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In modern plant breeding, genomic selection is becoming the gold standard for

selection of superior genotypes. The basis for genomic prediction models is a set

of phenotyped lines along with their genotypic profile. With high marker density

and linkage disequilibrium (LD) between markers, genotype data in breeding

populations tends to exhibit considerable redundancy. Therefore, interest is

growing in the use of haplotype blocks to overcome redundancy by

summarizing co-inherited features. Moreover, haplotype blocks can help to

capture local epistasis caused by interacting loci. Here, we compared genomic

predictionmethods that either used single SNPs or haplotype blocks with regards

to their prediction accuracy for important traits in crop datasets. We used four

published datasets from canola, maize, wheat and soybean. Different approaches

to construct haplotype blocks were compared, including blocks based on LD,

physical distance, number of adjacent markers and the algorithms implemented

in the software “Haploview” and “HaploBlocker”. The tested prediction methods

included Genomic Best Linear Unbiased Prediction (GBLUP), Extended GBLUP to

account for additive by additive epistasis (EGBLUP), Bayesian LASSO and

Reproducing Kernel Hilbert Space (RKHS) regression. We found improved

prediction accuracy in some traits when using haplotype blocks compared to

SNP-based predictions, however the magnitude of improvement was very trait-

and model-specific. Especially in settings with low marker density, haplotype

blocks can improve genomic prediction accuracy. In most cases, physically large

haplotype blocks yielded a strong decrease in prediction accuracy. Especially

when prediction accuracy varies greatly across different prediction models,

prediction based on haplotype blocks can improve prediction accuracy of

underperforming models. However, there is no “best” method to build

haplotype blocks, since prediction accuracy varied considerably across

methods and traits. Hence, criteria used to define haplotype blocks should not

be viewed as fixed biological parameters, but rather as hyperparameters that

need to be adjusted for every dataset.
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1 Introduction

Genomic prediction has greatly improved animal and plant

breeding (Hickey et al., 2017) and has the potential to improve

genetic gain even in crops with complex genomes (Voss-Fels et al.,

2021). In the past, predictions based on linear mixed models used

relatedness to borrow information on target phenotypes of relatives.

Henderson (1975) derived this relationship from pedigrees via the

numerator relationship matrix with the expectation that each

parent contributes exactly 50% of its genome to its offspring.

With the advance of sequencing technology nowadays, genomic

data is used to replace the pedigree relationship with realized

relationships calculated from dense marker maps. Furthermore,

with the inclusion of genetic markers, information about linkage

disequilibrium and cosegregation is available for genomic

prediction (Habier et al., 2013). Today, individuals in breeding

populations of major crops can be sequenced with high quality at

low costs, enabling the identification of millions of genome-wide

single nucleotide polymorphism (SNP) markers that can be easily

screened in large populations using high-throughput genotyping

technologies. Together with phenotype measurements, genome-

wide marker profiles can be used to predict breeding values of

non-phenotyped individuals (Lande and Thompson, 1990;

Bernardo, 1994; Meuwissen et al., 2001; VanRaden, 2008). This

can assist breeders in the accurate identification of superior

genotypes within their breeding material without the need for

additional phenotyping. Moreover, it can facilitate the decision-

making process for selecting which genotypes should undergo

phenotyping, leading to reduced phenotyping costs and improved

accuracy in estimating breeding values. Hence, genomic selection

has the potential to considerably increase genetic gain and profit in

many crops (Voss-Fels et al., 2021).

There are a variety of statistical methods for genome-based

predictions (e.g. VanRaden, 2008; de los Campos et al., 2009; Zhang

et al., 2010; Gianola, 2013; Hofheinz and Frisch, 2014; Werner et al.,

2018a; Millet et al., 2019), differing in their assumptions of variance

components, marker effects or marker modes of action. Examples

for genomic prediction models are ridge regression BLUP, GBLUP

(Bernardo, 1994; Meuwissen et al., 2001; VanRaden, 2008),

Reproducing Kernel Hilbert Space Regression (RKHS) (de los

Campos et al., 2009), as well as Bayesian models like Bayesian

LASSO (Park and Casella, 2008) or Bayesian ridge regression (Pérez

and de los Campos, 2014).

However, biallelic SNPs are sometimes unable to identify all

variants and allelic combinations of genes that contribute to a

particular trait, since most genes carry multiple sequence

polymorphisms. Furthermore, accurate genomic prediction is

often obtained based on close relatives (VanRaden, 2008; Hayes

et al., 2009) while this accuracy decreases as the validation

individuals get more unrelated (Habier et al., 2010; Wolc et al.,

2011). This implies that SNPs are not necessarily in LD with causal

QTL and the prediction accuracy is at least partly driven by

implicitly capturing relationship among individuals. Hence, one

strategy to improve predictions is increasing marker density. With

the advance of whole genome sequencing technologies, increasingly

large and dense marker datasets can today be generated for most
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major crops (Edwards and Batley, 2010; Yu et al., 2011). However,

increasing marker density does not consistently improve prediction

accuracies (Solberg et al., 2008; Druet et al., 2014; Hayes et al., 2014;

Norman et al., 2018) and often improvements are only observed

following pre-selection of markers (van Binsbergen et al., 2015; Ni

et al., 2017; Raymond et al., 2018). Furthermore, prediction

accuracy is influenced by trait heritability (Zhang et al., 2017) and

the number of genotypes with phenotypic records available for

genomic selection. Hence, another approach to enhance prediction

accuracy is by increasing the number of phenotyped lines used for

model training (VanRaden et al., 2009; Combs and Bernardo, 2013).

However, due to the high costs associated with phenotyping, this

may not always be feasible, particularly when sparse testing

methods (Jarquin et al., 2020; Crespo-Herrera et al., 2021; Atanda

et al., 2022; Terraillon et al., 2022) are not applicable. Hence, one

strategy to address low prediction accuracy could be to identify

more informative variants for predictions without necessarily

increasing the marker density per se.

Loci along the genome are usually inherited in a block-like

structure, with only few recombination hotspots (Daly et al., 2001;

Jeffreys et al., 2001; Reich et al., 2001) defining the so-called

haplotype blocks. There are several ways to define a haplotype

block, for example as a fixed window of adjacent markers, as a fixed

window of adjacent base pairs, or based on a statistical measure of

LD. While the first two are straightforward and simple, they may

not represent haplotype blocks in a true biological sense. More

sophisticated approaches may model the true haplotype blocks

better. Commonly, LD based measures like D´ or r2 are used for

construction of haplotype blocks (Devlin and Risch, 1995).

Furthermore, prior information of interaction between adjacent

markers may help model local epistasis (Liu et al., 2019), however,

difficulties in computing higher order interactions limits the size of

haplotype blocks of that type. Haplotype blocks are assumed to be

in higher linkage disequilibrium with QTL, and it was proven that

haplotype blocks are able to capture local epistasis of markers in

close proximity (Jiang et al., 2018). Furthermore, it has been

suggested that the problem of apparent or phantom epistasis,

which occurs between markers and QTL in incomplete LD, can

be overcome with haplotype blocks (Wood et al., 2014; de los

Campos et al., 2019). Hence it can be assumed, that haplotype

blocks may improve genomic prediction.

In genomic selection, there is evidence that markers grouped to

haplotype blocks can improve genomic prediction (Cuyabano et al.,

2014; Jiang et al., 2018; Ballesta et al., 2019), while other studies

delivered evidence against improving predictions (Solberg et al.,

2008). Even with the methods described above for construction of

haplotype blocks, it is always necessary to set appropriate

hyperparameters like window size or an LD threshold to define

block boundaries. Most previous studies in this area investigated a

small range of LD thresholds, adjacent markers or window sizes in

association studies and genomic prediction (Cuyabano et al., 2014;

Hess et al., 2017; Maldonado et al., 2019). However, in terms of

genomic prediction for plant breeding the huge variety of options and

hyperparameters possible to construct haplotype blocks were not

assessed in detail. Hence, the present study sought to investigate the

following questions: 1.) How does the method of building haplotype
frontiersin.org
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blocks and its parameters affect the number of haplotypes? 2.) Are

haplotype block predictions different from SNP predictions in terms

of prediction accuracy? 3.) Is there a preferable haplotype

construction method to improve genomic prediction?

