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Multi temporal multispectral
UAV remote sensing allows for
yield assessment across
European wheat varieties already
before flowering

Moritz Paul Camenzind1* and Kang Yu1,2*

1Precision Agriculture Lab, School of Life Sciences, Technical University of Munich, Freising, Germany,
2World Agricultural Systems Center (Hans Eisenmann-Forum for Agricultural Sciences – HEF),
Technical University of Munich, Freising, Germany
High throughput field phenotyping techniques employing multispectral

cameras allow extracting a variety of variables and features to predict yield

and yield related traits, but little is known about which types of multispectral

features are optimal to forecast yield potential in the early growth phase. In

this study, we aim to identify multispectral features that are able to accurately

predict yield and aid in variety classification at different growth stages

throughout the season. Furthermore, we hypothesize that texture features

(TFs) are more suitable for variety classification than for yield prediction.

Throughout 2021 and 2022, a trial involving 19 and 18 European wheat

varieties, respectively, was conducted. Multispectral images, encompassing

visible, Red-edge, and near-infrared (NIR) bands, were captured at 19 and 22

time points from tillering to harvest using an unmanned aerial vehicle (UAV) in

the first and second year of trial. Subsequently, orthomosaic images were

generated, and various features were extracted, including single-band

reflectances, vegetation indices (VI), and TFs derived from a gray level

correlation matrix (GLCM). The performance of these features in predicting

yield and classifying varieties at different growth stages was assessed using

random forest models. Measurements during the flowering stage

demonstrated superior performance for most features. Specifically, Red

reflectance achieved a root mean square error (RMSE) of 52.4 g m-2 in the

first year and 64.4 g m-2 in the second year. The NDRE VI yielded the most

accurate predictions with an RMSE of 49.1 g m-2 and 60.6 g m-2, respectively.

Moreover, TFs such as CONTRAST and DISSIMILARITY displayed the best

performance in predicting yield, with RMSE values of 55.5 g m-2 and 66.3 g m-2

across the two years of trial. Combining data from different dates enhanced

yield prediction and stabilized predictions across dates. TFs exhibited high

accuracy in classifying low and high-yielding varieties. The CORRELATION

feature achieved an accuracy of 88% in the first year, while the

HOMOGENEITY feature reached 92% accuracy in the second year. This study
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confirms the hypothesis that TFs are more suitable for variety classification than

for yield prediction. The results underscore the potential of TFs derived from

multispectral images in early yield prediction and varietal classification, offering

insights for HTP and precision agriculture alike.
KEYWORDS

wheat variety testing, yield prediction, UAV remote sensing, image texture features,
machine learning, phenology
1 Introduction

Yield improvements are currently estimated to average less than

1% annually in Europe and are even decreasing in some European

countries (Ray et al., 2013). One of the reasons for this stagnation

are low breeding gains which are estimated to be only 0.45%

(Cormier et al., 2013) per year. Grain yield is the product of the

number of grains per area and the weight of a single grain, which are

both controlled by a variety of genes. New molecular tools have

emerged to advance breeding for such quantitative traits but their

potential is still not exploited, partly due to our ability to phenotype

(Araus and Cairns, 2014). Traditional methods for phenotyping of

yield and yield related traits often require manual labor and are thus

slow, expensive and subjective. Faster, cheaper and standardizable

alternatives have emerged quickly in recent years and are referred to

as high-throughput phenotyping (HTP) (Cabrera-Bosquet et al.,

2012; Hund et al., 2019; Watt et al., 2020).

HTP employs a variety of advanced technologies such as digital

imaging, remote sensing and artificial intelligence but to assess

grain yield directly remains infeasible under field conditions. Major

advances have been achieved in counting the number of spikes

(David et al., 2020; David et al., 2021) and first attempts have been

made to count the number of grains per spike (Xu et al., 2023). To

our knowledge, grain weight has not been directly assessed under

field conditions using remote sensing. Although these techniques

are promising, they are based on computer vision and require

images that show a high level of detail, resulting in a low throughput

of the technology (Eskandari et al., 2020). To overcome this

limitation, yield assessment often focuses on the estimation of

secondary traits that are related to yield formation (Li et al., 2019a).

To identify suitable secondary traits, yield formation has to be well

understood. With an average precipitation between 2010 and 2020 of

741 mm (Climate Data Center of the German Weather Service), the

agricultural systems in the Freising District, Bavaria, Germany can be

classified as radiation limited (Patrignani et al., 2014), although lack of

precipitation and high temperatures can lead to yield losses in this

region as well (Heil et al., 2023). Therefore, yield formation in this

region can very broadly be described as a function of the incident

radiation per day during the growing season, the intercepted radiation

over the canopy life cycle, the green leaf duration, the radiation use

efficiency as well as the harvest index (Araus et al., 2008). This indicates

that a single time point may not be sufficient for an accurate yield

assessment. Furthermore, yield formation is influenced by an interplay
02
of sources and sinks. The sinks can be seen as the potential yield and

sources as the actual supply of assimilates (Fischer, 2011). This

interplay starts with the transition of the plants from the vegetative

to the reproductive stage and continues during anthesis until the grain

filling stage (Slafer and Rawson, 1994). Still, some stages are more

critical for yield formation than others are. Fischer (1985) found that a

relatively short period before flowering is critical for yield formation

due to the source driven survival of floret primordia at the stem

elongation stage (González et al., 2005) and is linked to the spike

biomass (Slafer et al., 1996). Breeders however are interested in the

yield potential as early as possible in the growing season in order to be

able to focus their phenotyping efforts on well performing genotypes

(Garriga et al., 2017). At the germination stage, the maximum number

of plants and at the tillering stage, the maximum number of tillers is

being formed which are all linked to the final number of grains

harvested. However, the tillering potential is highly dependent on the

environment and under high yielding environments no differences in

yield were found between varieties with a low and such with a high

tillering potential (Bastos et al., 2020). Furthermore, the sinks at these

early stages are microscopically small and hidden in the developing

stems, making their detection impossible by remote sensing

technologies. Therefore, predicting yield at the tillering stage is difficult.

Secondary traits related to the sources such as leaf area index

(LAI) (Bukowiecki et al., 2020), chlorophyll content (Pan et al., 2023)

and finally biomass (Yue et al., 2019) have been phenotyped using a

variety of techniques. Primary traits such as grain yield and quality

have been assessed by estimating the mentioned secondary traits

during the growth season (Duan et al., 2017; Hassan et al., 2019;

Vatter et al., 2022). A variety of sensors have been employed such as

RGB cameras (Fernandez-Gallego et al., 2019), multispectral

cameras (Prey et al., 2022), hyperspectral sensors (Bowman et al.,

2015), thermal cameras (Elsayed et al., 2017) and active sensors such

as Lidar (Li et al., 2022) to mention a few. Among these technologies,

multispectral cameras offer a high work efficiency for a relatively low

cost. Along with the reflectance, multispectral cameras are imaging

sensors and therefore have the advantage of capturing the structure

or texture of an object. As a result, they allow for extracting a unique

variety of features to assess yield in wheat. Generally, these features

can be grouped into three categories. First, single-band reflectance in

specific wavelengths can be directly extracted from multispectral

data. Vatter et al. (2022) fed single band reflectances to a neural

network and predicted durum wheat quality and yield before the

harvest. Second, the reflectance of single bands can be combined to
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calculate vegetation indices (VIs), which are often more sensitive to

specific traits and less affected by environmental conditions during

measurement (Tucker, 1979). This approach has been used by

several studies for yield prediction (Duan et al., 2017; Hassan

et al., 2019; Prey et al., 2022). However, single-band reflectance

and VIs may suffer from saturation, particularly when the canopies

are closed (Rischbeck et al., 2016). Third, texture features (TFs) can

be extracted to describe the distribution of pixels within a region of

interest (ROI). TFs were originally designed for image classification

(Haralick et al., 1973) and have since been used for classification of

forest stands (Coburn and Roberts, 2004), wheat phenology (Zhou

et al., 2023) and wheat seeds (Khojastehnazhand and Roostaei,

2022). Therefore, they might also be beneficial when identifying

elite wheat varieties directly as suggested by Garriga et al. (2017).

