoppen
and Gobin,
2022
1 MS, Multispectral; 2 NDVI, Normalized Difference Vegetation Index; 3 LAI, Leaf Area Index; 4 FPAR, Fraction of Absorbed Photosynthetically Active Radiation; 5 ISAVI, three-date Integrated
Soil Adjusted Vegetation Index; 6 ET, Evapotranspiration; 7 VCI, Vegetation Condition Index; 8 TCI, Temperature Condition Index; 9 ARI2, Anthocyanin Reflectance Index; 10 CRI2, Carotenoid
Reflectance Index; 11 IRECI2, Inverted Red-Edge Chlorophyll Index; 12 LCC, Leaf Chlorophyll Content; 13 PSRI, Plant Senescence Reflectance Index; 14 WDVI, Weighted Difference Vegetation
Index; 15 S2 bands, Sentinel-2 bands; 16 PPI, Potato Productivity Index; 17 SLAVI, Specific Leaf Area Vegetation Index; 18 NDMI, Normalized Difference Moisture Index; 19 CIG, Chlorophyll
Index Green; 20 Tmax, monthly maximum temperature; 21 P, monthly precipitation; 22 SDrz, daily root-zone soil water depletion; 23 SLR, Single Linear Regression; 24 MLR, Multiple Linear
Regression; 25 ANN, Artificial Neural Network; 26 GLM, Generalised Linear Model; 27 rqlasso, Quantile Regression with LASSO penalty; 28 LeapBack, Linear Regression with Backwards Selection;
29 svmL, Support Vector Machine Linear; 30 svmR, Support Vector Machine Radial; 31 svmP, Support Vector Machine Polynomial; 32 MARS, Multivariate adaptive regression splines; 33 RF,
Random Forest; 34 kknn, k-Nearest Neighbours; 35 avNNet, Averaged Neural Network.
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e Modelling
Method

Accuracy Sample
size

References

ted SLR11 R2 = 0.89 18 Sivarajan,
2011

ste MLR12 R2 = 0.75 10 Yokobori
et al., 2004

he Alex Net,
SLR, MLR

R2 (NDVI) =
0.18-0.67;
R2 (NDVI &
height) =
0.12-1.00;
Alex Net:
Insufficient
precision

23 Tanabe et al.,
2019

I3,
I/O
m

PLSR13, RF14 R2 (PLSR) =
0.81;
R2 (RF) =
0.63

144 Li et al., 2020

ctr Ridge15;
OLS16;
PLSR; SVM17;
RF; AdaBoost

R2 (ridge) =
0.63;
R2 (OLS) =
0.13;
R2 (PLSR) =
0.53;
R2 (SVR) =
0.57;
R2 (RF) =
0.51;
R2

(AdaBoost) =
0.45;

96 Sun et al.,
2020

O7

I9;
GLM18 R2 = 0.34-

0.63
288 Jasim et al.,

2020

PLSR R2 = 0.74,
NRMSE =
22.37%

42 Wu et al.,
2020

(Continued)
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SAVI
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CI14, CI25,
SAVI6, full

, height

um

, GNDVI8,
CHLGR10,
Country Platform
Type

Platform
Model

Sensor
Type

Sensor Model Cultivars Bands
number

Bands
range

Param

United
States

Plane Piper Seneca MS1 three Kodak Megaplus 4.2i
digital cameras

– 3 G, R,
NIR

Integra

Japan UAV YH300
(Yammer
Ltd.)

MS MSIS, MS2100, DuncanTech,
Ltd.

Toyoshiro 4 VIS,
NIR

SPAD,

Japan UAV DJI
Spreading
Wings S900

MS Micro MCA RGB+3, Tetracam Toyoshiro 6 425-950
nm

NDVI,

China UAV DJI Matrice
600 Pro

HS2 Headwall Nano-Hyperspec
(Headwall Photonics Inc.,
Bolton, MA, USA)

Favorita;
Shepody;
Zhongshu 5/10/
18/19

272 400-
1000 nm

MCAR
MCAR
spectru

United
States

UAV DJI Matrice
600 Pro

HS Headwall Nano-Hyperspec
(Headwall Photonics Inc.,
Bolton, MA, USA)

6 unknown
varieties

273 400-
1000 nm

full spe

United
States

UAV DJI
Phantom 4,
DJI Inspire
2

MS NIR + regular camera/senser;
Altum multispectral
sensor (MicaSense, Seattle, WA,
USA)

Russet Burbank;
Shepody;
Superior

4, 6 VIS, RE,
NIR,
LWIR

ANTH
BNDV
NDVI

China UAV DJI Matrice
600

HS regular camera, Cubert UHD-
185

Zhongshu 3/5 125 450-950
nm

–
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between 400 and 1000 nm (R2 = 0.81), which had better

performance than using plant height and several VIs including

Red-edge Chlorophyll Index 1 (CI1), Modified Chlorophyll

Absorption Ratio Index (MCARI), Ratio2, and Red-edge

Chlorophyll Index 2 (CI2) (R2 = 0.69) (Li et al., 2020).

It is essential to select the best period to estimate yield because

of the great variation in the predicted performance of different

growth periods. The weight of values at different growing periods

were determined for estimating yield of potato using a handheld

hyperspectral camera (Luo et al., 2020). They believed that the tuber

expansion period (about 70 days after planting in this study) was

the best period for potato yield prediction with an adjusted

R2 = 0.83. In addition, it has also been noted that 90 days after

planting is satisfactory for potato yield prediction (Li et al., 2020).

This may be caused by the great variation in species and

environmental conditions selected for different studies.

Meanwhile, many studies have used time series data rather than

single period data to predict yields (Fernandes et al., 2017; Aghighi

et al., 2018). This could be due to the more comprehensive

information on crop growth and development contained within

the time-series data. For potato yield prediction, three-date

Integrated SAVI (ISAVI) is a better predictor of yield than single-

period SAVI (Sivarajan, 2011). Time-series data can also be applied

to advanced algorithms such as Long Short-Term Memory

networks (LSTM) and three-dimensional Convolutional Neural

Network (3D-CNN).

Compared with spectral features, canopy traits such as LAI,

plant height, and canopy cover (CC) can reflect the light use

efficiency on the canopy. VIs combined with structural

parameters such as plant height and LAI provides a better

prediction of potato yield (Sharma et al., 2017; Tanabe et al.,

2019). In contrast to passive RS, active RS comes with its own

radiation source and reflects the characteristics of the ground by

transmitting and receiving electromagnetic waves. Their

applications are less affected by ambient light and the

electromagnetic wave wavelength and emission mode can be set

according to different land features, allowing them to obtain the

vegetation spatial structure parameters more accurately. In addition

to spectral and structural parameters, adding texture features can

potentially impact the performance of yield prediction (Ma et al.,

2022). However, there are no publications investigating potato yield

prediction with texture features extracted from image analysis.

It is also difficult to fully represent the crop growth status by RS

data alone. Integrating RS parameters with other indicators of

agronomy and meteorology is an effective way to improve yield

prediction capability. NDVI combined with plant height provides

improved estimation accuracy of potato yield compared with using

NDVI alone (Tanabe et al., 2019). Combining soil parameters, such

as moisture, conductivity, and nutritional parameters, with NDVI

obtained from handheld instruments, potato yield was predicted by

Support Vector Machine (SVM) and the determination coefficient

of different datasets ranged from 0.54 to 0.72 (Abbas et al., 2020).