These questions were addressed by employing various methods

for constructing haplotypes, which are commonly discussed in the

literature. The methods range from simple approaches such as

marker adjacency (Villumsen and Janss, 2009; Villumsen et al.,

2009; Jiang et al., 2018; Liang et al., 2020) and physical distances

(Hess et al., 2017; Liang et al., 2020) to more sophisticated methods

based on LD thresholds (Cuyabano et al., 2014; Voss-Fels et al.,

2019; Bayer et al., 2021; Li et al., 2022) the confidence intervals

of D´ method described by Gabriel et al. (2002), the Four-gamete

Rule method described by Wang et al. (2002) the Solid Spine of LD

method (Barrett et al., 2005) and “HaploBlocker” (Pook et al., 2019),

using four example datasets from canola, maize, wheat and soybean.

To assess prediction accuracy, genomic prediction was performed

using GBLUP, Bayesian LASSO, EGBLUP and RKHS models.
2 Materials and methods

2.1 Datasets

The datasets examined in this study are all publicly available.

The canola dataset is from a spring-type canola hybrid breeding

program (Jan et al., 2016). Briefly, 475 double haploid (DH)

pollinators were crossed with two male sterile lines to create 950

F1 test hybrids. The hybrids where subsequently tested for seed

yield, flowering time, field emergence, lodging, oil yield and

glucosinolate content. For 910 test hybrids the complete

phenotypic records were available, and all parental lines were

genotyped with the Illumina Brassica 60k SNP array (Clarke

et al., 2016). The maize dataset is derived from 847 test hybrids

from a diverse dent nested association mapping population

described by Bauer et al. (2013) consisting of 10 half-sib DH

families. Double haploid lines were all crossed to the common

flint line UH007 and F1 hybrids were phenotypically analyzed for

dry matter yield (DMY), dry matter content (DMC), plant height

(PH), days till tasseling (DtTAS) and days till silking (DtSILK), as

described by Lehermeier et al. (2014). All DH lines were genotyped

with the Illumina MaizeSNP50 SNP array (Clarke et al., 2016). The

wheat dataset, described in Voss-Fels et al. (2019), consists of 191

released wheat varieties from 1966 to 2013 that were tested under

three agrichemical treatments for a wide range of agronomic traits

including yield, biomass yield, falling number, days till heading,

plant height, harvest index kernel spike-1, nitrogen use efficiency

(NUE), powdery mildew resistance, protein content, protein yield

sedimentation value spike m-2, stripe rust and thousand kernel

weight (TKW). All lines were genotyped with the Illumina 15k

wheat SNP array described in Soleimani et al. (2020). The soybean

dataset consisted out of 1000 lines from the USDA Soybean

Germplasm Collection (Grant et al., 2010) with phenotypic

records for protein and oil content (PC, OC) (Bandillo et al.,

2015). For all lines, genotypic information from the Illumina

Infinium SoySNP50K BeadChip (Song et al., 2013) was available.
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With the exception of the maize dataset, all phenotypic

data represented adjusted trait means per genotype. The

published field data from the maize population was adjusted

following methods used for phenotypic data analyses from the

original publication.
2.2 Genotypic data

With exception of the canola dataset, physical SNP marker

positions were obtained from the respective reference genome

assemblies used in the original publications, namely the Brassica

napus Express 617 genome (Lee et al., 2020), the maize B73 AGPv2

genome (Schnable et al., 2009), the wheat Chinese Spring IWGCS

reference Sequence v1.0 (Zimin et al., 2017) and the soybean

Glyma1.01 reference (Schmutz et al., 2010). In general, only

markers with a unique physical position on the reference genome,

a minor allele frequency ≥ 0.05 and a maximum of 10% missing

values in each population were used for further analyses. This left a

total of 29385, 32363, 8710 and 35821 markers for the canola,

maize, wheat and soybean datasets, respectively. This corresponds

to a marker density of 31.78, 15.63, 0.57 and 37.48 SNPs mbp-1 in

canola, maize, wheat and soy respectively. After filtering, markers

were imputed with the software “BEAGLE” V5.2 (Browning and

Browning, 2007; Browning et al., 2018).
2.3 Haplotype block construction

We considered seven haplotype block construction methods

based on (i) pre-determined LD thresholds, (ii) fixed windows of

adjacent markers, (iii) fixed windows of adjacent base pairs, (iv)

“HaploBlocker” (Pook et al., 2019), (v) the confidence intervals ofD´

method described by Gabriel et al. (2002), (vi) the Four-gamete Rule

method described by Wang et al. (2002) and (vii) the Solid Spine of

LD method (Barrett et al., 2005). The first three methods were

implemented in the r package “SelectionTools” (downloadable at

http://population-genetics.uni-giessen.de/~software/), while the

latter three are implemented in the software “Haploview” v4.1

(Barrett et al., 2005). The different approaches are described in

detail below. These methods were selected for their widespread use

in haplotype block formation and their distinct characteristics.

Methods such as the pre-determined LD threshold, confidence

intervals of D’, the Four-gamete Rule, and the Solid Spine of LD

are based on linkage disequilibrium (LD) and gamete frequency.

They aim to model historical recombination hotspots and generate

meaningful blocks within populations. However, these blocks do

not necessarily represent functional groups. Therefore, we also

included methods based on fixed windows to assess blocks that

would not be constructed based on population-based measures

alone. Additionally, while most methods consider block borders

across the entire population, it is important to note that

subpopulations or genotypes may have different recombination

patterns. To account for this, we utilized the method

“HaploBlocker” described in Pook et al. (2019) to construct

haplotype blocks specific to different groups.
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2.3.1 LD threshold
LD between markers on the same chromosome was calculated as

r2 (Hill and Robertson, 1968) in “SelectionTools”. Haplotype blocks

were built by starting with the two neighboring markers with the

highest LD. If the pairwise LD exceeded a certain threshold, those

markers were then assigned to a haplotype block. In the next step, if

the LD between the next immediately adjacent markers and the

markers at the block border again exceeded the threshold, the block

was extended. This was done until no more markers fulfilled this

criterion and the algorithm started over again with new markers. To

account for misplaced markers, a tolerance parameter of 1 was used,

meaning that one marker that did not fulfill the LD threshold was

accepted if the next flanking marker fulfilled the LD criterion.

Thresholds were set sequentially from 0.01 to 1 with a step size of

0.01, resulting in 100 different LD thresholds. Using very high

thresholds to form blocks effectively eliminates redundant

information, making these scenarios similar to LD pruning, which

has been shown to improve prediction accuracy (Ye et al., 2019). On

the other hand, very low thresholds result in the formation of large

blocks commonly observed in introgression breeding, where

recombination is sometimes very limited (Hao et al., 2020).

2.3.2 Fixed windows of adjacent markers
Starting at the beginning of each chromosome, haplotype blocks

consisting of m neighboring markers were constructed until all

markers on a chromosome were assigned to blocks. We considered

⌈2x⌉ markers with x being {1, 1.5, 2, 2.5 …}, until in the most

excessive case all markers of a chromosome represented a haplotype

block containing all markers of that chromosome. We chose to

create blocks of such large size to address scenarios where entire

chromosomes or large segments play an important role in traits, as

well as scenarios related to introgression breeding, where

recombination is limited (Hao et al., 2020).
2.3.3 Fixed windows of adjacent base pairs
Starting at the beginning of each chromosome, haplotype blocks

of m consecutive base pairs were constructed until the whole

chromosome was partitioned into blocks. We considered ⌈2x⌉
base pairs with x being {10, 10.5, 11, 11.5 …} until in the most

excessive case a whole chromosome represented a block. Similar to

the approach using fixed windows of adjacent markers, we selected

to construct blocks of considerable size to accommodate scenarios

where entire chromosomes or large segments influence traits, as

well as situations related to introgression breeding characterized by

limited recombination (Hao et al., 2020).
2.3.4 HaploBlocker
Since different subpopulations might result in different block

borders, we also built haplotype blocks with the algorithm of Pook

et al. (2019). This algorithm relies on linkage instead of linkage

disequilibrium to construct haplotype blocks. Here blocks are

defined as consecutive sequence of genetic markers with a

predefined frequency, a sequence of haplotype merging and

splitting steps is applied to construct subgroup-specific haplotype

blocks. This algorithm allows subgroup specific haplotype block
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borders. The algorithm was conducted with default settings with the

r package “HaploBlocker” (Pook et al., 2019).
2.3.5 Gabriel algorithm
The algorithm developed by Gabriel et al. (2002) (GAB) for the

Human Haplotype Map generates 95% confidence bounds on D´

between all intrachromosomal marker pairs. Marker pairs are

considered in “strong LD” if the one-sided upper 95% D´

confidence bound is higher than 0,98 and the lower bound is

higher than 0.7. Markers in “strong LD” are consequently

grouped into blocks. Blocks are extended until the outermost

marker pairs don´t fulfill this criterion anymore.
2.3.6 Four gamete rule
The Four Gamete Rule (GAM) described by Wang et al. (2002)

groups consecutive markers into haplotype blocks if no evidence for a

historical recombination event can be found between all marker pairs

of a block. A historical recombination is defined if all four haplotypes

of the new marker and any other previous marker are found with at

least 1% frequency. If this is the case, a block border is created

between those markers and the algorithm starts with a new block.