Several studies employed TFs for yield prediction in explorative

studies and found that they often perform less effectively than single-

band reflectance or VIs (Li et al., 2019b; Yue et al., 2019; Zhang et al.,

2021) but can improve the prediction of leaf area and biomass when

combined with VIs (Yue et al., 2019; Zhang et al., 2021).

Accurately predicting yield or identifying elite wheat varieties using

multispectral reflectance further requires careful consideration of the

phenological stage of the canopy. Late stages such as the anthesis stage

and the grain filling stage are often identified as the most suitable stages

for yield prediction in wheat when using VIs (Bowman et al., 2015;

Duan et al., 2017; Hassan et al., 2019). Earlier stages such the tillering

stage are generally and naturally performing worse (Prey et al., 2022).

Still, Walsh et al. (2022) successfully predicted yield at the tillering stage

and Marti et al. (2007) at the stem elongation stage, both using the

normalized difference vegetation index (NDVI). To date, most studies

focus on only one measurement date during a given phenological stage

or test only one feature or feature class. A more detailed study is

therefore needed to better understand the interaction of phenology

stages and features for yield prediction. Particularly, phenology showed

to have a big influence on the relationship between biomass and TFs (Li

et al., 2019c). However, the performance of TFs at different phenological

stages has been reported in a few studies only (Zhang et al., 2021).

Multispectral cameras mounted on unmanned aerial vehicles (UAVs)

further enable breeders and researchers to assess the aforementioned

spectral and TFs at a high temporal frequency and precision. Within a

proper time-window, using a time series for yield prediction allows for

the extraction of dynamic canopy traits that could potentially be useful

for yield prediction. For instance, Pinter et al. (1981) suggested summing

measurement dates after heading to improve yield prediction in wheat

and barley whereas Raun et al. (2001) suggested taking two spectral

measurements after dormancy. Prey et al. (2022) showed that models

containing data frommultiple dates could improve yield predictions and

compensate if data could not be collected on the optimal date due to

practical reasons and phenological shifts between years.

Collectively, despite these successes, little is known about which

traits determine yield nor which types of multispectral features may

allow us to forecast yield potential in a variety testing trial in the early

growth phase. Therefore, this study aims (1) to identify the best

performing multispectral traits for yield prediction and classification

in wheat (2) to investigate, if yield types can be classified in relatively

early stages and finally (3) to investigate, how traits measured at

different time points can be combined to predict yield more accurately.
Frontiers in Plant Science 03
2 Methods

2.1 Field trials

Field trials were conducted at the research station of the Technical

University ofMunich in Dürnast, Freising (48.40630° N, 11.69535° E)

in the growing seasons of 2020/2021 and 2021/2022 further referred to

as seasons 2021 and 2022. The soil at this location can be characterized

by a homogeneous Cambisol with 20.8% clay, 61.5% silt and 16.6%

sand. Precipitation during this periodwas 595mmand 415mm in the

first and the second season, respectively. The average temperature was

7.2°C in the first and 8.0°C in the second season (Supplementary

Figure 1). A lot of precipitation around flowering characterized season

2021whereas the season 2022 suffered too little precipitation at the end

of the tillering stage. Climate datawas collected from aweather station

(Station id 5404) operated by the Climate Data Center of the German

Weather Service located a few hundred meters from the trials. The

temperature was aggregated to phenologically meaningful growing

degree-days (GDD) (Equation 1) (Bonhomme, 2000):

GDD =  o
n

d=1

Tmeand (1)

Tmeand =  o
​ maxTd,h+minTd,h

2 − baseT

24
(2)

where Tmeandis the mean temperature for day d after sowing as

determined by Equation 2, maxTd,h and minTd,h are hourly

maximum and minimum temperatures for day d and baseT is the

base temperature, which was set to 0°C.

A panel consisting of 19 diverse European winter wheat elite

varieties (Triticum aestivum) in 2021 and 18 varieties in 2022 was

grown in plots with a size of 10 m x 1.85 m. All varieties grown in

2022 were grown in 2021 as well (Table 1). The plots were arranged

in a randomized complete block design with four replicates,

resulting in 76 plots in 2021. In 2022, the 72 plots were part of a

bigger trial, which was arranged as a randomized strip-plot design

with four replicates as well. Orthophotos of the trials can be found

in Supplementary Figure 2 in the appendix. All plots used for this

study were fertilized by applying 180 kg N ha-1 in three equal splits

at BBCH 25, 32 and 65. Plant protection was carried out according

to local practice. Sowing took place on the 10.11.2020 and the

20.10.2021 and all plots were harvested at full maturity on the

03.08.2021 and the 26.07.2022, respectively.
2.2 Grain yield, phenology assessment and
Leaf area index measurements

The entire plots were harvested using a combine harvester. The

water content of the grains was determined by weighing the grains

after harvest, drying them at 65°C until constant weight was reached

and weighing them again. The final yield was normalized to a

moisture content of 14%. In each year, the three varieties with the

lowest average yield were classified as low yielding and the three

varieties with the highest average yield as high yielding. The
frontiersin.org
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TABLE 1 Grain yield, yield group and phenology of the single varieties.

lowering Early Grain Filling
Late

Grain Filling

2022 2021 2022 2021 2022

1273.3
(16.1)

1397.0
(59.2)

1404.5
(26.0)

1653.3
(79.2)

NA

1229.3
(34.2)

1368.8
(62.5)

1360.8
(26.9)

1673.3
(63.9)

NA

1289.8
(80.2)

1350.0
(51.8)

1422.5
(71.8)

1636.5
(57.7)

NA

1311.5
(14.5)

1434.8
(27.3)

1460 (14.0) 1684.8
(93.6)

NA

1271.8
(85.3)

1363.0
(69.7)

1408.3
(68.4)

1651.5
(64.4)

NA

1283 (38.1) 1356.3
(47.8)

1405.8
(41.1)

1601.5
(23.7)

NA

1283.3
(45.3)

1358.3
(45.9)

1446 (26.8) 1579.3
(13.0)

NA

1338 (9.9) 1411.8
(39.7)

1477.7
(21.4)