Likewise, RS information combined with meteorological

parameters provides a good prediction of yield with the

determination of coefficients ranging from 0.76 to 0.86 in winter

and summer growing seasons (Salvador et al., 2020).
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TABLE 5 Summary of ground-based potato yield prediction.

eters Modelling
Method

Accuracy Sample
size

References

model

eters

assimilation of
LAI and
LEACHN model

r = 0.63 36 Finke, 1992

SLR13 r = 0.64 40 Morier et al.,
2015

6,
etor-
LAI

nonlinear
regression

R2

(GreenSeeker)
= 0.60;
R2 (Crop
Circle) = 0.64

144 Sharma et al.,
2017

;
, NDRE7,
E8, LAI

nonlinear
regression

R2
adj

(GreenSeeker)
= 0.57;
R2

adj

(GreenSeeker)
= 0.36

288 Jasim et al.,
2020

based CI SLR R2 = 0.8225;
RMSE =
0.2257

27 Luo et al.,
2020

, soil data SLR; EN14; k-
NN15; SVM16

R2 (SVR) =
0.54-0.72;
R2 (SLR) =
0.53-0.70;
R2 (EN) =
0.49-0.64;
R2 (k-NN) =
0.53-0.64

479 Abbas et al.,
2020

ndices,
10

SMLR17;
ANFIS18-GA19

R2 (SMLR) =
0.73;
R2 (ANFIS-
GA) = 0.80

48 Elsayed et al.,
2021

dT12,
input
eters

assimilation of dT
and SOLANUM
model

R2 = 0.91-0.99 8 Ninanya
et al., 2021

7 NDRE, Normalized Difference Red-edge; 8 CHLRE, Chlorophyll Red-edge; 9 OCW, Optimal
le Linear Regression; 14 EN, Elastic Net; 15 k-NN, k-nearest neighbor; 16 SVM, Support Vector
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Country Platform
Type

Sensor
Type

Sensor Model Cultivars Bands
number

Bands
range
(nm)

Para

Germany Handheld MS1 hand-held multi-spectral radiometer
(CROPSCAN, Inc.)

– 2 670, 870 LAI4,
input
param

Canada Handheld HS2 FieldSpec HandHeld spectroradiometer
(Analytical Spectral Devices [ASD] Inc., Boulder,
CO)

Russet
Burbank

200 325-1075 CI15

United
States

Handheld MS GreenSeeker™ (Trimble Navigation Limited,

Sunnyvale, CA, USA);

Holland Scientific Crop Circle™ ACS 430

(Holland Scientific, Inc., Lincoln, NE, USA)

Russet
Burbank

GreenSeeker:
2;
Crop Circle:
3

GreenSeeker:
660, 770;
Crop Circle:
650, 730, 760

NDV
propr
proxy

United
States

Handheld MS GreenSeeker™;Holland Scientific Crop Circle™
ACS 430

Russet
Burbank,
Shepody,
Superior

GreenSeeker:
2;
Crop Circle:
3

GreenSeeker:
660, 770;
Crop Circle:
650, 730, 760

NDV
NDV
CHLR

China Handheld HS USB 2000 spectrometer (Ocean Optics, Inc.,
Dunedin, Florida, United States)

Shepody 1630 350-1100 OCW

Canada Handheld MS FieldScout CM 1000 NDVI
Meter (Spectrum Technologies, Aurora, USA)

Russet
Burbank

2 660, 840 NDV

Egypt Handheld Thermal,
RGB3

handheld infrared thermal camera (Ti-32; Fluke
Thermography, Glottertal, Germany);
14-megapixel digital camera (Kodak D5100
reflex; Tokyo, Japan)

Bellini,
Arizona

– 7500-14000,
400-700

color
NRTC

Peru Handheld Thermal,
RGB

FLIR thermal camera (Model E60, FLIR Systems
Inc., Täby, Sweden); digital camera D5300
(Nikon, Thailand)

Unica – 7500-13000,
400-700

CC11,
mode
param

1 MS, Multispectral; 2 HS, Hyperspectral; 3 RGB, red-green-blue; 4 LAI, Leaf Area Index; 5 CI1, Red-edge Chlorophyll Index 1; 6 NDVI, Normalized Difference Vegetation Index
Combination Weighting Method; 10 NRTC, Normalized Relative Canopy Temperature; 11 CC, Canopy Cover; 12 dT, Canopy temperature minus air temperature; 13 SLR, Sing
Machine; 17 SMLR, Stepwise Multiple Linear Regression; 17 ANFIS, Adaptive Neuro-fuzzy Inference System; 19 GA, Genetic Algorithm.
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3.3 Evolution of RS-based yield
prediction methods

Empirical modeling methods, such as Simple Linear Regression

(SLR), Multiple Linear Regression (MLR), and Artificial Neural

Network (ANN), are mostly used for current RS-based potato yield

prediction. LR clearly shows the relationship between one or more

explanatory variables and yield. SLR can build a linear relationship

between a single parameter and the yield. Introducing more

variables including VIs, agronomic parameters, and meteorology

by MLR can improve model performance. However, since the

relationship between the variables of the dataset is not linear in

most real-life scenarios, a non-linear approach is necessary.

With the development of artificial intelligence (AI), ML models

have been increasingly applied to RS-based potato yield prediction.

An ANN model was constructed with variables including

Vegetation Condition Index (VCI) and Temperature Condition

Index (TCI) captured by NOAA-AVHRR between 1980-2014

(Akhand et al., 2016). Percentage error was calculated as lower

than 10% to quantify the difference between actual and predicted

yield. In addition, there are significant differences in prediction

accuracy between various ML algorithms. Six ML algorithms

(PLSR, Parcial Least Squares Regression; RF, Random Forest;

Ridge, Ridge Regression; OLS, Ordinary Least Squares; SVM,

Support Vector Machine; GLM: Generalised Linear Model) were

compared for potato yield prediction at different irrigation levels

using a Headwall nano-hyperspec imager, and ridge regression

showed the highest accuracy with R2 of 0.63 (Sun et al., 2020).

Yield prediction performance of several ML algorithms were

compared using Sentinel-2 images and svmRadial got the highest

accuracy (R2 = 0.93) (Gómez et al., 2019). It is also worth noting

that varietal differences can significantly impact predicted results.

ML combined with cultivar information and UAV-based images

was used to improve potato yield prediction (Li et al., 2021). The

results showed that RF and SVM models using only RS data yield

poor estimation (R2 = 0.48-0.51) but had significantly improved

performance (R2 = 0.75-0.79) when variety information was

included. The use of ML algorithms combined with high spatial

resolution images and cultivar information can significantly

improve yield prediction for different potato varieties than

approaches without variety information.