2.3.7 Solid spine of LD
The Solid Spine of LD method (SPI), introduced by the

developers of “Haploview” (Barrett et al., 2005), searches for a

spine of strong LD by calculation of LD between all

intrachromosomal marker pairs. In this method, two markers on

the same chromosome form a block border if the pairwise D´ is

higher than 0.8. All markers in that window form the block. This

allows for intermediate markers to not be in LD.
2.4 Genomic prediction models

In total, four genomic selection models were used to predict

testcross (maize, canola) and inbred line (soybean, wheat)

performance, respectively. The models represent two variations of

the GBLUP and two models implemented in a Bayesian framework.

The frequentist models were GBLUP (Bernardo, 1994; Meuwissen

et al., 2001; VanRaden, 2008) and extended GBLUP to account for

second-order additive*additive epistasis, following the EGBLUP

model of Jiang and Reif (2015). The Bayesian model included the

Bayesian LASSO model (Park and Casella, 2008) which offers the

capability of marker-specific shrinkage, and the semiparametric

RKHS regression model (de los Campos et al., 2009) which allows

modeling of higher order epistasis.

In the GBLUP and EGBLUP the underlying model is assumed

to be:

y = Xb + Zaa + Zii + e

where y is a vector of observations for a trait under consideration,

  b is a vector of fixed non-genetic effects, a is a vector of random

additive effects, i is a vector of random epistatic effects and e is the

random residual term. Za and Zi are design matrices relating the

random effects to the phenotypic records. X is the design matrix for
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fixed effects and, in the case of the canola and soybean datasets, a

vector of ones modeling the intercept ( 1nm). In the wheat dataset,

two additional fixed effects for N fertilization and fungicide treatment

were added, while in the maize dataset an additional 10 columns were

added to assign individuals to half-sib families.

It is assumed that

aeN(0,Gs 2
a ),   ieN(0,Gaas

2
aa)   and   eeN(0, Is 2

e )

where s 2
a ,s 2

aa and s2
e are additive genetic variance, epistatic

genetic variance and residual variance respectively. G and Gaa are

the additive and epistatic relationship matrices, respectively. I is an

identity matrix. Depending on inclusion of epistatic effects the

epistasis terms were included or omitted.

The additive genomic relationship matrix was calculated

following VanRaden (2008):

G =
ZZ´

2o​pi(1 − pi)

with the elements of Z being (0-2pi) for genotype HiHi, (1-2pi) for

genotype HiHj and (2-2pi) for genotype HjHj, where Hj is the

haplotype (treated as a single marker) within a haplotype block, Hi

is any other haplotype within that haplotype block except Hi, and pi is

the frequency of the ith haplotype in a haplotype block. Haplotype

blocks with only two haplotypes were treated like standard biallelic

markers. For the canola dataset, prior to construction of the genomic

relationship matrix, parental genotypes were crossed in silico to

derive hybrid genotypes, as described by Werner et al. (2018a).

According to Henderson (1985) and Jiang and Reif (2015), the

second order (additive*additive) epistatic relationship matrix can be

approximated with Gaa = G#G, with # denoting the pointwise

(hadamard) product operation.

GBLUP and EGBLUP were implemented and solved with the R

package sommer (Covarrubias-Pazaran, 2016; Covarrubias-

Pazaran, 2018).

The general formula describing the model Bayesian LASSO

model of Park and Casella (2008) is:

y = Xb +Mf + e

where y is the vector of observations for a trait under

consideration, b is a vector of fixed non-genetic effects, a is a

vector of additive effects. X is the design matrix as described in the

GBLUP section. M is an incidence matrix relating phenotypic

records with the respective marker/haplotype profiles coded 0, 1,

2. The coefficients of the fixed ( b) effects are assigned flat priors,

while the coefficients of the marker/haplotype effects ( f ) are

assigned double-exponential priors. This allows the shrinkage of

some marker/haplotype effects to effectively zero, introducing

sparsity into the model. This model was tested because we

assumed that some marker variants and particularly some

haplotypes would have no effect on some traits. Here, e is the

random residual term. In the Bayesian LASSO, only additive effects

were modeled, because additional effects in this framework would

increase the computational burden to an unacceptable degree. This

model was conducted in the r software with the package BGLR

(Pérez and de los Campos, 2014) using the default parameters.
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Following de los Campos et al. (2009) with kernel averaging, the

RKHS model has following form:

y = Xb +oL
l=3ul + e

with

p(b , u1,…uL, e) ∝  
YL

l=1 N(u ∣ 0,  Kls
2
ul)  N(e ∣ 0,   Is 2

e )  

where Kl is an n*n kernel. It is calculated from the Euclidean

distance between genotypes based on their marker/haplotype

profile. We selected a Gaussian kernel with the lth value of the

bandwidth parameter {0.1, 0.5, 2.5}. Xb is treated in a similar

manner to the Bayesian LASSO and ul is assumed to be the random

genomic effect. That way the different random effects, i.e. the three

kernel matrices from the three bandwidth parameters, are weighted

by their variance components. Here, e is the random residual term.

As for the Bayesian LASSO, the RKHSmodel was conducted in the r

software with the package BGLR (Pérez and de los Campos, 2014)

using the default parameters.
2.5 Genomic relationship

Generally, constructing haplotype blocks applies a

transformation to the original marker data. To assess how well

the marker data is also captured by haplotype blocks, we used the

relationship coefficients obtained from the relationship matrix

calculated following VanRaden (2008) (see above) and calculated

the Pearson correlation between relationship coefficients obtained

from SNPs and those obtained from haplotype blocks.
2.6 Evaluation of prediction accuracy

For all the four datasets, model performance was assessed by

running 100 cross-validation runs, where each cycle consisted of

splitting the population into 80% training population and 20%

validation population. Each model was trained on the training

population and then this model was used to predict the validation

population with masked phenotypic data. Furthermore, in the

maize dataset, a family wise cross validation was conducted. This

was done to test how predictive haplotype blocks are to predict

genetically distant individuals. Here, the dataset was split according

to the family assignment of the nested association mapping

population and each family served once as validation set. In both

cross validation schemes, the Pearson correlation coefficient (r)

between observed and predicted phenotypic values of the validation

population was used as a measure of prediction accuracy.
3 Results

3.1 Haplotype block properties

In all the datasets analyzed, haplotypes of varying sizes were

examined. The haplotype blocks had average physical sizes ranging
frontiersin.org
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from 1.02 kbp to 47453.13 kbp, 379625.06 kbp, 1073741.82 kbp, and

47453.13 kbp, respectively, for canola, maize, wheat and soybean. A

summary of the average size distributions can be found in Table 1.

Notably, the fixed window approaches allowed for the construction

of both the smallest haplotype blocks (1.02 kbp) and the largest

haplotype blocks (Table 1).

Within all datasets using the methods implemented in

“Haploview” (GAB, GAM, SPI), the number of haplotype blocks

was consistently lower than the number of total SNPs (Figures 1A,

E, I, M). However, a significant portion of those blocks consisted of

only a single SNP (unblocked SNPs) (Figures 1A, E, I, M).