1739.8 (2.5) NA

1311 (67.5) 1345.3
(53.3)

1447.6
(81.6)

1653.5
(74.5)

NA

1290.3
(57.4)

1444.0
(20.8)

1436.5
(61.0)

1742.0 (5.8) NA

1299.3
(19.1)

1418.5
(23.7)

1438.8
(40.1)

1756.0
(119.6)

NA

1253.5
(59.1)

1347.3
(44.6)

1383.5
(39.0)

1648.5
(65.7)

NA

1366.8
(32.9)

1442.8
(28.5)

1475.6
(17.1)

1782.0
(62.2)

NA

1284 (43.9) 1428.0
(18.9)

1392.8
(21.5)

1720.5
(78.5)

NA

1238.8
(43.8)

1343.8
(47.7)

1399.8
(53.7)

1624.5
(74.4)

NA

1197.8
(12.7)

1281.5
(26.4)

1331.3
(13.4)

1602.0
(16.9)

NA
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Variety Grain Yield
Yield
group Stem Elongation Booting Heading F

2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021

Absalon
532.0
(32.8)

700.8
(47.6)

635.0
(27.7)

749.8 (7.2) 917.5
(37.3)

1061.8
(18.5)

1046.5
(23.6)

1172 (9.3) 1153.3
(38.7)

Aurelius
541.9
(56.4)

759.7
(76.5) H

609.3 (3.5) 762 (12) 963.5
(52.6)

1037.8
(75.0)

1069.3
(17.6)

1132.5 (51) 1109.0
(0.0)

Axioma
473.0
(41.8)

631.0
(32.9) L

607.5 (4.0) 765.3 (17) 950.3
(31.7)

1102.3
(59.7)

1042.8
(23.8)

1195.5
(66.9)

1121.5
(11.2)

Bernstein
522.3
(33.7)

625.0
(102.2)

626.8
(16.6)

773.3 (17) 981.5 (6.9) 1145 (0.0) 1091.0
(30.2)

1225.8
(13.8)

1201.0
(70.6)

Bologna
490.7
(33.3)

660.7
(29.0)

625.5
(16.7)

751.8
(32.4)

926.8
(61.1)

1081 (84.5) 1038.5
(30.0)

1178 (88.1) 1109.0
(0.0)

CH-Nara
559.4
(30.2)

683.2
(108.0)

635.0
(27.7)

757.5 (9.9) 921.3
(16.7)

1126.5
(37.0)

1042.0
(16.2)

1208 (37.4) 1137.0
(30.9)

Chevignon
598.5
(63.5)

672.5
(43.9) H

615.5
(30.6)

776.5
(39.8)

911.8
(17.7)

1082 (44.3) 1050.8
(25.4)

1200 (46.2) 1144.8
(21.1)

Costello
478.6
(38.8)

589.0
(52.8) L

635.5
(22.3)

786.0
(32.0)

959.0
(31.2)

1145 (0.0) 1103.0
(38.0)

1256.5 (8.2) 1207.8
(67.8)

Dagmar
617.1
(45.4)

725.2
(65.1) H H

611.0 (0.0) 803.3
(32.1)

969.0
(41.6)

1108.8
(82.1)

1052.0
(22.3)

1210.5
(77.2)

1114.0
(16.0)

Elixer
540.4
(76.2)

721.3
(93.3)

643.0
(27.7)

768.5 (8.2) 953.0
(43.2)

1086.8
(75.7)

1118.3
(34.7)

1180.3
(60.5)

1219.5
(87.4)

Hyvento
576.2
(51.1)

685.3
(128.0)

641.3
(21.0)

775.3
(29.3)

956.0
(34.8)

1126.5
(37.0)

1121.8
(6.0)

1220.3
(30.8)

1181.8
(41.7)

Julie
544.2
(95.9)

661.8
(94.6)

635.0
(27.7)

754.0
(19.6)

915.3
(21.8)

1059 (67.1) 1057.3
(15.8)

1155 (58.7) 1142.8
(16.8)

Julius
443.3
(14.6)

544.0
(25.5) L L

639.0
(17.3)

827.8
(45.9)

962.0
(26.9)

1157.8
(25.5)

1092.0
(40.1)

1277.3
(41.4)

1201.3
(65.4)

Montalbano
584.1
(68.8)

681.1
(33.3)

612.8 (3.5) 768.8
(14.2)

954.0
(29.5)

1086.8
(75.7)

1104.0
(14.6)

1183.3
(55.7)

1192.0
(24.0)

Mv Nador
552.4
(45.0)

591.9
(53.0)

643.0
(27.7)

751.0
(11.8)

962.3
(62.6)

1077.5
(80.4)

1084.3
(40.4)

1156.8
(59.8)

1157.3
(76.5)

Nogal
504.2
(81.6)

557.8
(59.2) L

633.3
(29.9)

751.0
(11.8)

972.8
(51.7)

1010 (27.7) 1058.8
(27.3)

1104.3
(19.1)

1084.0
(7.7)
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phenology of each plot was visually rated using the BBCH scale

(Meier et al., 2009) on a plot level. Leaf area index (LAI) was

measured using a Licor 2000 leaf area meter (LI-COR Biosciences,

Lincoln, USA.) with a 45° view cap to minimize operator influence.

One measurements was taken at the top of the canopy and four

measurements were taken under the canopy at three different

locations per plot, which were then averaged.
2.3 Multispectral image acquisition
and processing

Spectral measurements were acquired using a Phantom 4

Multispectral RTK (DJI, Shenzhen, China) unmanned aerial vehicle

(UAV) in the first year. The UAV captures reflectance in wavelengths

of 450, 560, 650, 730 and 840 nm andmeasures the incoming sunlight

by a sensor on top of the UAV. Flight height was set to 10 m above

ground level (AGL) resulting in a ground sampling distance (GSD) of

0.7 cm. In the second year, images were acquired using a MicaSense

Dual Camera Kit (AgEagle Aerial Systems Inc., Wichita, USA)

capturing reflectance in wavelengths of 444, 560, 650, 717, 842 nm.

The camera was mounted to a DJI Matrice M300 RTK UAV (DJI,

Shenzhen, China). Flight height was set to 30 m AGL resulting in a

GSD of 2.5 cm. In both years, overlap in both directions was set to

90%. Before and after each flight, images of a panel with a known

reflectance were taken. Flights were carried out twice per week during

heading and flowering stages and once per week at other stages. First

flight was carried out on the 25.03.2021 and the 24.02.2022 and the

last flight on the 20.07.2021 and the 27.07.2022 when the canopies

were fully senescent. This resulted totally in 19 flights in 2021 and 22

flights in 2022. Images were taken around the solar noon and under

sunny conditions, if possible. The images from each flight were

mosaicked using the Agisoft Metashape Professional 1.8.4 (Agisoft,

St. Petersburg, Russia) structure-from-motion software and were

radiometrically calibrated using the reflectance panels on the

ground and the incident light sensor on the UAV. The processing

parameters used for all flight dates were similar (Figure 1). The point

cloud was georeferenced using the real-time kinetic global positioning

system (RTK-GPS) integrated into the UAS, with the RTK correction

signal provided by SAPOS (Deutsche Landesvermessung, 2023) in

2021 and ground control points were used in 2022. Orthomosaics

acquired in 2021 were resampled to the same GSD as in 2022 by the

average method implemented in gdal (Gdal/Ogr Contributors, 2023).