The AlexNet algorithm, proposed in 2012 as the first deep

learning (DL) model, generates both low- and high-level features of

data through a multilayer neural network as the input of fully

connected layers before a classification task (Krizhevsky et al.,

2017). Compared to conventional ML with handcrafted features,

which reaches a bottleneck in model performance with increasing

the size of training dataset, DL can further improve model

performance by enlarging the training dataset due to the huge

amount of generated features. The performance of MLR and

AlexNet to assess potato yield was compared and concluded that

the DL algorithm was superior (Tanabe et al., 2019). However, the

accuracy of the proposed model was still not high enough to meet

the requirement in practice, which encouraged the investigation of

more complex DL networks. With the rapid development of DL,
Frontiers in Plant Science 13
other networks including LSTM have been widely applied in yield

prediction in recent years (Muruganantham et al., 2022). Many DL-

based studies have been conducted in other crops (Tian et al., 2021;

Liu et al., 2022). However, there is still a lack of application of such

DL methods applied to potato yield prediction.

Different from the empirical models that do not have a complete

mechanism of crop development, the physical model of RS

considering spectra, radiation, and scattering, are deterministic

based on the laws of physics. The PROSAIL, a combination of

PROSPECT (leaf optical PROperties SPECTra model) and SAIL

(Scattering by Arbitrarily Inclined Leaves model), considering leaf

angle, canopy structure and biochemical properties of vegetation is

widely used for to estimate chlorophyll content, LAI and biomass

(Berger et al., 2018). A mechanistic physical model, such as the

radiative transfer model, requires a thorough understanding of

vegetation structure characteristics and radiative transfer theory.

Probably due to high complexity of the models, physical models

have not yet been applied to potato yield prediction.

Compared with the mechanistic models based on RS, the semi-

empirical models allow a compromise by estimating intermediate

variables or simplifying the model. The commonly used semi-

empirical approach is the light use efficiency (LUE) model, which

calculates dry matter yield by estimating total primary productivity

and combining it with harvest index (Monteith, 1972). According to

the principle of assimilates accumulation and distribution, yield

could be calculated as the product of photosynthetically active

radiation (PAR), fraction of absorbed PAR (FPAR), LUE, and

harvest index (HI). Calculation formula is shown below:

Yield = PAR� FPAR� LUE � HI
4 Crop growth model for potato
yield prediction

CGM delineate crop growth and development as a function of

environmental factors, such as climatic, soil, and management

parameters, predicated upon the physiological and ecological

tenets of crops (Raymundo et al., 2014). The mechanistic

simulation of potato development is an efficacious tool for

predicting potato yield.
4.1 Evolution of potato CGM

The potato growth model has evolved from establishing

fundamental principles to widespread application and continuous

optimization. The original CGM was established by de Wit at

Wageningen University during the 1960s (Bouman et al., 1996).

Development of potato CGM began in the late 1970s when

researchers designed a model based on physiological

characteristics and field experiments. During this stage, the model

simulated the accumulation and distribution of assimilates through

potential light and thermal conditions, thereby simulating the

process of potato yield formation. A simulation of potato growth
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was conducted by utilizing temperature, photoperiod, and soil

moisture during specific time intervals (Sands et al., 1979). Light

interception calculated from canopy cover was used to estimate

potential potato yield (Van der Zaag, 1984). Similarly, it was posited

that fundamental data such as the time of sowing and harvest, soil

and air temperature, and solar radiation can be used to estimate the

maximum dry matter yield of potatoes (Marshall et al., 1984). The

POTATO model, crafted by Ng and Loomis (1984), is the pioneer

mechanistic model for comprehensively delineating the

morphology and physiology of potato. During this period, models

primarily focused on productivity simulations without considering

the effects of environmental stress on actual yield.

In the 1990s, soil water and nitrogen dynamic modules were

successively incorporated into potato CGM. For instance,

SUBSTOR-potato (Griffin et al., 1993), a sub-module of DSSAT,

is utilized to simulate potato growth, with its water and nitrogen

dynamics module derived from CERES (Crop Environment

Research Synthesis). During the same period, numerous studies

explored the optimization of potato irrigation and fertilization

management schemes using CGM. Additionally, some research

employed models to assess the impact of climate change on

potato production.

Currently, models are being widely calibrated and validated

across different regions to suit the needs of potato growth

simulation. Additionally, CO2 response modules have been added

to the CGM (Wolf, 2002), which have been extensively used for

decision support and climate change response studies (Raymundo

et al., 2018; Tang et al., 2021). The uncertainty in potato models

caused by model structure, model input, and model parameters has

already attracted the attention of researchers (Ojeda et al., 2020).

This has been extensively studied in other crops (Bert et al., 2007;

Wang et al., 2020). In addition, CGM utilize data of specific

samples, which cannot reflect the spatial heterogeneity of large-

scale farmland. Combination of the high-throughput and full-

coverage advantages of RS with the complete mechanism of CGM

makes the assimilation of RS and CGM an effective way to achieve

continuous spatiotemporal monitoring of potato growth dynamics.

For instance, in recent years, AquaCrop has emerged to simulate

crop yield using CC as an intermediate variable, which is closely

related to RS. However, there is still limited research on predicting

potato yield using assimilation techniques. Table 6 illustrates the

application of CGM for predicting potato yield in recent years.
4.2 Representative CGM

After more than 40 years of evolution, dozens of potato growth

models have been built. The principles of CGM have certain

commonalities. Most models include basic crop growth,

meteorology, soil, and management modules. The models also

have their own focuses and have formed their own schools in

various parts of the world and in different application fields. In this

subsection, we will introduce some common potato CGM and

systematically evaluate their applications over decades.

The potential productivity of a crop can be derived by

simulating the net photosynthesis and the percentage of
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assimilates apportioned to the tubers (Weir et al., 1984). Multiple

CGM employ this underlying principle while integrating

environmental modules such as soil and climate to simulate yield.

Among the early potato models, POTATO stands out as a light-

driven model, which completely simulates the growth and

development of the crop. Nonetheless, this model is still an

oversimplified representation of the crop’s growth. Potato yield

was effectively modeled by modifying the POTATO model through

adjusting the photosynthetic capacity of potatoes on cloudy days

(Ewing et al., 1990). In contrast to POTATO, which results in

overestimated yields, NPOTATO offers more accurate yield

simulation (Wolf, 2002).

SUBSTOR-Potato, a light-driven model derived from CERES, is

a more comprehensive and widely used model. For improved

accuracy, SUBSTOR-Potato 2.0 added water and nitrogen

simulation modules (Griffin et al., 1993). Over decades of

research and experimentation, researchers have identified some

shortcomings in the model. As the number of studies increases,

the model is constantly being refined. In a Canadian study,

SUBSTOR-Potato was applied to simulate yield, but an

underestimation of 15% occurred due to incorrectly simulated

soil moisture content (Mahdian and Gallichand, 1997). Similarly,

the model predictions may still underestimate yields under extreme

weather conditions. Data from 87 field experiments was synthesized

and it was proposed that it is necessary to improve SUBSTOR-

Potato to capture the effects of increased atmospheric CO2

concentration and temperature rise on crop growth (Raymundo

et al., 2017). In DSSAT version 4.7, this problem was solved by

modifying the response function (Raymundo et al., 2018). However,

this version of DSSAT still neglects the impacts of pests and diseases

on yield loss caused by quality degradation (Tooley et al., 2021).