Moreover, the total number of haplotypes available for genomic

prediction (excluding single SNP blocks) increased in the canola

and soybean datasets, remained similar to the number of SNPs in

wheat, and decreased in maize (Figures 1A, E, I, M). Across all

datasets, the number of blocks based on LD increased with higher

LD thresholds. Additionally, in the case of maize, the number of

haplotypes exhibited a similar pattern. With LD-based haplotype

blocks, the number of haplotypes (excluding single SNP blocks)

exceeded the total number of SNPs across all LD thresholds in

soybean and was lower across all thresholds in maize (Figures 1B, F,

J, N). In canola, thresholds above r2 = 0.75 resulted in fewer

haplotypes than SNPs, while lower thresholds yielded higher

numbers. Conversely, in wheat, only relatively small blocks (r2 ≤

0.10) increased the number of haplotypes compared to the number

of SNPs (Figure 1B). With fixed window blocks, the number of

haplotype blocks generally decreased with increasing block size

(Figures 1C, D, G, H, K, L, O, P). Here, the number of haplotypes

was the highest with relatively small blocks, with increasing block

size, the number of haplotypes decreased (Figures 1C, D, G, H, K, L,

O, P). Notably, in comparison to SNPs, the number of haplotypes

was higher for blocks smaller than 1024, 6, 128, and 1449 SNPs, or

23726.57 kbp, 92.68 kbp, 134217.73 kbp, and 33554.43 kbp in the

canola, maize, wheat, and soybean datasets, respectively

(Figures 1C, D, G, H, K, L, O, P). In all scenarios, increasing
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block size resulted in fewer unblocked markers, especially with the

fixed window approaches. In all datasets, the “HaploBlocker”

method produced the fewest haplotypes, considerably fewer than

the number of SNPs (Figures 1A, E, I, M). Furthermore, across all

datasets and methods, except for blocks based on “HaploBlocker”,

most of the introduced haplotypes can be classified as rare

(Frequency ≤ 0.05) or very rare (Frequency ≤ 0.01) (Figure 1).

Across the four datasets, the examination of the correlations

between relationship coefficients derived from SNPs and haplotypes

revealed high redundancy between the two marker types in many

method/parameter combinations. The methods implemented in

“Haploview” resulted in relationship coefficients that were highly

correlated to those obtained from SNPs, closely approaching a

correlation coefficient of 1, in canola, wheat, and soybean (Figures

S1A, E, I, M). However, in maize, these methods only produced

intermediate correlations (GAB = 0.60, GAM = 0.50, SPI = 0.46)

(Figure S1E). In all datasets, relationship coefficients from haplotypes

from LD-based haplotype blocks were highly correlated to those

obtained from SNPs (r > 0.75) with little variation observed across LD

thresholds. Only at very low LD thresholds, this correlation was

slightly lower, while it was slightly higher for very high thresholds

(Figures S1B, F, J, N). Additionally, small fixed window blocks

resulted in relationship coefficients similar to those obtained from

SNPs, closely approaching a correlation coefficient of 1. However, this

similarity eroded drastically with increasing block size (Figures S1C,

D, G, H, K, L, O, P). Notably, in Soybean, while the correlation

between relationship coefficients from SNPs and haplotypes

decreased with increasing block size of the fixed window of

adjacent base pairs, it slightly increased again with the largest

blocks (nKB = 67108.86) (Figure S1P). In canola and soybean,

relationship coefficients obtained from “HaploBlocker” were highly

correlated to those obtained from SNPs (Figures S1A, M). In wheat,

this correlation was lower (r = 0.75), and in maize, it was close to zero

(r = 0.058), indicating that these blocks capture different information

(Figures S1E, I).
TABLE 1 Average size ranges of haplotype blocks constructed by LD, fixed window of adjacent markers and fixed window of adjacent base pairs in
the canola, maize, wheat and soybean dataset.

Dataset Method minimal average size (kbp) maximal average size (kbp)

Canola

LD 97.49 (r2 = 1) 2629.87 (r2 = 0.01)

fixed window of adjacent marker 25.46 (nSNP = 2) 39801.09 (nSNP = 2048)

fixed window of adjacent base pairs 1.02 kbp 47453.13 kbp

Maize

LD 8.08 (r2 = 1) 21556.53 (r2 = 0.01)

fixed window of adjacent marker 64.31 (nSNP = 2) 205312.88 (nSNP = 5793)

fixed window of adjacent base pairs 1.02 kbp 379625.06 kbp

Wheat

LD 106.79 (r2 = 1) 64954.10 (r2 = 0.01)

fixed window of adjacent marker 1544.58 (nSNP = 2) 667692.8 (nSNP = 1024)

fixed window of adjacent base pairs 1.02 kbp 1073741.82 kbp

Soybean

LD 138.55 bp (r2 = 1) 1587.07 (r2 = 0.01)

fixed window of adjacent marker 430.27 (nSNP = 2) 1526.61 (nSNP = 2897)

fixed window of adjacent base pairs 1.02 kbp 47453.13 kbp
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3.2 Genomic prediction

3.2.1 Canola
Within the canola dataset, the prediction accuracy across

different models ranged from 0.3 to 0.85, with a strong

dependence on the specific trait. Notably, for oil yield, field

emergence, glucosinolate content, and lodging, the models

considering epistatic effects (EGBLUP and RKHS) consistently

outperformed by the other SNP-based models (Figure S2).

However, this effect did not consistently translate to haplotype-

based predictions. Prediction accuracy showed little variation across

LD threshold as well as between LD base, “Haploview” or

“HaploBlocker” methods (Figures 2A, B, S2). On the other hand,

the fixed-window approaches exhibited the most variation, with a

substantial decrease in prediction accuracy as the block size

increased for every trait, while small blocks based on fixed

windows resulted in prediction accuracies similar to those based

on SNPs or the remaining methods (Figures 2C, D, S2).

Comparing haplotype blocks to SNP-based prediction, the

improvement in prediction accuracy ranged from 0.007 to 0.021
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for GBLUP, 0.008 to 0.024 for Bayesian LASSO, 0.008 to 0.023 for

EGBLUP, and 0.007 to 0.022 for RKHS. These values were based on

the haplotyping method that yielded the highest prediction

accuracy for each specific trait and model (Tables 2, S1).

Interestingly, the use of haplotypes seemed to have the least

impact on oil yield (Figure S1; Table S1). Except for flowering

time with RKHS, the LD-based methods generally resulted in the

most significant improvements. However, no ideal LD threshold or

range of thresholds could be identified (Table S1). In the case of

flowering time with RKHS, the optimal haplotyping method

involved a fixed window of adjacent base pairs measuring

20987.15 kbp.

3.2.2 Maize
Prediction accuracy obtained from the random cross validation

ranged from 0.4 to 0.9 and was trait-dependent. Here, little difference

between models was observed with SNP-based prediction

(Figures 2E, S3). With haplotypes, however, there were

considerable differences between Models implemented in a

Bayesian framework and frequentist models (Figures 2, S3). With
A B D

E F G

I

H

J K L

M N

C

O P

FIGURE 1

Numbers of SNPs (dark green horizontal line), haplotype blocks (dark orange), haplotypes (light orange), haplotypes with frequency ≤ 0.05 (light
green), haplotypes with frequency ≤ 0.01 (light yellow) and unblocked SNP markers (green) identified by GAB, GAM, SPI, “HaploBlocker” (A, E, I, M),
LD (B, F, J, N), fixed window of adjacent markers (C, G, K, O) and fixed window of adjacent base pairs (D, H, I, P) in canola (A–D), maize (E–H),
wheat (I–L) and soybean (M–P).
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haplotypes based on LD, prediction accuracy decreased with higher

LD thresholds for GBLUP and EGBLUP and increased for Bayesian

LASSO and RKHS, respectively (Figures 2F, S4). Here for DMY,

DMC and PH, respectively, all models approached a similar

prediction accuracy around r2~0.75 (Figure S3). And for DtTAS

and DtSILK all models approached the same prediction accuracy

around r2~0.55 (Figure S3). The same behavior could not be

observed with the fixed window haplotypes, where prediction

accuracy obtained from GBLUP and EGBLUP decreased

drastically with increasing block size. Here, for models

implemented in a Bayesian framework the prediction accuracy

remained low independent of the block size (Figures 2G, H, S3).