Reflectance of individual bands was extracted by calculating the

median of a specific region of interest (ROI) representing a plot

using a custom Python 3.7 script (Python Software Foundation,

https://www.python.org/).
2.3.1 Selection and calculation of spectral indices
To compare our approach across a range of vegetation indices

(VIs), we classified them into five main groups based on their

calculation method and selected a representative VI for each group.

The five groups were differential-type, simple-ratio type,

normalized differential type, three-band type, and combination of

two spectral indices type (Table 2). We calculated the indices using
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a custom Python 3.7 script (Python Software Foundation, https://

www.python.org/) and computed the median value for each index

over the regions of interest (ROIs) corresponding to the plots.

2.3.2 Selection and calculation of texture features
Texture features (TFs) can be calculated on any data in a raster

format, on single band reflectances andVIs likewise. In order to reduce

the number of features to be tested, we focused on single band

reflectances only. Hall-Beyer (2017) suggests to calculate TFs on the

band showing the highest contrast and therefore we calculated the

coefficient of variation (CV) for each plot and band. Over all dates, the

RED band showed on average the highest CV in 2021 (0.324) and the

secondhighest in 2022 (0.180) after BLUE(0.187). TheCVof all bands

and dates can be found in Supplementary Figure 3 in the appendix.

Furthermore, Zhang et al. (2021) found that TFs calculated on RED

bandswere correlatedwithLAI aswell as leaf drymatter.Therefore,we

chose the RED band as a base for the calculation of all TFs included in

this study. A 5 x 5 kernel size was used to calculate the GLCM features

over the entire raster. This small kernel size was chosen because wheat

leaf sizes are relatively small compared to our GSD. A quantization

level of 32 was used, with the lowest level corresponding to the first

percentile of the respective raster and the highest level corresponding

to the 99th percentile. This ensured that we could still capture the

variation in the image. GLCMs were constructed with a moving
Frontiers in Plant Science 06
distance of 1 pixel and moving directions of 0°, 45° and 90° to

eliminate possible effects of direction. The CONTRAST,

CORRELAT ION , D I S S IM ILAR ITY , ENERGY , a nd

HOMOGENEITY features were extracted from each GLCM

(Haralick et al., 1973) and saved as the center pixel in a raster. From

these rasters, the final value per plot was extracted by averaging all

values within the ROI. All calculationswere performed using a custom

Python 3.7 script (Python Software Foundation, https://

www.python.org/). The extracted features are listed in Table 3.

2.3.3 Temporal processing of the
extracted features

Temporal feature selection was carried out in R (R Core Team,

2021). Three temporal feature selection strategies were evaluated

(Figure 1). The first strategy involved selecting data from individual

dates, resulting in one feature per observation. The second strategy

involved smoothing the values per plot using splines, implemented

in the package statgenHTP (Millet et al., 2022), with the default

settings applied. Summed GDD from harvest were used as the time

axis. Finally, features were selected using a moving time window

with a width of 3. For each recorded date, the model included

features from the current date and the previous as well as the

following date, resulting in a total of three features per observation.

This strategy is referred to as the moving window model.
FIGURE 1

Workflow applied.
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2.4 Yield prediction model and yield
potential classification model

To predict yield on a plot level and classify yield performance

groups, we employed Random Forest (RF) machine learning models

in R 4.2 (R Core Team, 2021). We optimized the number of trees per

forest to 500 and used the R package caret (Kuhn, 2008). The number

of trees per forest was set to 500 and the number of features per node

was optimized by minimizing the root mean square error (RMSE) for

the regression models and the accuracy for the classification models if

more than one feature was available as in the moving window model.
2.5 Statistical analysis

Pearson correlation coefficient between yield and spectral

features was calculated using measurements taken during tillering

and flowering. At this date, most varieties were in the mid to end

flowering and the correlation of VIs and yield was maximal for most

VIs. The performances of the regression RF models were assessed
Frontiers in Plant Science 07
by the coefficient of determination (R2) (Equation 3) as well as the

RMSE (Equation 4) using a 10-fold cross validation that was

repeated 3 times and averaged:

R2 =   on
i=1(xi −   �xi)

2
*   (yi −  �yi)

2

on
i=1(xi −   �xi)

2
*  on

i=1(yi −  �yi)
2 (3)

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(xi −   yi)
2

n

s
(4)

Where xi and yi represent the observed and the predicted yield,
�xi and �yi represent the mean of the observed and the predicted yield,

respectively. n represents the number of samples. The performances

of the classification RF models were assessed by the accuracy

(Equation 5) of the prediction using a 10-fold cross validation

that was repeated 3 times and averaged:

Accuracy =  
True   positive + True   negative

Total   number   of   classified   objects
(5)
TABLE 2 Vegetation indices (VIs) calculated.

Index type Index Formula Reference

Difference DVI Nir − Red (Shibayama et al., 1999)

Ratio RVI Nir
Red

(Shibayama et al., 1999)

Normalized NDRE Nir − Rededge
Nir + Rededge

(Barnes et al., 2000)

Three Band MCARI
((Rededge − Red) − 0:2*   (Rededge − Green))*

Rededge
Red

� �
(Daughtry et al., 2000)

Combination of indices CCII TCARI
OSAVI

(Haboudane et al., 2002)
TCARI

3* (Rededge − Red) − 0:2*(Rededge − Green)*
Rededge
Red

� �� �

OSAVI
(1 + 1:16)*

(Nir − Red)
Nir + Rededge + 0:16

� �
Green corresponds to 560 nm, the Red to 650 nm, Rededge to 730 and 717 and Nir to 840 and 842 nm wavelength in the first and the second year, respectively.
TABLE 3 Calculation of grey correlation matrix features according to Haralick et al. (1973).

Texture feature calculated on RED raster Formula Explanation

Contrast oN−1
i,j=0Pij(i − j)2 Amount of local variation in pixel values

Correlation
oN−1

i,j=0Pij
(i −  m)(j − m)

s 2

Linear dependency of grey level values in the GLCM

Dissimilarity oN−1
i,j=0Pi,j i − jj j Local roughness of the pixel values

Energy oN−1
i,j=0(Pij)

2 Local steadiness of the gray levels

Homogeneity

oN−1
i,j=0

Pij
1 + (i − j)2

Homogeneity of the pixel values
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3 Results

3.1 Yield, LAI and phenology

Substantial grain yield variation was observed between

experimental plots, with the season 2021 yielding about 128 g

m-2 less than the second season (Table 1). Variety Julius was

classified into the low yielding group in both years, while Skyfall

and Dagmar were classified as high yielding in both years. The

temperature sum to achieve a specific growth stage did not show

significant differences between the yield groups. However, in both

years a tendency towards an advanced phenology in the low

yielding varieties could be observed (Figure 2). The Leaf Area

Index (LAI) was notably higher in the first year of the trial

compared to the second. In 2021, the high-yielding varieties

showed a significantly higher LAI during the stem elongation,

the booting and the late grain filling stage than the low-yielding
Frontiers in Plant Science 08
varieties. This difference could not be observed in the second

year (Figure 2).
3.2 Correlations between grain yield, the
UAV-based reflectance, vegetation indices
and texture features at tillering
and flowering