LINTUL-Potato, which is based on the light interception and

utilization model, carefully considers the influence of temperature

and daylength on potato yield formation (Kooman and Haverkort,

1995). Temperature is significant in seedling emergence, light

energy utilization, canopy morphogenesis, tuber bulking, and

yield formation, while photoperiod has a considerable effect on

light energy utilization and potato tuberization (Snyder and Ewing,

1989). By assessing the effect of freezing on yield, the simulated

result of LINTUL-Potato showed that an increase in the cold

tolerance of potatoes from -1°C to -2°C and -3°C led to respective

increases in average yield of 26% and 40% (Hijmans et al., 2003). In

addition, numerous models have been derived from LINTUL-

Potato that are tailored to various scenarios. Van Delden et al.

(2003) simulated nitrogen dynamics and potato yield under

different organic nitrogen management strategies in the

Netherlands using LINTUL-NPOTATO. Similarly, the LINTUL-

Potato model was optimized for simulating yield of potatoes with

different genotypes in the Andes Mountains by the International

Potato Center (CIP). The revised model known as SOLANUM

(Condori et al., 2010) showed acceptable results (R2>0.88).

LINTUL-POTATO-DSS is an enhanced version of LINTUL-

Potato that reduces the potential for errors during computation

by utilizing fewer parameters (Haverkort et al., 2015).

Simulating the formation and distribution of photosynthetic

assimilation products is essential in the CGM. Moreover, moisture
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TABLE 6 Summary of CGM-based potato yield prediction.

Model Country Testing
time

Varieties Sites Accuracy Sample
size

References

APSIM-Potato Australia 2012/13 Russet Burbank,
Moonlight

2 NRMSE = 15.4% – Borus et al., 2018

APSIM-Potato China 1986-2020 – 1 R2 = 0.92,
NRMSE =
14.48%

10 Luo et al., 2022

Aquacrop Argentina 2009-2010 Spunta 1 R2 = 0.56 25 Casa et al., 2013

AquaCrop Denmark 2013-2015 Folva 1 R2 = 0.63-0.98,
NRMSE = 7.3-
21%

– Razzaghi et al.,
2017

AquaCrop Ethiopia 2012 Jalene 2 E = 0.84-0.96,
NRMSE=3.49-8%

– Yibrah et al.,
2015

AquaCrop Iran 2010 Kuzima 1 R2 = 0.9, NRMSE
= 9.21%

– Afshar et al.,
2014

CropSystVB-CSPotato United States 2001-2002 Ranger Russet 1 – – Alva, 2010

Daisy Poland 2000-2006 Triada 1 RRMSE = 15.4% – Mazurczyk et al.,
2007

Hamer-model United Kingdom 3-15 years – 5 average error %
= 15.8

115 Ejieji and
Gowing, 2000

Infocrop-potato India 8-18 years – 2 NRMSE = 8-10% – Govindakrishnan
et al., 2007

LINTUL-NPOTATO Netherlands 1996-1999 Eersteling, Bintje,
Junior, Agria

2 R2 = 0.865,
RMSE = 1.08 Mg
ha-1

18 Van Delden
et al., 2003

LINTUL-POTATO-DSS South Africa 2013-2014 Innovator 10 R2 = 0.939, 0.635 6, 9 Machakaire et al.,
2016

LPOTCO Ireland, Germany,
Sweden, Finland, UK,
Belgium, Italy

1998-1999 Bintje 20 R2 = 0.65 – Wolf, 2002

MacKerron and Waister (1985)
model, Versteeg and Van Keulen
(1986) model

India 1992/1993 Kufri
Chandermukhi

1 error % = 4.1-
25.7%

2 Prihar et al., 1995

MoDrY Poland 1971-1996
(excluding
1984)

– 1 R2 = 0.64, MRE
= 12.40%

25 Zyromski et al.,
2013

Sands-model Australia – Exton, Sebago,
Kennebec,
Delaware, Sequoia

9 – – Hackett et al.,
1979

SSM-iCrop2 Iran 2017-2018 Sante, Arinda,
Agria, Marfona

4 r = 0.80, RMSE =
543 g m−2

20 Dadrasi et al.,
2020

SUBSTOR-Potato Argentina 1979-1983,
1987-1991

Huinkul,
Kennebec, Mailen
and Spunta

4 R2 = 0.915 24 Travasso et al.,
1996

SUBSTOR-Potato Canada 1992-1993 Kennebec 8, 12 error % = 4-15% – Mahdian and
Gallichand, 1997

SUBSTOR-Potato Czech 1994-2002 Rosara 1 R2 = 0.97 (4
years)

4 Štǎstná et al.,
2010

SUBSTOR-Potato Uganda, Burundi, Peru,
India, USA

1980, 2002-
2010

Asante, Amarilis,
Kufri Bahar,
Kathadin

5 RRMSE = 28.1% 26 Kleinwechter
et al., 2016

SUBSTOR-Potato, AquaCrop China 2018-2019 Zihuabai 1 DM: R2 = 0.37-
0.68; FM:
R2 = 0.37-0.72

12 Wang et al., 2023
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dynamics are critical in determining potato yield. Some models

utilize the transpiration or evapotranspiration of the crop or soil as

a driver to simulate crop growth and yield formation processes.

These water-driven models can assist in the development of rational

irrigation practices for efficient utilization of limited water

resources. The AquaCrop model (Steduto et al., 2009), developed

by the Food and Agriculture Organization (FAO) of the UN, is an

example of a water-driven model that calculates biomass as the

product of water product iv ity (WP) and cumulat ive

evapotranspiration, multiplied by a harvest index to determine

yield:

Yield = B� HI = WP �oTr � HI

where Y is final crop yield (kg·m-2), B is biomass (kg·m-2), HI is

harvest index (%), Tr is transpiration (mm), and WP is water

production efficiency (kg·m-2·mm-1).

Compared to other models that require numerous input

parameters, the AquaCrop model is relatively simple and

demands fewer input parameters. Furthermore, AquaCrop

employs CC rather than LAI to depict the canopy structure,

which allows for direct use of RS data with this model (Steduto

et al., 2009; Sun et al., 2017). AquaCrop was employed to achieve

better simulation results for potato tuber yield under varying

irrigation conditions (R2 = 0.98, NRMSE=0.046) (Razzaghi et al.,

2017). However, it should be noted that AquaCrop demonstrated

limited efficacy in simulating each indicator at higher or lower

irrigation levels (Jin et al., 2019).

Another class of water-driven model integrates a CGM with a

hydrological model to describe the impacts of alterations in crop

water management on potato respiration and yield. A combined

SWAP-WOFOST model was employed to evaluate productivity

and recommended the inclusion of capillary rise and recirculation

in the model to enhance the precision of potato yield prediction

(Kroes et al., 2018).

The improvement of crop yields is heavily reliant on the use of

fertilizers, particularly nitrogen fertilizers. Nonetheless, excessive

nitrogen application can inflate production costs, harm the

environment, and pose risks to human health (Zhang et al.,

2015). Precise management of nitrogen fertilizer can diminish

pollution while also reducing expenses. Researchers recognized

the significance of accurate nitrogen management several decades

ago and integrated a nitrogen simulation module into the potato

model. DAISY, a one-dimensional soil-plant-atmosphere system

model, can simulate crop production, soil water balance, carbon

and nitrogen cycles, and so on (Plauborg et al., 2022). DAISY was

employed to simulate root abscisic acid (ABA) synthesis, stomatal

conductance, transpiration and yield under water-saving irrigation

conditions in potato crops (Plauborg et al., 2010). Potato yield

under different split-N fertigation regimes was simulated and it was

observed that prolonged N fertigation consistently increased yield

(Zhou et al., 2018).