Except for DMY, where the GAB method slightly improved

prediction accuracy, haplotypes based on the algorithms

implemented in “Haploview” decreased prediction accuracy in

every scenario (Figures 2E, S4). In general, there was no

discernable improvement of prediction accuracy by haplotypes

compared to SNP-based predictions. In all traits but DMY, the

haplotyping method with the highest prediction accuracy even

decreased prediction accuracy with Bayesian LASSO and RKHS

(Tables 2, S1), whereas for GBLUP and EGBLUP prediction

accuracy did not or only slightly increased prediction accuracy
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compared to SNP based prediction. DMY profited most from

haplotypes, whereby GBLUP, Bayesian LASSO and RKHS worked

best with the GAB method while for EGBLUP a fixed window of 8

SNPs was ideal (Figure 2; Table 2). Besides DMY, for Bayesian

LASSO and RKHS haplotypes worked best with an LD threshold of

r2 = 1, however, prediction accuracy was still worse than SNP based

prediction (Table S1; Figure S4). For the same traits, Frequentists

model worked best with varying fixed window size haplotypes, with

a maximal improvement of 0.002 (Table S1). The “HaploBlocker”

method together with very large fixed window blocks yielded the

lowest prediction accuracies across all traits.

The family-wise cross validation generally yielded considerably

lower prediction accuracies than its random counterpart (Figure S4;

Table S2). The ranking in prediction accuracies obtained from

haplotype blocks followed the pattern of the random counterpart,

albeit being lower (Figure S4; Table S2). Mentionable, prediction

accuracy approached zero for the HaploBlocker” method together

with very large fixed window blocks.

3.2.3 Wheat
Prediction accuracy in the wheat dataset exhibited much greater

variability between traits compared to the other three datasets,
A B D

E F G

I

H

J K L

M N

C

O P

FIGURE 2

Prediction accuracy (r) of GBLUP (red), Bayesian LASSO (blue), EGBLUP (black) and RKHS (grey) with SNPs, GAB, GAM, SPI, “HaploBlocker” (A, E, I, M),
LD (B, F, J, N), fixed window of adjacent markers (C, G, K, O) and fixed window of adjacent base pairs (D, H, L, P) based haplotype blocks, in canola
seed yield (A–D), maize DMY (E–H), wheat seed yield (I–L) and soybean oil content (M–P). Individual points in the line plots represent the mean
over all cross validation runs for each haplotype block parameter and model combination.
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TABLE 2 Average prediction accuracy of SNP based prediction compared to the best haplotyping method of canola, maize, wheat and soybean for
some example traits.

Dataset Trait Model
SNP predic-
tion accu-

racy

Best
haplotyping
algorithm

Prediction accuracy by
best haplotyping algorithm

Improvement by best
haplotyping algorithm

Canola

yield

GBLUP 0.464 r2 = 0.6 0.485 0.021

Bayesian
LASSO

0.462 r2 = 0.59 0.486 0.024

EGBLUP 0.471 r2 = 0.6 0.492 0.021

RKHS 0.474 r2 = 0.71 0.496 0.022

flowering time

GBLUP 0.709 r2 = 0.12 0.721 0.012

Bayesian
LASSO

0.697 r2 = 0.15 0.721 0.024

EGBLUP 0.711 r2 = 0.14 0.723 0.012

RKHS 0.704 nKB = 2097.15 0.719 0.015

Maize

DMY

GBLUP 0.624 GAB 0.635 0.011

Bayesian
LASSO

0.616 GAB 0.621 0.006

EGBLUP 0.620 nSNP = 8 0.622 0.002

RKHS 0.608 GAB 0.631 0.023

DtTAS

GBLUP 0.847 nSNP = 4 0.847 0.000

Bayesian
LASSO

0.846 r2 = 1 0.842 -0.004

EGBLUP 0.845 nSNP = 4 0.846 0.000

RKHS 0.846 r2 = 1 0.842 -0.003

Wheat

yield

GBLUP 0.805 r2 = 0.23 0.813 0.008

Bayesian
LASSO

0.697 nSNP = 46 0.818 0.122

EGBLUP 0.811 r2 = 0.1 0.815 0.005

RKHS 0.765 r2 = 0.1 0.814 0.049

sedimentation
value

GBLUP 0.493 nKB = 1073741.82 0.619 0.126

Bayesian
LASSO

0.488 nKB = 1073741.82 0.636 0.148

EGBLUP 0.620 nKB = 1073741.82 0.627 0.006

RKHS 0.610 nKB = 1073741.82 0.631 0.021

Soybean

oil content

GBLUP 0.674 r2 = 0.24 0.682 0.008

Bayesian
LASSO

0.675 r2 = 0.24 0.683 0.008

EGBLUP 0.674 r2 = 0.24 0.682 0.008

RKHS 0.677 r2 = 0.26 0.691 0.014

protein
content

GBLUP 0.601 nSNP = 4 0.606 0.006

Bayesian
LASSO

0.602 nSNP = 4 0.608 0.006

EGBLUP 0.609 nSNP = 4 0.611 0.003

RKHS 0.609 nSNP = 4 0.613 0.003
F
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ranging from -0.4 to 0.9, depending on the specific trait.

Interestingly, even with SNP-based predictions, considerable

differences in prediction accuracy were observed across (i) models

that consider epistasis and those that do not, (ii) frequentist and

models implemented in a Bayesian framework, and (iii)

combinations of (i) and (ii) (Figures S5–S7). However, when

haplotype blocks were utilized, all models achieved at least the

average prediction accuracy of the best SNP-based model for 13 out

of 15 traits (Figures S5–S7; Table S1). This was achieved by using

haplotype blocks constructed with varying methods, including even

the largest possible haplotype blocks based on fixed windows (e.g.,

using whole chromosomes as blocks) (Figures 2, S5–S7; Table S1).

Furthermore, for traits such as yield, biomass yield, NUE,

protein yield, sedimentation value, stripe rust, and falling number,

the previously worst-performing SNP-based model became the

best-performing model when using haplotype blocks (Table S1).

Additionally, for traits with very low or even negative prediction

accuracy based on SNPs (e.g., plant height, TKW, days till heading,

falling number, powdery mildew, and stripe rust), strong

improvements were achieved through the use of haplotypes

(Figures S5–S7; Table S1). Models implemented in a Bayesian

framework seemed to benefit the most from the utilization of

haplotypes, with changes in prediction accuracy ranging from

-0.039 to 0.170 for GBLUP, from 0.006 to 0.277 for Bayesian

LASSO, from -0.003 to 0.085 for EGBLUP, and from 0.025 to

0.291 for RKHS (Tables 2, S1). The most notable improvements

were typically seen when prediction accuracy varied considerably

between models using SNP data. Only for cases, such as falling

number with RKHS, kernel spike-1 with EGBLUP, spike m-2 with

RKHS and EGBLUP, and stripe rust resistance with GBLUP, did the

prediction accuracy decrease compared to SNP-based prediction

when using haplotype blocks (Table S1).

3.2.4 Soybean
The prediction accuracy in the soybean dataset ranged from 0.5

to 0.8 and exhibited a striking similarity between oil content and

protein content. No noticeable differences were observed between

models based on SNPs (Figures 2M, S8A, E). Moreover, there was

minimal variation in prediction accuracy across different LD

thresholds, with only a slight decrease in accuracy observed

between r2 = 0.01 and 0.05 (Figures 2N, S8B, F).