Figures 3A–D show the Pearson correlation coefficient

examining the relationship between reflectance, vegetation indices

and TFs for the two years of trial at the end of the tillering and end

of the flowering stages for the two years of trial. The analysis reveals

that most features exhibit high correlations with one another during

the tillering stage in both years, with few exceptions. Exceptions are

the REDEDGE band in 2021, the REDEDGE and NIR bands in

2022 and the CORRELATION TF in both years. Correlation to
A B

DC

FIGURE 2

Subfigures (A, B) display the phenologies of the low and high yielding varieties during the two seasons of trial. Subfigures (C, D) display the LAI at
different time points during the growth season. Numbers next or above the boxplot pairs show the p-value of a t-test.
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yield at the tillering stage is high for all features in 2021 with a

maximal R of 0.61 for the NIR band (Figure 3A). In 2022,

correlations to yield are generally low, the highest correlation was

found for the CORRELATION TF (R = 0.38) (Figure 3B).

At the flowering stage, correlation coefficients among features tend

to decrease, especially between features of distinct feature groups. For

instance, VIs are strongly correlated among themselves, while TFs

similarly demonstrate robust correlations within their group. However,

features belonging to the VI group are weakly with features belonging to

the TF group. The absolute correlation of the features to yield generally

decreases for TFs, increases for VIs and single band reflectances show

few differences. In 2022, the absolute correlations increase towards the

flowering stage, except for the REDEGE reflectance. For both years, the
Frontiers in Plant Science 09
NDREwas the feature showing the highest correlation to yield, whereas

the REDEDGE reflectance was not correlated to yield.
3.3 Time series of UAV-based reflectance,
vegetative indices, texture features

Reflectance of the GREEN and the RED band decreased with

plant growth during the tillering and stem elongation stages followed

by an increased with the onset of the grain filling stage. This trend

resulted in a minimal reflectance around booting and flowering stages

(Figure 4). In 2021, the high yielding group consistently displayed

significantly lower GREEN and RED reflectances across various stages
A B

DC

FIGURE 3

Correlation matrices of all features extracted for a single date and yield. Subfigures (A, B) display measurements that were taken at tillering,
(C, D) measurements taken at flowering. Subfigures (A, C) belong to the first, (B, D) to the second year of trial.
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ranging from tillering to late grain filling. However, in the subsequent

season, these marked differences between yield groups only emerged

from the latter half of the stem elongation stage onward.

Both the RVI and NDRE indices showed significant disparities

between the low and high yielding groups in 2021 at all recorded

dates, except for the first one. In 2022, these distinctions were

noticeable from the flowering stage to the initial segment of the

stem elongation stage. Particularly, NDRE exhibited differences

from the conclusion of the stem elongation stage onward

(Figure 4). The TF CORRELATION decreased until booting and

increased towards the end of grain filling in 2021.The feature does

not show a clear development with time in 2022. The

DISSIMILARITY TF decreases from the tillering until the booting

stage and slight increases until harvest in both years. Significant
Frontiers in Plant Science 10
differences between the two yield groups were found in 2021 for

stages ranging from tillering to the end of flowering. In 2022,

differences were found on few dates after flowering only (Figure 4).
3.4 RF regression model for yield
prediction using individual flights and time
series of UAV traits

The performance of the yield prediction models depends highly on

the features and the time point selected. Overall, the 2021 season

demonstrated superior results, exhibiting lower average RMSE in

contrast to the 2022 season. Generally, predictions improve from the

tillering to the booting stage and deteriorate after flowering (Figure 5).
FIGURE 4

Dynamics of single band reflectances (left), vegetation indices (middle) and texture features (right) for different dates. The solid line shows the high yield
group, the dashed line the mean value for the low yield group. The asterisks display significant differences after a t-test (p < 0.05) in the respective values
and dates between the two yield groups. The plots are grouped into the first year of trial (top) and the second year of trial (bottom). Asterisks may
overlap but only one significance level is given.
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In 2021, the most successful feature was the Normalized Difference Red

Edge (NDRE) index at the booting stage, displaying an RMSE of 49.1 g

m-2. In 2022, the Difference Vegetation Index (DVI) at the grain filling

stage showed the best performance (RMSE = 60.6 g m-2). Individual

bands, such as the RED band, produced good results, particularly in the

2021 season. However, on average they were outperformed by the VIs

in both seasons (Table 4). The TFs were the feature group that led to

regression models with the highest RMSE. On average, the RMSE was

10.3 g m-2 higher for the TFs than the VIs in 2021.

Although data smoothing had a marginal influence the seasonal

average RMSE, but worsened a few minimal RMSE. Additionally,

smoothing altered the phenological stage at which the minimal

RMSE was attained, illustrating shifts in the optimal time points for

yield prediction. For instance, after smoothing, the NDRE feature in

2021 displayed an optimal time point for yield prediction during the

early grain filling stage as opposed to the unsmoothed time points,

which indicated the booting stage as optimal (Table 4).

Combining features from three adjacent time points notably

enhanced the average RMSE models by approximately 10 g m-2 and

reduced the minimal RMSE by 5 g m-2 for both years across all
Frontiers in Plant Science 11
feature groups. Employing the moving window method revealed

that the lowest RMSE of 45.0 g m-2 was achieved using the RED

reflectance band at the flowering stage, while in 2022, the

Vegetation Index (VI) CCII reached an RMSE of 50.8 g m-2. The

combination of TFs from various dates yielded models that were

comparable to models constructed with a single reflectance band or

VI. Specifically, the DISSIMILARITY feature reached a minimal

RMSE of 57.4 g m-2 at the booting stage in 2021, and the

HOMOGENEITY feature achieved an RMSE of 56.9 g m-2 at the

flowering stage in 2022 (Table 4).
3.5 RF classification model for classifying
the high and low yielding varieties using
individual flights and time series of
UAV traits

The efficacy of classification models depends on the chosen

features and time points, paralleling the observation in regression

models. On average, the models in the first season exhibited higher
FIGURE 5

Root mean square errors of yield prediction models built using single dates (top), smoothed dates (middle) and combining adjacent dates (bottom).
The figures on the right display models built for the first, the ones on the left for the second year of trial.
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TABLE 4 Display of the time points yielding the lowest RMSE for yield prediction for all reflectance bands, vegetation indices and texture features.