The APSIM-Potato model is part of the Agricultural Production

System Simulator Next Generation (APSIM) family. APSIM

simulates potato development and yield formation based on

radiation, temperature, photoperiod, soil water, and nitrogen
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balance in daily increments (Keating et al., 2003). Many studies

conducted in Australia and China have focused on water, nitrogen,

sowing management, and strategies for coping with climate change

(Tang et al., 2021; Li et al., 2022). APSIM-Potato, however, requires

additional parameters to improve model performance (Borus

et al., 2018).

The World Food Studies (WOFOST) model, developed based

on the SUCROS model from Wageningen University, incorporates

water and soil simulation modules to primarily simulate regional-

scale crop growth and yield changes (Van Diepen et al., 1989). A

study that simulated the yield of early potatoes under water-limited

conditions indicated that simulation results of WOFOST are

sensitive to water deficits (Kulig et al., 2020). Subsequent versions

of WOFOST have included a CO2 response module to better

simulate the effects of climate change on potato yields.
4.3 Assimilation methods

The utilization of RS technology enables high-throughput and

non-destructive acquisition of crop phenotype data in the field.

However, it falls short in simulating the crop yield formation

process and lacks a strong mechanistic foundation. Mechanistic

CGM simulate crop growth and development as well as yield

formation processes, but they use specific samples, an aspect that

is lacking in spatial expansion. The assimilation of RS and CGM can

leverage the advantages of both to enhance the prediction accuracy

of various crop canopy state variables and yields at regional and

national scales. Despite several studies being conducted on RS and

CGM assimilation for other crops, limited research has been

conducted in potato. LAI acquired by Gaofen-1 (GF-1) satellite

data was employed as the assimilated variable coupled with DSSAT-

SUBSTOR with the SCE-UA optimization algorithm for regional

potato yield prediction (Duan, 2019). The mean relative error

(MRE) was only 6.17%, 9.45% lower than that of unassimilated

RS data. Quiroz et al. (2017) estimated single-point potato yield

using CC and the weighted difference vegetation index (WDVI)

corrected crop growth model SOLANUM. Current data

assimilation algorithms such as Ensemble Kalman Filter (EnKF)

and Four-Dimensional Variational Data Assimilation (4DVAR),

have emerged, which could lead to further research progress in

assimilation studies of RS and CGM. Due to the lack of application

of assimilation methods, the technical gaps might increase between

yield prediction of potato and other crops.
5 Methods based on yield
limiting factor

In the past, agronomists predicted potato yields by the “visual

method” using basic conditions of local agricultural production and

the growth of potatoes. Considering the impact of yield-enhancing

technical measures and the yearly climate on yields, they assessed

potato yields per unit area visually and by experience. However, this

method relies on the investigators’ experience with crop growth and
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development patterns and yield formation rules, which is highly

subjective. When new situations arise, such as the adoption of new

technologies, the promotion of superior varieties, or when crops

suffer severe losses due to abnormal disasters, the judgment of crop

growth status often exceeds the investigators’ experience. This

method thus often results in large errors in yield estimates and is

rarely used in current agricultural production. Instead, quantitative

yield estimation models based on LFs have become an important

method for predicting potato yields.
5.1 Agronomic parameters-based methods

Methods employing traditional agronomic parameters were

applied in potato yield prediction before the advent of RS and

CGM. Earlier studies destructively sampled tubers to record potato

weight and number of potatoes to estimate yield directly (Dyke and

Avis, 1953). In addition, canopy parameters could be linked to yield

by reflecting the growth status. The first category is structure

indicators that can directly reflect photosynthetic capacity, such

as LAI and leaf number. At the canopy structure level, planting

density and number of leaves were used as yield indicators and

achieved a reduction of mean squared error (MSE) of 9% (Singh

et al., 2020). In addition, some physiological and biochemical

indicators have been adopted. The highest correlation between

yield and chlorophyll content (expressed as SPAD) has been

revealed with an R2 value of 0.663 (Meng et al., 2021). The

nutritional status of the 4th leaf, as measured by the Mg DRIS

index (Mgi) and N DRIS index (Ni) during the onset of

tuberization, have demonstrated potential as yield predictors.

Moreover, N content in stems has shown a strong correlation

with marketable tuber yield (MTY), while the Ca:N ratio in stems

has displayed the highest correlation with MTY.

Traditional regression methods often have inadequate

simulation performance, while some innovative methods provide

better prediction results. For instance, a Canadian study

demonstrated that using a three-input multiple-layer perceptron

(MLP) network with cumulative LAI, maximum LAI, and

cumulative rainfall achieved a higher accuracy in yield estimation

than MLR and SUBSTOR (Fortin et al., 2011).

Methods based on agronomic parameters often require tedious

field sampling. In addition to the plant itself, environmental and

management factors, among others, can affect yield. Therefore, the

ability of a method to simulate different cultivation and

management conditions varies.
5.2 Environmental parameters-
based methods

Environmental factors affecting crop growth, such as

meteorology, soil, pests, and diseases, could be considered yield

indicators. The concept of using meteorological data to replace

destructive sampling for predicting potato yield was proposed in a

report in 1929 by an unknown author in the American Potato

Journal. In addition, the agro-ecological zone (AEZ) model, jointly
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developed by the FAO of the UN and the International Institute for

Applied Systems Analysis (IIASA), predicted the yield potential of

different potato farming areas based on statistical data in China

from 1961 to 1997 (Cai et al., 2006). In a study examining the

relationship between meteorology and yield variability over

multiple years, models were constructed with 35 years of data

based on MLR, stepwise regression, and BP neural networks, with

MREs of 6.715%, 7.811%, and 4.479% (Yang S. et al., 2017).

Piekutowska et al. (2021) constructed MLR and ANN models

using yield data and meteorological and management data from

2010 to 2017, with the ANN model estimating potato yield more

accurately (R2 = 0.86).

Furthermore, soil indicators have been utilized as predictors of

potato yield in some studies. For instance, ANN and MLR models

were constructed that incorporated soil infiltration resistance,

organic matter, microbial load, and tillage system, resulting in

superior prediction of potato yield, with R2 values of 0.951 and

0.894, respectively (Abrougui et al., 2019). Yield was simulated

based on soil apparent conductivity and achieved an R2 between

0.57 and 0.66 (Frac̨kowiak et al., 2020). However, yield loss due to

pests and diseases also constitutes an essential component of yield

prediction theory. It was reported that the rate of yield loss caused

by 64 potato cyst nematode eggs per gram of soil ranged from 8.5%

to 56% and 9% to 58%, for two experimental sites (Hajihassani

et al., 2013).