When using fixed windows of adjacent marker blocks, the

prediction accuracy experienced a decline with increasing block

size for all models (Figures 2O, S8C, G). Similar behavior was

observed for fixed windows of adjacent base pairs blocks, except for

a marginal increase in prediction accuracy with blocks of size

47453.13 kbp (Figures 2P, S8D, H). However, it is worth noting

that the prediction accuracy remained lower than the SNP-based

prediction in that case. Overall, the improvements achieved with

haplotypes were relatively minor (Tables 2, S1). For oil and protein

content, the best haplotype block method and parameter improved

the prediction accuracy by only 0.006 and 0.008 with GBLUP, 0.006

and 0.009 with Bayesian LASSO, 0.003 and 0.008 with EGBLUP,

and 0.003 and 0.014 with RKHS, respectively, compared to the

SNP-based prediction (Tables 2, S1).
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Interestingly, within the traits, it was observed that the models

worked best with the same haplotype block method: an LD

threshold of r2 = 0.24-0.26 for oil content and a fixed window

size of nSNP = 4 for protein content.
4 Discussion

Using datasets from four diverse crops and haplotype blocks

constructed using a broad range of construction parameters, we

show how haplotype blocks change in size and influence the

effective number of predictors for genomic prediction. While

haplotype blocks sometimes drastically change the number of

predictors, genomic prediction accuracy was only marginally

affected with no consistent improvement for any method and trait.

Haplotype blocks were built based on LD (r2), fixed window

sizes of adjacent marker or base pairs as well as the three algorithms

implemented in the software “Haploview” and the method

“Haploblocker”. The r2 measurement of LD between markers (Hill

and Robertson, 1968; Hill, 1981) is highly correlated to D´

(VanLiere and Rosenberg, 2008), which is more commonly used

in tagSNP methods where it showed superior performance to other

measures (Carlson et al., 2004; de Bakker et al., 2005). According to

Cuyabano et al. (2014), r2 and D´ show no difference in terms of

prediction accuracy in genomic prediction. The high resolution of

haplotype blocking methods and construction parameters allowed

an examination of a wide range of haplotype block sizes that are

normally not considered in genomic prediction. Most studies in this

regard only include single or few construction methods or

parameters (Lorenz et al., 2010; Ballesta et al., 2019; Maldonado

et al., 2019), although our results show that the method of haplotype

construction can potentially impact prediction quality. We included

haplotype blocks of relatively large sizes, such as a LD threshold of

0.01 and whole chromosome blocks, which may initially seem

unrealistic. However, we included these large blocks to account

for scenarios in which traits are controlled by large chromosome

segments (Voss-Fels et al., 2019), possibly resulting from

introgression breeding with suppressed recombination (Hao

et al., 2020).

Here, in three datasets the number of haplotypes could be

increased substantially compared to the number of SNPs. The

number of haplotypes we observed in the four examined datasets

was lower than observed in cattle (Cuyabano et al., 2014; Cuyabano

et al., 2015; Li et al., 2021; Li et al., 2022) and human (Liang et al.,

2020) but similar to previous reports in plants including Eucalyptus

globulus (Ballesta et al., 2019), maize (Matias et al., 2017) and rice

(Matias et al., 2017). These variations may arise from differences in

population diversity, marker density, and sequencing technology.

The haplotype number detected in maize by Matias et al. (2017) was

comparable to that observed in our analysis using around ten times

fewer SNPmarkers, indicating that haplotype number is not (solely)

dependent on marker density. However, as expected there is a

relationship between the population size and haplotype number,

with more (diverse) genotypes causing more haplotypes. The

number of haplotypes we detected corresponded to the
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population size used for each crop, with wheat having the fewest

haplotypes and soybean the most, independent of the method.

Nevertheless, an effect of genetic diversity within a species or

population cannot be discounted without comparative within-

species analyses of alternative populations. Some authors argue

that use of haplotype blocks can help to reduce dimensionality (Kim

et al., 2019; Pook et al., 2019). However, depending on the methods

and parameters for haplotype construction the number of

haplotypes was sometimes higher in the examined datasets than

the number of SNPs. This may reflect lower marker numbers and

different methods compared to Kim et al. (2019). Dimensionality

can certainly be decreased if rare haplotypes would be excluded

(Hess et al., 2017; Li et al., 2022). The method “HaploBlocker”

described by Pook et al. (2019) decreased the dimensionality in

every examined dataset. In all cases, the major drawback of the large

number of additional variants is the very low frequency at which the

haplotypes occur. However, low frequency variants are often

assumed to be in higher LD with recent causal mutations (Bloom

et al., 2019; Wainschtein et al., 2022), implying that their detection

and use for predictions could be beneficial. However, caution is

needed when considering all haplotypes, especially rare ones. In

genomic predictions. effect estimation of rare variants require large

populations to be estimated accurately (Meuwissen et al., 2001;

Goddard and Hayes, 2007). In large populations, rare variants can

be observed at higher frequencies which enables a more accurate

estimation of their trait effects. In SNP based prediction markers are

commonly excluded if they have a minor allele frequency ≤ 0.05

(Technow et al., 2012; Crossa et al., 2013; Jan et al., 2016; Werner

et al., 2018a; Zhang et al., 2018). With large populations, filtering

could be shifted from frequencies to allele counts, potentially

leading to more reliable effect estimates of rare haplotypes.

However, increasing the population could again increases the

number of rare new haplotypes. In all four datasets, the number

of unblocked SNPs decreased with increasing block size. With LD

based haplotype blocks, increasing the LD threshold resulted in an

increase of unblocked SNPs.

Genomic prediction was conducted using four models: GBLUP,

EGBLUP, Bayesian LASSO, and RKHS regression, with the latter

two implemented within a Bayesian framework. GBLUP, being the

golds standard of genomic prediction, is a widely employed

prediction models in breeding, hence we included it in the

analysis. However, GBLUP assumes that all markers or

haplotypes contribute to the trait (through relationship),

prompting the inclusion of Bayesian LASSO, which allows for

marker or haplotype-specific shrinkage of effects towards zero.

This is beneficial in scenarios where not all markers or haplotypes

have an impact on the trait. Given the assumption that haplotypes

capture local epistatic effects (Jiang et al., 2018), EGBLUP and

RKHS regression were employed to assess whether considering

global epistasis between haplotype blocks could yield a substantial

improvement in genomic prediction. Although haplotype blocks

are typically fewer in number compared to SNPs, the number of

haplotypes used for prediction was often comparable to or even

greater than the number of SNPs. Therefore, we selected prediction

models capable of handling the challenges posed by the large p

small n scenario, opting not to explore machine learning models.
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Furthermore, the application of machine learning methods would

have required extensive hyperparameter optimization, which would

have significantly exceeded the computational time required for

the four prediction models employed in this study. Lastly, the

objective of this study was to compare various haplotype blocking

methods and parameters, rather than comparing different

prediction models.

Generally, genomic prediction accuracies based on SNPs were

similar to those reported in the literature across all datasets. In the

canola dataset, accuracies closely matched Jan et al. (2016), with a

small improvement likely due to the higher number of markers

remaining after filtering. Trait prediction accuracies in canola/

rapeseed were mostly consistent with previous reports, with

minor variations observed for field emergence, and glucosinolate

content (Würschum et al., 2014; Jan et al., 2016; Werner et al.,

2018a; Werner et al., 2018b). Also in the maize dataset, SNP-based

genomic prediction accuracy roughly matched the original

publication (Lehermeier et al., 2014), with expected differences

due to varying cross-validation schemes. Maize hybrids exhibited

high prediction accuracies as previously reported (Technow et al.,

2012; Crossa et al., 2014; Millet et al., 2019). In wheat, prediction

accuracies based on SNPs for seed yield and yield components were

on a very high level (Table S1) compared to many previously

published reports (Lado et al., 2013; Zhao et al., 2013; Crossa

et al., 2014; Daetwyler et al., 2014; Crossa et al., 2016; Edwards

et al., 2019). Furthermore, prediction accuracies based on SNPs for

stripe rust resistance, despite population differences, showed a

similar level than observed by Daetwyler et al. (2014). Whereas

protein content had a higher prediction accuracy compared to

Crossa et al. (2016), sedimentation value was predicted equally

well. In soybean, prediction accuracies based solely on SNPs were

comparable to levels reported by Jarquin et al. (2016) for oil content

and protein content, despite considerable differences in the cross-

validation and modeling schemes. The lack of differences in

prediction accuracies may be explained by the narrow genetic

diversity in soybean breeding material due to genetic bottlenecks

(Hyten et al., 2006).