PS TF Mean RMSE Min RMSE PS

2022 2021 2022 2021 2022 2021 2022

GF CON 79.5 94.1 59.7 68.7 SE HE

GF COR 77.6 92.1 62.2 67.7 FL TI

BO DIS 78.4 94.5 57.7 66.3 FL HE

GF ENE 76.4 94.6 55.5 71.2 SE GF

GF HOM 77.0 93.7 59.4 68.7 FL FL

77.8 93.8 58.9 68.5

2022 2021 2022 2021 2022 2021 2022

GF CON 77.4 95.8 68.2 79.0 SE BO

GF COR 75.6 87.6 68.5 74.1 FL GF

GF DIS 74.5 91.6 61.3 72.7 SE BO

GF ENE 76.4 91.6 63.5 74.9 FL GF

GF HOM 76.1 90.7 62.6 74.4 TI BO

76.0 91.5 64.8 75.0

2022 2021 2022 2021 2022 2021 2022

GF CON 66.4 82.4 58.8 62.8 SE FL

GF COR 66.4 80.6 60.8 62.4 SE GF

GF DIS 66.1 82.6 57.4 63.3 BO FL

GF ENE 65.9 82.9 58.6 63.1 SE GF

GF HOM 65.4 81.3 57.6 56.9 BO FL

66.0 82.0 58.6 61.7

hich the min RMSE was recorded.
when the minimal RMSE value was recorded.
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Raster Mean RMSE Min RMSE PS VI Mean RMSE Min RMSE

Single time points

2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021

BLUE 76.8 95.2 58.7 80.4 BO SE DVI 70.6 86.7 61.6 64.4 SE

GREEN 71.3 88.5 53.0 68.0 FL HE RVI 64.7 85.6 52.3 60.6 EF

RED 65.1 87.5 52.4 66.5 FL HE NDRE 61.8 83.5 49.1 61.5 BO

REDEDGE 77.6 87.6 56.0 64.4 LF SE MCARI 72.4 93.5 61.7 67.2 BO

NIR 71.9 87.1 64.8 68.7 SE GF CCII 67.9 86.7 57.0 66.3 SE

Mean 72.5 89.2 57.0 69.6 67.5 87.2 56.3 64.0

Smoothed time points

2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021

BLUE 76.6 96.3 67.1 86.4 SE GF DVI 69.3 84.7 63.7 65.9 EF

GREEN 70.7 92.0 56.4 82.0 FL GF RVI 65.4 82.0 52.3 68.0 FL

RED 64.9 90.9 50.2 75.1 FL FL NDRE 60.1 82.0 49.6 64.3 EF

REDEDGE 78.1 93.9 65.8 83.8 SE GF MCARI 70.8 91.9 60.2 70.7 FL

NIR 69.9 90.8 62.9 72.7 EF GF CCII 68.0 84.0 56.0 61.4 EF

Mean 72.0 92.8 60.5 80.0 66.7 84.9 56.4 66.1

Moving time window

2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021

BLUE 65.1 83.0 52.7 76.5 BO GF DVI 62.8 76.6 58.1 62.7 EF

GREEN 60.4 72.0 53.9 56.1 SE GF RVI 57.2 74.6 48.1 58.7 FL

RED 55.3 72.1 45.0 61.4 FL GF NDRE 54.0 71.5 45.8 58.9 BO

REDEDGE 66.1 74.5 57.5 61.1 SE GF MCARI 62.8 84.1 54.9 65.4 FL

NIR 62.3 76.8 56.7 66.2 SE GF CCII 59.4 72.7 53.8 50.8 BO

Mean 61.8 75.7 53.2 64.3 59.2 75.9 52.1 59.3

Mean RMSE are all RMSE values averaged over the whole season. Min RMSE values show the lowest RMSE of a season. The phenology stages (PS) are reported at w
Bold values indicate minimal Mean and Min RMSE values for a respective feature, featue selection and year combination. Phenology stages in bold indicate the stage
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accuracy compared to those in the subsequent season. However, the

maximum accuracies achieved in both years were similar. Notably,

in 2021, an accuracy of 0.938 was attained using the BLUE band

during the late grain filling stage, while the HOMOGENEITY TF in

2022 achieved the maximum accuracy of 0.915 during the grain

filling stage. In 2021, VIs generally outperformed single-band

reflectances and TFs for yield predictions, whereas in 2022, TFs

slightly surpassed the other two groups. The model performances in

both years exhibited substantial variability across different dates.

Although data smoothing mitigated some fluctuations, significant

differences between adjacent dates persisted. Similar to the

regression models, the average and maximum performance of the

models remained largely consistent after the smoothing of

data points.

Incorporating more than one date into the models generally

yielded a slightly higher average accuracy for all features in both

years. On average, the best-performing feature was the RED band

with an accuracy of 0.758 in 2021 and the Modified Chlorophyll

Absorption Ratio Index (MCARI) in 2022, displaying an average

accuracy of 0.615. However, the maximal accuracies remained

largely unaltered compared to those achieved using single dates

(Table 5). Despite this, fluctuations between individual dates were

reduced (Figure 6). A trend towards increased accuracy with time

was evident in 2021, particularly notable with the RED band,

consistently yielding high accuracies after heading. In the second

year, accuracies improved and were higher than 0.5 for all features

at the end of the heading stage. Moreover, fluctuations between

dates were notably reduced in this subsequent year (Figure 6).
4 Discussion

4.1 Dynamic responses of individual bands

Rededge bands have been widely studied for assessing crop

performance and yield in various crops, including wheat (Horler

et al., 1983; Pavuluri et al., 2015). Canopy reflectance in the red,

rededge and near-infrared (NIR) wavelength range is influenced by

two primary optical properties of canopies: chlorophyll absorption

in the red region and multiple scattering effects on the NIR due to

canopy structural properties. The red-edge region is more sensitive

to chlorophyll content than to leaf area (Xie et al., 2018). Hence, the

variability in LAI might have been bigger or more important for

yield formation compared to the chlorophyll content in our specific

panel. Moreover, the correlation of reflectance in the red-edge

region with yield is known to change quickly with the exact

wavelength measured (Pavuluri et al., 2015), making the selection

of the exact wavelength difficult and leading to inconsistent results.

In contrast, visible bands (Blue, Green and Red) can be more

sensitive to yield-related variations in chlorophyll, and biomass

accumulation during the tillering and the stem elongation stage

until the beginning of the booting stage. They are known to be

correlated to a certain extent to both, chlorophyll concentration and

LAI (Daughtry et al., 2000). Accordingly, our results showed that

the RED, GREEN, and BLUE bands were among the most effective

spectral features for yield prediction, exhibiting significant
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differences between high- and low-yielding varieties at almost all

measurement dates in the first year of trial and during several in the

second year. Their reflectances decrease during the transition from

the stem elongation to the beginning of the booting stage when LAI

and chlorophyll density is known to be maximal (Hinzman et al.,

1984; Hinzman et al., 1986) due to the optical properties of

chlorophyll. From heading until harvest the reflectances in these

bands increase due to senescence when chlorophyll degradation

takes place (Spano et al., 2003).

The NIR region is known to be sensitive to leaf area and

especially ground cover (Korobov and Railyan, 1993), making it a

useful band for predicting biomass and therefore yield. Our results

indicate that the NIR band performed best during the stem

elongation stage for yield prediction and at the booting stage

when there were significant differences in (LAI) between the two

yield groups. In the second season, the differences in the reflectances

were significantly different only once before booting in the second

season possibly due to a lack of differences in LAI between the two

yield groups. This aligns with the findings by Korobov and Railyan

(1993), who reported a higher correlation of NIR reflectance with

dry matter and ground cover the during booting stage compared to

later stages. Thus, normalizing the difference of the NIR and the

REDEDGE reflectance in the form of the NDRE index, showed a

good performance for chlorophyll estimation (Barnes et al., 2000).