Several environmental indicators can be used as yield indicators

because their variability greatly affects potato yield. However, as

with methods based on agronomic parameters, these methods do

not reflect the full range of potato yield formation.
5.3 Input-output model

The approach based on input-output theory considers various

agricultural inputs, including human labor, energy, fertilizer,

irrigation, pesticides, and so on (Chen and Wang, 2010). Some of

the input-output model for yield prediction were developed by

quantifying the effects of different energy inputs on yield by

combining economic mathematical models such as the Cobb-

Douglas function. Potato production was estimated in Iran using

input-output theory combined with ANN and ANFIS, with

correlation coefficients of 0.925 and 0.987, respectively

(Khoshnevisan et al., 2014). Farm potato production was

compared in Iran combined with various inputs, such as

manpower, machinery, diesel, fertilizer, farmyard manure,

pesticides, electricity, irrigation water, and seeds (Hamedani et al.,

2015). In addition, empirical statistical models consider the yield of

previous years as a crucial indicator for yield estimation.

This type of model generally employs a questionnaire to acquire

the different forms of energy inputs. However, the most significant

aspect of questionnaire approach might be the representativeness of

the respondents and the authenticity of the survey data.

Additionally, there are some differences in total energy

consumption and potato yield among various production models

(Al-Hamed and Wahby, 2016). For instance, the energy ratio,

energy productivity, and net energy of large-scale farms (>3 ha)
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were considerably higher than those of smaller farms

(Khoshnevisan et al., 2014). These factors constrain the

applicability of prediction methods at different scales.
6 Discussion

This study revealed the research progress of estimating potato

yield since 1953. A systematic review of different methods provides

an important reference for understanding potato yield prediction

applications. In this section, application scenarios, and advantages

and disadvantages of various methods are systematically discussed.

Additionally, the trend of potato yield prediction is prospected.
6.1 Application scenarios for
yield prediction

Different application scenarios necessitate the use of matching

yield prediction methods. Yield prediction could be used to create

maps of potato yield layout in various regions and to identify the

most suitable planting areas within the planting structure layout.

Precise pre-harvest yield prediction at the international trade level is

beneficial for early adjustment of trade policies to manage evolving

international trade dynamics. Furthermore, in large-scale potato

production, pre-harvest yield estimation enables development of

timely marketing and storage plans to ensure economic benefits.

We present several application scenarios and discuss the applicable

yield prediction methods below.

6.1.1 Optimal allocation of resources
Potato yield forecasts at the regional and national level can

support decision-making in planning growing areas and

international trade. Satellite RS is the most intuitive and effective

method to meet these demands because it can monitor the extent of

potato cultivation over large areas while obtaining various

parameters for assessing vegetation growth and predicting final

yields. In contrast to traditional statistical survey methods, satellite

RS can provide accurate and real-time maps of potato yield

distribution. Combining yield mapping for other crops and yield

projections for different geographic spaces under future climate

change conditions can identify more suitable planting areas for each

crop. The integration of satellite RS technology and CGM can

facilitate the prediction of crop yields over large areas with greater

accuracy and precision. Satellite-based RS could predict yield about

two months before harvest to allow earlier development of trade

strategies and ensure economic development and food security.

From a farm perspective, potato yield prediction provides

decision support for marketing and storage strategies. High-

resolution satellites could be used to predict potato yield for large

plantings. However, it is preferable to use UAVs to acquire high-

resolution image data for slightly smaller farmlands. Companies in

smart agriculture could provide these special services. In addition,

long-term yield forecasting services, such as MARS Crop Yield

Forecasting System (MCYFS), are necessary for all stakeholders.
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6.1.2 Precision management
Estimating potential yield through crop models and simulating

potato productivity under different environmental conditions can

offer suggestions to potato farmers to reduce yield differentials, such

as implementing better management strategies for irrigation,

fertilization, and sowing period (Deguchi et al., 2016; Li et al.,

2022). UAV RS provides a fast and non-destructive way to access

field phenotypes and is an important tool for decision support in

field management. Various yield estimation models can also be

integrated with intelligent management systems to achieve accurate

field management.

The image processing and model building for UAV remote

sensing and CGM can be challenging and require specialized skills.

However, many growers may not have the necessary professional

background to conduct yield prediction using these methods. To

address this issue, smart agriculture companies with expertise can

provide data collection, analysis, and integrated delivery services.

For instance, a user interface based on the input-output model was

developed using C-sharp that enables direct potato yield prediction

(Al-Hamed andWahby, 2016). In addition, the CGM could provide

decision support for precision management by simulating the

potato growth process under different management and climate

conditions. However, it is still necessary to use different varieties to

calibrate CGM in different regions. Due to the complexity of CGM,

some simplified models, such as AquaCrop, might be suitable.

As smartphones become more prevalent, one approach to site-

specific yield forecasting is to deliver dependable yield projections

and decision-making support by incorporating multiple sources of

big data into mobile devices and designing an intuitive user

interface for potato farmers. It is critical that the yield estimation

technique is practical and comprehensible. It should provide

unambiguous information as accurately as possible while

remaining applicable to commercial farming practices. Dispelling

user misunderstandings is crucial in facilitating replication.

Conducting pilot studies and demonstrating the effects of yield

estimation in specific regions is an effective means of promotion.

6.1.3 Responding to climate change
Assessing the impact of climate change on potato growth and

yield is beneficial for selecting the most suitable varieties and

management strategies under climate change conditions.

However, the impact of climate change on potato production

varies due to differences in cultivation areas, growing seasons, and

cultivation management practices (Bender and Sentelhas, 2020;

Yagiz et al., 2020).

There are many studies pointing to a possible decline in potato

yields under future climate change conditions. Applying future

climate change scenarios to current potato cropping systems using

an improved SUBSTOR-potato, it was pointed to a small decline in

global tuber production by 2055 (-2% to -6%) and a large decline by

2085 (-2% to -26%)(Raymundo et al., 2018). DSSAT was used to

simulate the yields of barley and potato under future climate change

conditions (Holden et al., 2003). Non-irrigated potato tuber

production in Ireland is projected to decline in 2055 and 2075

due to water shortages. A study of yield changes under future
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climate change scenarios for a variety of crops in Mexico using

AquaCrop suggests that Mexican potato yields will decline (Arce

Romero et al., 2020).

Interestingly, other studies have produced the opposite result.

The possible negative effects of increased temperatures and reduced

water availability for potato are offset by the positive effects of

increased CO2 levels on water use efficiency and crop productivity

(Haverkort et al., 2013). By mid-century, potato yield variability and

productivity will increase in Belgium with greater variability

between climate change models than spatial variability

(Vanuytrecht et al., 2016). The differences in prediction results

could be attributed to the different CGM and study areas used in

these investigations. In addition, different climate change scenarios

also produce different simulation results (Pushpalatha et al., 2021).

Despite extensive research on the impact of climate change on

potato yields, validation of previous climate change impact

assessment results on yields is still lacking.

According to the prediction results, it is possible to implement

corresponding countermeasures, such as changing the planting area

or management practices. For example, optimizing sowing and

irrigation strategies can improve agro-pastoral ecotone (APE)

potato yield and water productivity (Tang et al., 2018). Delayed

sowing and selection of medium-maturing potato varieties are

important ways to cope with warm and dry climates in the APE

of northern China (Li et al., 2019). WOFOST has been integrated

into the Crop Growth Monitoring System (CGMS) to assess the

impacts of climate change. The impact of climate change on

potential productivity of potato was studied in West Bengal using

the WOFOST crop growth simulation model (Dua and Sharma,

2017). They minimized the impact of climate change by selecting

appropriate varieties and changing planting dates to design

management strategies.
6.2 Comparison of different prediction
strategies for predicting potato yield

Various prediction methods have their own characteristics. In

this section, yield prediction strategies are compared and the

knowledge gaps between potato and other crops are presented.