Genomic prediction with LD-based haplotype blocks in canola

resulted in the highest accuracy improvements for most model/trait

combinations. Variation in prediction accuracy across LD

thresholds was minimal. The optimal threshold varied

significantly by trait and model, ranging from very low (0.01) to

high (0.89). In wheat, LD-based haplotype blocks were superior to

the other haplotyping methods for 20 out of 60 model/trait

combinations, but accuracy didn’t always improve compared to

SNP-based prediction. Similar low variation across LD thresholds

was observed in soybean. For soybean’s oil content, the ideal LD

threshold for accuracy estimates across all models was 0.24-0.26. In

maize, only the Bayesian LASSO and RKHS models achieved the

highest improvements with LD based haplotype blocks with a

threshold of 1, effectively removing redundant information. In

this scenario, only markers in complete LD were grouped into a

block, effectively removing redundant information. This process, is

similar to LD pruning, which has been demonstrated to enhance

prediction accuracy (Ye et al., 2019). Intriguing patterns were

observed with LD-based haplotypes in maize, the two models
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implemented in a Bayesian framework (Bayesian LASSO and

RKHS) behaved in an opposite direction to the other (frequentist)

models, potentially due to different estimation procedures. In

contrast to Cuyabano et al. (2014), we generally did not find an

ideal LD threshold or even an ideal threshold specific to each dataset

and mostly not even an ideal threshold within one trait. The

prediction accuracy variation along LD thresholds reported in

cattle (Cuyabano et al., 2014; Li et al., 2021; Li et al., 2022) was

similar to the variation observed in our analyses. This suggests that

any LD threshold is reasonable for genomic prediction due to low

variation of prediction accuracy. We propose that even with

extreme LD thresholds, reasonably accurate haplotype blocks are

constructed, which explains the low variation observed across LD

thresholds in all datasets. Additionally, in all datasets, the

correlation between relationship coefficients obtained from

markers and haplotypes was consistently high, with little variation

across LD thresholds. This suggests that relationship representation

remains consistent when using LD-based haplotype blocks.

The use of small fixed window blocks led to prediction

accuracies comparable to those achieved with individual SNPs.

Additionally, in maize, our findings aligned with those of Jiang

et al. (2018) in Flint material, showing similar prediction accuracy

patterns for frequentist models using small fixed window size

haplotype blocks (2-5 markers). Interestingly, in maize, prediction

accuracy eroded with the two frequentist models and increasing

block size based on fixed windows, whereas for two Bayesian

models the prediction accuracy was low across all parameters.

Except for the wheat dataset, using excessively large fixed

windows to build haplotype blocks considerably reduced

prediction accuracy, as observed in previous studies with cattle

(Hess et al., 2017). Unrealistically large blocks likely obscure the

effects of true QTL within them. Furthermore, these larger blocks

are generally more prone to errors in genotyping, and imputation,

which accumulate in large blocks and limit prediction accuracy of

genomic prediction models utilizing these blocks. These errors can

also introduce false rare haplotypes, exacerbating issues related to

rare variants. Additionally, as block size increases, haplotypes

become more specific to genotypes or subpopulations, resulting in

the absence of certain haplotypes in the training set but presence in

the validation set. This lack of overlap leads to inaccurate estimation

of the effects for those haplotypes, thus decreasing prediction

accuracy due to the limited shared haplotypes between the

training and validation sets. In the case of wheat, however, using

very large blocks, such as whole chromosomes, resulted in

considerable improvements in prediction accuracy. Mentionable

improvements were observed for traits such as wheat stripe rust

resistance, powdery mildew resistance, and kernel spike-1. This

improvement can likely be attributed to introgression breeding in

wheat, where large chromosome segments are introgressed and

preserved due to restricted recombination (Hao et al., 2020).

Furthermore, the wheat D-subgenome exhibits large LD

haplotype blocks that are important for yield and biomass-related

traits (Voss-Fels et al., 2019). However, it should be noted that these

improvements were observed in cases where the model

performance was initially at a very low level with SNPs. The

correlation between relationship coefficients obtained from
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markers and haplotypes was high for small fixed window blocks

but decreased as block size increased. This suggests that crucial

relationship information is lost or encoded within large haplotype

blocks, which cannot be accessed for accurate prediction. As a

result, the prediction accuracy in canola, maize, and soybean is

reduced. However, it is important to highlight that large blocks can

potentially introduce additional trait information, as demonstrated

by their impact in some of the wheat traits.

The widely used algorithms implemented in “Haploview” did

not exhibit superiority in terms of prediction accuracy compared

to other methods. Although the method proposed by Gabriel et al.

(2002) showed a slight improvement, particularly in maize DMY,

these gains remained modest when compared to SNP-based

prediction. In contrast to the findings of Matias et al. (2017),

our analysis generally revealed a decrease in prediction accuracy

rather than a benefit from haplotypes based on “Haploview” in the

maize dataset. This discrepancy could be attributed to differences

in the plant materials studied. While Matias et al. (2017)

examined a diverse collection of tropical maize lines, our

analyses focused on European dent material characterized by a

relatively strong population structure (Lehermeier et al., 2014).

Moreover, the population studied by Matias et al. (2017) was

nearly twice the size of our investigation, potentially leading to

increased recombination events between loci and reducing the

potential size of haplotype blocks. Another contributing factor

may be the limited representation of relationship captured by

those haplotypes, as evidenced by the intermediate correlation

between relationship coefficients obtained from markers and

haplotypes. In contrast, canola, wheat, and soybean exhibited a

high correlation in this regard. Unlike the findings of Ma et al.

(2016) suggest, our study did not observe improved prediction

accuracies in soybean using the method proposed by Gabriel et al.

(2002). This discrepancy could be attributed to several factors,

including differences in the traits under examination, as well as

substantial variations in population size and marker density. It is

worth noting that the method proposed by Gabriel et al. (2002)

shares similarities with the LD-based method described earlier,

implying that haplotype blocks formed using this method may

already be represented using a specific LD threshold.

The “HaploBlocker” method (Pook et al., 2020) has the

advantage of constructing subgroup-specific haplotype blocks and

was implemented to address this aspect. However, this approach did

not improve prediction accuracy and even led to a decrease of

prediction accuracy in some cases. In canola and soybean,

haplotype blocks from “HaploBlocker” effectively captured the

genomic relationship represented by SNPs. In wheat, the

representation was reasonable, but in maize, it was notably

inadequate. Similar to the large fixed windows, haplotypes

generated by this method are specific to genotypes or

subpopulations. Consequently, haplotypes present in the

validation set may not be observed in the training set, resulting in

the inability to estimate their effects accurately and leading to

decreased prediction accuracy due to the limited number of

shared haplotypes between the training and validation sets.

Particularly in the maize population, which exhibited strong

population structure, the “HaploBlocker” method resulted in
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comparatively low prediction accuracies. This was pronounced with

the family-wise cross validation, where the accuracies were

diminished to nearly zero. In this scenario, even when using

SNPs, the number of shared alleles or haplotypes between the

training and validation sets will be minimized. This effect will be

particularly prominent when employing a method that constructs

subgroup-specific blocks.

In general, with the exception of wheat, prediction accuracies

based on haplotype blocks using GBLUP and EGBLUP followed the

correlation observed between relationship coefficients obtained

from SNPs and haplotype blocks. This suggests that a portion of

the prediction accuracy achieved with haplotypes is derived from

reinterpreting the SNP information. However, in the case of wheat,

this pattern did not hold true, even when using large fixed window

blocks. Furthermore, considerable prediction accuracy differences

were observed across models for wheat traits, but these differences

were consistently compensated for by utilizing haplotype blocks

with varying methods and parameters. This indicates that

additional information beyond genetic relatedness contributes to

the prediction accuracy when using haplotype blocks. One possible

explanation is that haplotype blocks are generally considered to

exhibit higher LD with QTL compared to individual markers (Jiang

et al., 2018).

Multiple factors contribute to the accuracy of genomic

prediction. One crucial factor is the relationship among

genotypes, which is overlooked in random cross-validation

approaches. In such cases, closely related genotypes may be

included in both the training and validation sets, leading to

higher prediction accuracies for related individuals (Massman

et al., 2013; Hickey et al., 2014; Werner et al., 2020).