Usually, VIs containing information from the rededge region of

the spectrum are considered being more sensitive to chlorophyll

absorption in dense canopies (Nguy-Robertson et al., 2012). It is

expected that combining the highly LAI-sensitive NIR band with

the rededge band that contains more information about leaf

pigments in the canopy and therefore improves the performance

of our yield prediction model at the flowering to early grain

filling stages.
4.2 The influence of growth stages on yield
prediction and classification

The performance of yield prediction and classification depends

highly on the phenological stage of the crop. Our study found that

the flowering stage and early grain filling stage allowed for the best

predictions of yield and classification of varieties in winter wheat,

which is consistent with the findings of several other studies

(Hassan et al., 2019; Prey et al., 2020; Prey et al., 2022). From a

physiological stand point of view, at the time around flowering the

crop has to provide enough assimilates in order to maximize the

number of fertile florets per spike, leading to a higher number of

kernels per spike and finally a higher yield (Fischer, 1985).

Therefore, estimating biomass and chlorophyll content at these

stages is optimal for yield estimation. Unfortunately, the spectral

signal often saturates at these stages making the estimation

challenging, especially in high yielding years (Prey et al., 2020).

Early differences in biomass and LAI dynamics between wheat

genotypes are well-documented (Pang et al., 2014; Grieder et al.,

2015) and Raun et al. (2001) proposed to follow the biomass

formation after dormancy for yield prediction. Marti et al. (2007)

hypothesized that a high biomass at the end of the tillering stage
frontiersin.org

https://doi.org/10.3389/fpls.2023.1214931
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


TABLE 5 Display of the time points yielding the lowest RMSE for yield prediction for all reflectance bands, vegetation indices and texture features.

TF
Mean

Accuracy
Max

Accuracy PS

2022 2021 2022 2021 2022 2021 2022

GF CON 0.594 0.526 0.800 0.832 SE GF

GF COR 0.588 0.516 0.877 0.835 TI HE

GF DIS 0.564 0.538 0.852 0.778 SE GF

GF ENE 0.533 0.527 0.790 0.787 FL SE

GF HOM 0.575 0.532 0.867 0.915 FL GF

0.571 0.528 0.837 0.829

2022 2021 2022 2021 2022 2021 2022

GF CON 0.546 0.463 0.875 0.750 EF GF

GF COR 0.612 0.524 0.793 0.750 TI GF

GF DIS 0.605 0.534 0.830 0.720 HE GF

GF ENE 0.547 0.506 0.830 0.840 TI GF

GF HOM 0.601 0.537 0.782 0.840 FL BO

0.582 0.513 0.822 0.780

2022 2021 2022 2021 2022 2021 2022

GF CON 0.617 0.572 0.903 0.813 SE GF

GF COR 0.652 0.567 0.867 0.833 TI GF

GF DIS 0.602 0.584 0.840 0.793 EF GF

GF ENE 0.634 0.558 0.918 0.852 SE GF

GF HOM 0.638 0.553 0.882 0.815 SE GF

0.629 0.567 0.882 0.821

the min RMSE was recorded.
when the Maximal RMSE value was recorded.
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Raster
Mean

Accuracy
Max

Accuracy PS VI
Mean

Accuracy
Max

Accuracy PS

Single time points

2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021

BLUE 0.609 0.501 0.938 0.693 LF GF DVI 0.640 0.502 0.825 0.838 EF

GREEN 0.643 0.488 0.833 0.772 FL GF RVI 0.595 0.504 0.880 0.745 EF

RED 0.673 0.506 0.817 0.783 EF GF NDRE 0.632 0.533 0.877 0.718 LF

REDEDGE 0.584 0.545 0.798 0.707 LF TI MCARI 0.637 0.567 0.823 0.795 EF

NIR 0.620 0.493 0.912 0.768 TI BO CCII 0.673 0.491 0.885 0.735 FL

Mean 0.625 0.507 0.860 0.745 0.635 0.519 0.858 0.766

Smoothed time points

2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021

BLUE 0.674 0.551 0.853 0.813 LF GF DVI 0.600 0.521 0.815 0.860 TI

GREEN 0.640 0.538 0.880 0.873 HE GF RVI 0.609 0.535 0.810 0.747 FL

RED 0.676 0.580 0.963 0.790 EF GF NDRE 0.625 0.556 0.828 0.735 LF

REDEDGE 0.594 0.553 0.830 0.813 HE GF MCARI 0.647 0.586 0.755 0.868 FL

NIR 0.573 0.512 0.802 0.832 TI GF CCII 0.630 0.512 0.858 0.835 FL

Mean 0.6314 0.547 0.866 0.824 0.622 0.542 0.813 0.809

Moving time window

2021 2022 2021 2022 2021 2022 2021 2022 2021 2022 2021

BLUE 0.697 0.535 0.884 0.712 LF GF DVI 0.684 0.499 0.833 0.815 TI

GREEN 0.712 0.604 0.814 0.757 FL GF RVI 0.674 0.581 0.758 0.863 EF

RED 0.758 0.598 0.853 0.764 FL GF NDRE 0.630 0.573 0.722 0.828 LF

REDEDGE 0.659 0.577 0.800 0.777 HE GF MCARI 0.719 0.615 0.795 0.783 TI

NIR 0.668 0.578 0.788 0.868 TI GF CCII 0.708 0.559 0.827 0.900 HE

Mean 0.698 0.578 0.828 0.776 0.683 0.565 0.787 0.838

Mean RMSE are all RMSE values averaged over the whole season. Min RMSE values show the lowest RMSE of a season. The phenology stages (PS) are reported at whic
Bold values indicate maximal Mean and Max Accuracy values for a respective feature, featue selection and year combination. Phenology stages in bold indicate the stage
h
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detected by NDVI estimates the growth during the stem elongation

stage which in turn is crucial for the number of kernels per area

produced (González et al., 2005). Yield prediction at tillering

therefore already yielded some success especially in the first year

of the trial. From tillering to harvest, wheat is known to compensate

for, as an example, a low stand count by altering the number of yield

components (Holen et al., 2001), therefore predictions at these early

stages are prone to changes later in the season, subsequently leading

to prediction errors.

After flowering, the RMSE of the models for prediction

increases again in the first year whereas they start to increase

later during grain filling in the second year. The flowering stage is

longer in the first compared to the second year of trial (232 GDD

and 134.4 GDD). The reason for this difference is unclear, the end of

flowering is generally difficult to rate, since the dry anthers tend to

fall to the ground or are washed of by rain. Therefore, the end of

flowering might have been later in the second year as well.

Differences in stay-green characteristics can influence yield,

especially by influencing the weight of single grains (Wu et al.,

2012) which were higher in the high yielding varieties compare to
Frontiers in Plant Science 15
the lower yielding ones. A further indication of this difference is the

slightly advanced phenology of the lower yielding varieties in both

years and the higher LAI measured in the first year of the trial.