6.2.1 RS-based methods
RS-based methods could replace other destructive sampling

methods by obtaining crop phenotype through non-destructive

methods to build yield prediction models. Morier et al. (2015)

inferred nitrogen stress and estimated potato yield combined with a

handhe ld hyperspec t ra l sensor (F ie ldSpec handhe ld

spectroradiometer), which obtained similar results to destructive

methods. In addition, there are significant variations between

different platforms and sensors for predicting potato yield.

Satellite RS can be used to monitor large areas of field with its

wide coverage. However, the constraints of cloud cover and revisit

cycles might limit the availability of images. Additionally, the low

spatial resolution of satellite results in a blended image element

composed of soil and vegetation is challenging to process. Yield

prediction using satellites faces significant challenges in many
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regions due to small plot sizes, mixed cropping, and

intercropping. Advanced satellites and image processing methods

might solve these problems. Satellites used for potato yield

estimation are detailed in Table 2. Currently, satellites equipped

with spectral sensors are still prevalent, and there is a lack of active

RS satellites, such as the C-SAR-equipped GF-3 with high

resolution of 1 m, applied to related research. In addition,

hyperspectral satellites have not been applied to predict

potato yield.

Compared to satellites, proximal RS is more suitable for site-

specific rather than regional yield prediction. UAVs are a promising

solution for precision agriculture management, given their high

resolution, low cost, and flexibility. According to our literature

survey, studies on potato estimation with UAV RS have employed a

variety of sensors, but there are few applications of UAV-based

active sensors. Fixed-wing drones are also applied less in potato

yield prediction, although their applications in more rapid

monitoring of large areas of farms cannot be ignored. Ground-

based RS can capture phenotypes with higher resolution. However,

handheld instruments have incomplete spatial coverage and are

time-consuming for sampling. Additionally, fixed ground-based

phenotyping devices have limited coverage and come with

high costs.

Potato yield formation can be described as the production of

photosynthetic assimilates multiply by the harvest index (Khan,

2012). The growth dynamics of the aboveground canopy can

directly reflect canopy light energy interception and thus affect

the formation of photosynthetic assimilation products. Therefore,

many practical applications in the studies we investigated have been

conducted to predict potato yield by directly obtaining

aboveground phenotypes from passive optical sensors. However,

they can only obtain information from the top of the canopy and are

susceptible to clouds and light. Active sensors that used controlled

sources of radiation, such as SAR and LiDAR, are not affected by

weather and clouds. Another method is to detect the underground

tubers directly by sensors with penetrating ability. Longer

wavelengths are more penetrating because the object absorbs less

of the wave. There has been a study conducted on the use of sound

waves for detecting sweet potatoes in sandy soil (Iwase et al., 2015).

However, the research is still in its preliminary stages. Computed

tomography (CT) can be used to obtain potato tuber phenotypes

non-destructively using X-ray to penetrate the soil for precise yield

prediction. Nevertheless, CT is mostly used in indoor pot

experiments (Ferreira et al., 2010), and it is difficult to apply it in

open conditions due to the associated radiation dangers and the

requirements of a receiver after penetrating the tuber. Ground

penetrating radar (GPR) is an effective means of non-destructive

detection of underground targets. Although GPR is still at the

research phase in the detection of underground tubers in potato

with limited throughput, this type of tool has great potential for

future potato yield prediction (Cheng et al., 2022). Currently, there

are few studies comparing active and passive sensors for potato

yield prediction, and more research is needed to evaluate the

predictive performance of both.

There are some differences in potato RS-based yield estimation

compared to other crops. For example, computer vision (CV) is
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widely used in intelligent yield prediction to identify and count

fruits for further harvesting and marketing decisions (Ramu and

Priyadarsini, 2021), but potato tubers located underground are

difficult to observe directly by conventional optical sensors.

Sound waves and CT could obtain tuber phenotype without the

effect of soil, but most studies are limited to potted plants. In

complex field conditions, there is a lack of research on obtaining

potato tuber phenotype directly for predicting yield. Furthermore,

the leaves of potatoes are compound, and the propagation path of

light between the leaves is different from that of rice and other field

crops. It is necessary to improve or establish a dedicated RS-based

yield prediction methods for potatoes, taking into account the

inherent characteristics of potato.

Compared to the mechanistic model, most RS-based methods

build empirical models by observing aboveground phenotype

directly. In addition, these complex relationships between crop

growth and external environmental factors, including

meteorological conditions, soil nutrients, and field management,

remain difficult to accurately capture through RS.

Despite significant progress in the development of theoretical

models and operational systems for RS yield estimation, the

limitations of current RS technology prevent accurate and

quantitative reflection of the underlying mechanisms of crop

development and yield formation.

6.2.2 CGM-based methods
CGM simulate yield with comprehensive information of

variety, management, meteorological parameters, and soil. CGM

thus have a complete mechanism to simulate the crop growth

process, which is their most significant property. In addition,

along with yield prediction, CGM can simulate other elements

such as water and nitrogen dynamics of crops to provide support for

precision management. Finally, combining CGM with climate

change models could predict the yield potential under different

regions, cultivars, and cultivation strategies under future climate

change conditions to make optimal decisions.

However, most CGM make accurate simulations based on

numerous input parameters, which is often difficult to achieve in

potato production. In addition, CGM require laborious field trials to

calibrate and validate the models for different varieties in different

regions. Somewhat simplified CGM, such as AquaCrop and

LINTUL-POTATO-DSS, which significantly reduce the number

of input parameters, have also been developed in recent years.

Additionally, the establishment of a database platform of shared

variety parameters helps to enhance the applicability of the models.

Compared to large scale RS methods, CGM cannot reflect the

variation of yield in different spaces by collecting data from specific

samples. Assimilation of RS with CGM could extend the model

application to a regional scale. In addition, although some models

use a constant HI, the effectiveness of such an approach is not

always satisfactory. Techniques for assimilating external

observations into the model to continually adjust certain state

variables and attributes can be used to enhance model

performance. RS data can offer prompt updates on crop or

environmental conditions, allowing for periodic updates of model

simulations during the simulation process (Hao et al., 2021).
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Currently, DSSAT-SUBSTOR is still the most widely used

model for predicting potato yield. However, due to differences in

the modeling principles of individual models, these models often

exhibit different simulation results. Uncertainty due to differences

in model structure could be reduced by multi-model ensembles

(MME), which could improve the prediction performance

compared to a single model (Martre et al., 2015).

In addition to yield, commercial attributes of potato are also

very important. Tuber yield and tuber size (expressed as number of

tubers per 10 kg) were simulated using LINTUL-POTATO-DSS

(Machakaire et al., 2016). However, there were few studies that

simulated commercial indicators such as potato tuber size.

Additionally, unpredictable extreme weather events remain a

concern, and even with the ability to anticipate and forecast

potential risks, current capacity to cope with them is limited.

6.2.3 Methods based on yield limiting factor
Yield prediction based on physiological and biochemical

agronomic indicators, require frequent manual sampling, but

achieving full spatial coverage is often challenging. In addition,

many agronomic parameter-based approaches employ one or a few

parameters for empirical modeling, which might lead to

weaker generalizability.