Consequently, the prediction accuracies obtained from random

cross-validation are population-specific and cannot be readily

adopted to all breeding populations (Werner et al., 2020). To

address this issue, we conducted a family-wise cross-validation in

the maize dataset to assess the predictive performance of haplotype

blocks for less related individuals. As expected from Werner et al.

(2020), we observed a decrease in prediction accuracy compared to

random cross-validation. However, the relative ranking of

haplotype block methods and parameters remained consistent

with that of the random cross-validation, indicating no added

benefit from haplotypes in predicting the breeding values of

genetically distinct materials.

Moreover, GBLUP models trained with small haplotype blocks

exhibited very similar prediction accuracies to models trained with

SNPs. This is expected since haplotype effects can be partially

defined as the sum of individual marker effects within their

respective block. Another advantage of haplotype effects is their

ability to capture local epistasis, as demonstrated by Jiang et al.

(2018). However, it is worth noting that purely additive models,

especially in prediction methods like GBLUP where marker effects

are estimated simultaneously, already implicitly capture local

epistasis among markers in complete LD.

The use of haplotypes has been proposed as a means to address

the challenges associated with apparent or phantom epistasis

(Wood et al., 2014). Apparent or phantom epistasis can occur

when two markers are in incomplete LD with QTL, resulting in
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and enhanced prediction accuracies in genomic prediction with

models considering epistasis (Wood et al., 2014; de los Campos

et al., 2019; Schrauf et al., 2020). This effect may be particularly

pronounced in the wheat dataset, which had a significantly lower

marker density compared to the other three datasets. Consequently,

the use of haplotype blocks sometimes led to considerable

improvements in prediction accuracy.

There is a multitude of factors affecting the accurate assembly

of haplotype blocks and their respective haplotypes. Especially in

complex plant genomes like the allopolyploids canola and wheat,

SNP array markers can potentially be non-specific in terms of

physical position, representing different homoeologous loci in

different individuals (Mason et al., 2017; Makhoul et al., 2020).

Furthermore, all methods to build haplotype blocks rely on known

marker positions along the genome. These positions are obtained

from a reference genome and are not necessarily the same in every

population or even genotype. Especially if the reference genome is

only distantly related. In such cases, a lack of precision in

assembled haplotype blocks and their corresponding haplotypes

may limit their potential in genomic prediction. Furthermore,

haplotype block borders are not necessarily the same across

populations and generations. Even though, Gabriel et al. (2002)

showed high harmony of block structure across different human

populations, however in plant breeding, with selection favoring

positive alleles or haplotypes, this could ultimately change.

Especially LD based haplotype blocks may only be useful for

very few generations, since initially defined blocks will rapidly be

disrupted by recombination or extended due to selection in later

generations as the breeding program progresses. Indeed, an

important goal of breeding is to accumulate favorable alleles

through selection and recombination. This underlines the need

for constant updating of both, the haplotype block assignment and

the prediction model. Furthermore, besides the two fixed window

approaches, all of the methods tested are only capable of

identifying a proxy to true chromosomal recombination

breakpoints. Even though crossovers tends to aggregate in

recombination hotspots (Li and Stephens, 2003; Myers et al.,

2006), haplotype blocking methods with limited marker density

and population size may not necessarily be able to detect these

hotspots. Therefore, there is a need to develop enhanced

haplotype blocking pipelines that can effectively capture natural

recombination patterns and address challenges associated with

polyploidy, structural variations, and chromosomal rearrangements

commonly observed in crop plants (Mason et al., 2017; Schiessl

et al., 2019). Consequently, ongoing efforts focus on the

development of innovative methods to capture local epistatic

effects (Pook et al., 2020).

Unfortunately, we could not identify a single optimal haplotype

blocking method that suits all datasets. Therefore, it is important to

consider haplotype block construction methods and parameters as

hyperparameters that require careful optimization, rather than fixed

biological parameters. A breeding program that adopts haplotype

block-based genomic selection should explore multiple haplotype

blocking methods with different parameter settings. In general, the

selected method should effectively capture relationships among
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individuals. Additionally, it is worth examining blocks of large size,

as, in the case of the wheat dataset, larger blocks proved beneficial in

improving prediction accuracy. The wheat dataset, which had the

lowest marker density, generally showed the greatest improvements.

This suggests that haplotype block-based genomic selection could

be particularly valuable for breeding programs lacking access to

high-density SNP arrays. However, further investigation is required

in other datasets with varying SNP densities to validate

these findings.

Although we observed only marginal beneficial effects of

haplotype blocks in the canola, maize and soybean datasets on

genomic prediction, they can still have a beneficial effect when used

in other contexts. For example, haplotype blocks can help to

identify regions of interest for the identification of candidate

genes near significant marker-trait associations, or to compare

different genotype groups at such loci (Clark, 2004; Li et al., 2017;

Vollrath et al., 2021). Moreover, even if the majority of SNP

markers exhibit intermediate minor allele frequency in a

population, specific combinations of alleles represented as

haplotypes may not be common in a population. Therefore,

haplotypes can assist in identifying rare variants that have a

potential impact on phenotypic traits. (Bloom et al., 2019;

Wainschtein et al., 2022; Wang et al., 2023). Furthermore,

especially in highly quantitative traits like yield where markers

tend to have very small effects on traits, haplotype blocks can

identify positive or negative chromosomal segments. This

information can be implemented for cross designs to recombine

haplotypes with positive effects (Bernardo and Thompson, 2016;

Werner et al., 2018a). This can be considerably easier than selecting

for single positive SNPs, as their positive effect can be obscured by

deleterious SNPs in proximity that are only rarely separated by

recombination in subsequent generations.
5 Conclusion

As anticipated based on numerous previous reports, our study

confirms that haplotype blocks have the potential to enhance

genomic selection, although the magnitude of improvement is

sometimes only marginal. Haplotype blocks can particularly

compensate for model differences when there is considerable

variation in model performance across different prediction

models. The extent of improvement with haplotypes compared to

SNP-based predictions seem to be highly dependent on factors such

as population, population structure, trait, and model. for a

multitude of different traits from different crop species with

different genome properties and breeding schemes, we were

unable to identify optimal methods or parameters for

constructing haplotype blocks in terms of prediction accuracy.

Approaches based on LD resulted in improved prediction

accuracies across various traits and demonstrated robustness in

LD-threshold selection. However, the greatest improvements were

observed with haplotype blocks consisting of entire chromosomes.

Therefore, we recommend treating haplotype block definition as a

tunable hyperparameter when employing genomic selection, taking

into account extremely large haplotype blocks.
Frontiers in Plant Science 14
Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: Please refer to the original publications of the

four datasets.
Author contributions

SW and RS designed the study. SW conceived the analysis, MF

developed the software for Linkage Disequilibrium (LD) based

haplotyping. KV-F and MF supervised the statistical analysis. SW

wrote the manuscript. RS and KV-F revised the manuscript. All

authors contributed to the article and approved the submitted version.
Funding

The work was funded by grant FKZ 031B0890A from the

German Federal Ministry of Education and Research (BMBF) to

MF and RS. Informatics infrastructure was provided by the BMBF-

funded de.NBI Cloud within the German Network for

Bioinformatics (de.NBI).
Acknowledgments

The authors thank Benjamin Wittkop, Christian Obermeier,

Carola Zenke-Philippi and Lennard Ehrig for discussions on

potential applications of haplotype blocks in plant breeding.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher's note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1217589/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2023.1217589/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1217589/full#supplementary-material
https://doi.org/10.3389/fpls.2023.1217589
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Weber et al. 10.3389/fpls.2023.1217589
References
Atanda, S. A., Govindan, V., Singh, R., Robbins, K. R., Crossa, J., and Bentley, A. R.
(2022). Sparse testing using genomic prediction improves selection for breeding targets
in elite spring wheat. Theor. Appl. Genet. 135, 1939–1950. doi: 10.1007/s00122-022-
04085-0

Ballesta, P., Maldonado, C., Pérez-Rodrıǵuez, P., and Mora, F. (2019). SNP and
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et al. (2016). Genomic prediction of gene bank wheat landraces. G3 Genes|Genomes|
Genetics 6, 1819–1834. doi: 10.1534/g3.116.029637
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