The classification models showed a less clear trend during the

season and fluctuations between dates are more severe than for the

regression models. Garriga et al. (2017) did not find a difference in

classification model performance between the anthesis and the

grain filling stages. Successful classification in our case can be

achieved directly by identifying high yielding plots or indirectly

by identifying varieties. The algorithm learns either to recognize

high yield or to classify a certain variety, regardless of their yield

potential. Wheat variety classification for yield classification for

breeding purposes other than by Garriga et al. (2017) is scarce.

Works often focus on the classification of kernels (Porker et al.,

2017; Khojastehnazhand and Roostaei, 2022), which is done under

laboratory environments and therefore less prone to errors induced

by the measurement conditions. Still, if the optimal feature at the

optimal time point is selected, classification of low and high yielding

varieties can be a promising tool for plant breeding applications

(Garriga et al., 2017).
FIGURE 6

Accuracy of variety classification models built using single dates (top), smoothed dates (middle) and combining adjacent dates (bottom). The figures
on the right display models built for the first, the ones on the left for the second year of trial.
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4.3 Comparison of variable- and feature
types for yield prediction and classification

Our study found that single-band reflectance, such as the RED band,

was as effective as or evenmore effective than vegetation indices (VIs) for

predicting yield, especially in the first year of trial. The RED band is

known to be related to leaf area index (LAI), although this relationship is

often non-linear (Hinzman et al., 1984) and therefore requires non-

linear methods such as RF to perform well for yield prediction. Pavuluri

et al. (2015) found a saturation of RED reflectance when predicting yield,

which can also be found in our prediction models. In contrast, VIs

typically show good linear correlations with grain yield, with NDVI

being widely used for yield prediction (Duan et al., 2017; Hassan et al.,

2019). Furthermore, the VIs show a more consistent performance

between dates compared to the single band reflectances. The NDRE

was the best performing feature for yield assessment, which is in

accordance with other studies (Prey et al., 2022) possibly due to its

strong correlation to biomass (Argento et al., 2021).ManyVIs have been

screened by Prey et al. (2020) and few have been showing a consistent

performance over the years, which makes a general selection difficult,

similar to our study. Further, VIs narrow down the information that is

accessible and Vatter et al. (2022) found good performances for yield

prediction when using 11 wavebands from a multispectral camera that

were fed to a deep learning model. This might be good strategy to obtain

the optimal prediction model from multispectral cameras without any

prior knowledge and the need for feature selection.

TFs are complex in their calculation and they offer a variety of

possible ways of calculation, possible combinations with underlying

rasters and ways to be calculated. Detailed information on how TFs are

calculated is often lacking (Zheng et al., 2019; Wang et al., 2021; Zhang

et al., 2021). Therefore, TFs still have to be examined in detail and their

parameters optimized under different experimental conditions and

scenarios of sensing data collection. We calculated TFs in a

standardized way, but still found a high variability between dates.

They are further known to be highly dependent on the GSD and

therefore, the flight height (Zheng et al., 2019). In our study smoothing

aided in enhancing the stability of the yield predictionmodels, although

it did not improve their performances. A novel approach was presented

by Herrero-Huerta et al. (2020) who calculated so-called canopy

roughness directly on the point cloud from the structure from

motion processing and showed its correlation to biomass. Often, the

TFs are difficult to interpret and their link to yield relevant canopy traits

is often unclear. Originally, the TFs were developed for classification

(Haralick et al., 1973) and therefore classifying varieties corresponds

more to their intended purpose than yield prediction. TFs are further

often used in combination because there might be additional

information (Wang et al., 2021; Liu et al., 2022), especially in the

later stage, when they are not strongly correlated to single band

reflectances and VIs anymore, as indicated by our results.
4.4 Effects of temporal feature selection
for yield prediction and classification

Models using individual dates showed generally a worse

performance than models containing three adjacent dates.
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Furthermore, the performance between different dates is

fluctuating strongly, even if the phenological stage is similar.

Prey et al. (2022) found combining data from multiple dates to

yield more improved predictions especially if the features used

were performing poorly. In our case, the improvement for the

yield prediction was in a similar range, regardless of the initial

performance of the feature. In rice, Zhou et al. (2017) found that

combining data from different growth stages by a multilinear

regression model, can improve the estimation accuracy. For

practical applications, finding the optimal date might be

difficult and requires very close monitoring of the phenology,

which can be very diverse among varieties as in our variety-

testing panel. Therefore combining multiple dates might be

especially performant, if features are used that show a high

fluctuation between dates such as the TFs. The RF algorithm

however is capable of dealing with different suitability of dates

and therefore neglect the ones that do not perform well by

attributing different importance to the features. The downside

of the method is that, obtaining the additional measurements

requires substantial work. Therefore, the number and time

points measured should be considered carefully and be

optimized in future studies.
4.5 Limitations and outlook

The red-edge position and its shape is often used to estimate

the stress status of field crops (Guyot et al., 1988; Boochs et al.,

1990). However, it is obvious that the dynamics (time series) of the

Red-edge band is difficult to interpret compared to the visible

bands. During the early stages of tillering, the red-edge reflectance

increased, possibly due to an increase of ground cover, whereas

later it decreased again, when the canopy height increased during

the SE stage. At the beginning of the heading stage, another

increase in the red-edge reflectance could be observed,

accompanied with the increase of reflectance in the visible

bands. However, in contrast to other bands, the Red-edge

reflectance decreases with the onset of senescence at the early

grain-filling stage, possibly due to a reduction in chlorophyll and a

shrinking canopy structure (Wang et al., 2022). However,

fluctuation also occurs during the mentioned stable period

running from the beginning of booting to the end of flowering.

These fluctuations can be of various origins. For instance, the

appearance of the canopy might change significantly due to the

emergence of the spikes. Although this study was unable to exploit

the entire shape of the red-edge reflectance, due to limitations in

our multispectral camera having one band in the red-edge region,

future work should further advance the understanding of the

dynamics of red-edge reflectance and responsible canopy

characteristics. Also, features should, in addition to their

performance for yield prediction be assessed regarding their

heritability (H2) since breeders are interested in knowing the

genetic variation underlying a trait or in our case a spectral

feature. Generally, this study shows that a trait time series

followed by smoothing and a moving window allows for more

stable predictions when also not better predictions.
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5 Conclusions

Most spectral and TFs derived from the canopy multispectral

images were related to variations in yield and delivered the best

predictions of yield between booting and the beginning of senescence.

Still, predictions before and after this stages yielded respectable results

as well. Vegetation indices (VIs) generally outperformed single

indices in assessing yield and in classifying varieties. Particularly

the Normalized Difference Red Edge (NDRE) index performed well

in both years and at several phenology stages. Single bands, especially

the RED band showed a comparable performance but with more

fluctuations between dates. In contrast, the REDEDGE reflectance

showed poorer performance in yield and variety classification. TFs

generally performed poorly for yield prediction, and their

performances were inconsistent across dates in this study. TFs

showed a good performance when classifying varieties. Further

research is still needed to better understand the applicability of

different TFs for yield- and traits predictions. Smoothing or

combining data across a time series can enhance the performance

of yield prediction and classification models, particularly in the early

growth stages. Future studies should combine different feature types

to leverage complementary information captured by different types of

multispectral features and variables.
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