Meteorological parameter-based methods predict potato yields

under specific climatic conditions, without laborious field sampling.

However, multi-year historical yield and climate data is difficult to

obtain in reality. As with the agronomic parameter-based approach,

which employs an empirical approach to modeling, this method

also oversimplifies. Simulation results are not reliable with drastic

changes in weather conditions. Providing farmers with suitable

agricultural insurance may be a way to mitigate the adverse effects

of unexpected weather conditions. With the growing scope of

agricultural informatization, developing a precise and

comprehensive agricultural information data platform containing

a range of meteorological and yield data is crucial to achieve multi-

year yield prediction.

Yield prediction methods based on input-output theory

necessitate multiple input parameters, which are frequently

derived from interviews with growers. Meanwhile, farmer surveys

are also labor-intensive. Ensuring the accuracy of the data collected

can be challenging (Fermont and Benson, 2011).
6.3 Uncertainties of yield prediction

Uncertainty is a range centered on the true value, and the larger

the range the greater the uncertainty (Lu, 2004). Model uncertainty

emerges due to necessary simplification of the real physical process.

Differences between the theoretical and real values due to various

factors such as assumptions made during model construction,

boundary conditions, and the difficulty of reflecting them in

calculations at the current state of technology are considered

model uncertainty (Xing and Guo, 2006). Potato yield formation

is a complex system determined by a combination of cultivation

management practices, climatic conditions, soil conditions, and

varieties. The yield simulation process could be influenced by any
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changes in the above conditions. At the same time, different

parameter selections, model inputs, and model structures can lead

to uncertainty when constructing potato yield prediction models. It

is important to address sources of uncertainty and improve the

adaptability of model prediction accuracy and prediction

confidence for accurate and reliable potato yield prediction (Ma

et al., 2021).

The causes of uncertainty include inherent limitations in

predictability (e.g., future greenhouse gas emissions) and

deficiencies in forecasting skills (e.g., flaws in model design)

(Challinor et al., 2013). Model structure, inputs, and parameters

are the three main sources of uncertainty (Wallach et al., 2016).

Although the empirical statistical model is computationally simple,

there is uncertainty in the functional form and coefficients of

different modeling approaches (Wu et al., 2014). Any simple

model-based or empirical regression-based inversion is unlikely to

produce stable inversion results, and accounting for errors in ground

truth and sensor data can improve the estimation accuracy of the

parameters in the model (Fermont and Benson, 2011). The

mechanistic model simplifies the real growth state of the crop due

to assumptions made in the construction process, boundary

conditions, and the difficulty of responding in the calculations at

the current level of technology. Therefore, the uncertainty caused by

the model structure needs to be considered in yield prediction.

Moreover, the accuracy and representativeness of the yield

prediction model largely depends on the accuracy of the input

data, including weather, soil, and management information. The

uncertainty of these input data, especially in large-scale

applications, can lead to significant errors in the prediction

results. Therefore, it is necessary to further improve the accuracy

of input data acquisition and data processing methods to improve

the accuracy of yield prediction methods. In terms of RS, its

integration with other methods, such as ground-based sensors

and machine learning algorithms, can also improve the accuracy

and practicality of yield prediction models. For example, RS data

noise and environmental stress can increase the prediction

uncertainty (Ma et al., 2021).

Uncertainty in model parameters, on the other hand, is a bias in

simulation results due to deviations in the selection of parameters.

For example, the impact of parameter value uncertainty on spring

wheat phenology prediction uncertainty was quantified, and the

relative contribution of model structure-driven and parameter

value-driven uncertainty to overall prediction uncertainty were

assessed (Alderman and Stanfill, 2017).

Few studies address all three sources of uncertainty

simultaneously. For CGM, most studies have been devoted to the

resolution of model input uncertainty. Sensitivity analysis is the

most used uncertainty analysis method to determine which model

inputs are more important for simulation results (Matott et al.,

2009). In addition, other methods such as Monte Carlo analysis,

Bayesian methods, and Generalized Likelihood Uncertainty

Estimation (GLUE) can be used for model uncertainty analysis.

Currently, most uncertainty assessments focus on the three staple

crops wheat, maize, and rice, with less research on potato. Yield

forecasting is the most concentrated area of uncertainty research
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because of its importance and because the results are influenced by

many factors (Chapagain et al., 2022).
6.4 Fusing multi-source information

The yield estimation performance of models with a single

source of estimation information are often inferior to estimation

models that combine data from multiple sources. Previous studies

have shown that combining multiple image feature parameters can

improve yield prediction accuracy. Incorporating various

parameters in RS yield estimation models can improve model

performance. The crop model AquaCrop was combined with an

economic model for optimizing irrigation management at the farm

level (Garcia-Vila and Fereres, 2012). It is significant to use field

trials, simulations, and deep learning models to study changing

sowing dates to mitigate the effects of climate change (Dewedar

et al., 2021). By combining deep learning algorithms with multi-

source imagery including LiDAR and optical sensors, crop

detection can be significantly improved (Prins and Van Niekerk,

2020). Coupling crop models with RS data is now a common

method for yield estimation. RS images can be used to invert the

LAI and applied to the crop model. However, the inconsistent

relationship of LAI with most VIs and saturation problems lead to

uncertainty in yield estimation. Other canopy variables, such as CC

can be used in the AquaCrop model (Steduto et al., 2009) for yield

prediction instead of LAI.
7 Conclusion

In this paper, methodologies for potato yield prediction and its

evolution were comprehensively reviewed. The advantages and

disadvantages of various strategies for potato yield prediction

were compared. Moreover, the uncertainties of models and multi-

source data fusion for yield prediction were discussed, providing a

foundation for future studies.

Currently, potato yield prediction on large farmlands

commonly employs RS and CGM. RS-based methods obtain

farmland image information quickly and comprehensively by

making full use of the unique advantages of RS platforms and

sensors, however it is difficult to reflect the intrinsic mechanism of

crop growth. CGM-based methods simulate the yield formation

process of the crop, but their operation is challenging due to the lack

of spatial expansion. In addition, methods based on agronomic

parameters, meteorological parameters, and input-output theory

are also widely used in the field of potato yield prediction.

With the progress in RS platforms, sensor technologies, and AI

algorithms, UAVs and satellites equipped with advanced sensors

have become mainstream tools for field monitoring and yield

prediction at regional scales, which can be used for resource

allocation and trade decisions. In addition, with the incorporation

of modules, including water, nitrogen, meteorology, and economics,

mechanisms of CGM have been more comprehensive. Combined

with the comparison and improvement of multi-model ensembles,
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potato models are continuously improved in terms of

precision management.

Multi-source and time-series data have great potential for future

yield prediction, despite the current study using a limited number of

varieties and sample sizes for potato yield prediction. In the future,

it is necessary to pay attention to large time-series data studies with

multiple varieties and large sample sizes.
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Gómez, D., Salvador, P., Sanz, J., and Casanova, J. L. (2019). Potato yield prediction
using machine learning techniques and Sentinel 2 data. Remote Sens. 11 (15), 1745.
doi: 10.3390/rs11151745
Frontiers in Plant Science 23
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