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Introduction: Genomic selection (GS) has gained global importance due to

its potential to accelerate genetic progress and improve the efficiency of

breeding programs.

Objectives of the research: In this research we proposed a method to improve

the prediction accuracy of tested lines in new (untested) environments.

Method-1: The new method trained the model with a modified response

variable (a difference of response variables) that decreases the lack of a non-

stationary distribution between the training and testing and improved the

prediction accuracy.

Comparing new and conventional method: We compared the prediction

accuracy of the conventional genomic best linear unbiased prediction (GBLUP)

model (M1) including (or not) genotype × environment interaction (GE) (M1_GE;

M1_NO_GE) versus the proposed method (M2) on several data sets.

Results and discussion: The gain in prediction accuracy of M2, versus M1_GE,

M1_NO_GE in terms of Pearson´s correlation was of at least 4.3%, while in terms

of percentage of top-yielding lines captured when was selected the 10% (Best10)

and 20% (Best20) of lines was at least of 19.5%, while in terms of Normalized Root

Mean Squared Error (NRMSE) was of at least of 42.29%.

KEYWORDS

gains in accuracy, GBLUP, genomic prediction, genotype × environment interaction
(GE), novel method
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Introduction

Genomic selection (GS) has gained global importance due to its

potential to revolutionize agriculture by accelerating genetic

progress and improving the efficiency of breeding programs

(Heffner et al., 2009). The increasing global population also

increases the demand for food, making it necessary to improve

agricultural productivity and sustainability. GS optimizes and helps

achieve these goals by enabling breeders to select individuals with

superior genotypes that exhibit desirable traits, such as high yield,

disease resistance, and environmental adaptability. This

methodology has been successfully applied in various crops, such

as maize, wheat, and rice, as well as in livestock breeding, such as

dairy cattle, beef cattle, and pigs (VanRaden et al., 2009). By

harnessing the power of genomics, breeders can identify and

utilize favorable genetic variants that would otherwise be difficult

to identify with traditional breeding methods. This enhances the

efficiency and accuracy of selecting superior individuals while

reducing the need for costly and time-consuming field testing. As

such, GS has become an important tool that contributes to a more

sustainable and resilient agriculture and meets the demands of a

growing global population (Daetwyler et al., 2013).

Nevertheless, GS is challenging when predicting the

performance of lines in new environments due to a phenomenon

called genotype-by-environment interaction (G× E). G×E occurs

when the effect of a genotype on a trait differs across different

environments, such as different geographic locations or weather

conditions (Gianola and Rosa, 2015; Crossa et al., 2017; Resende

et al., 2018). Since genomic prediction models are typically

developed using data from specific environments, the models may

not accurately predict the performance of lines in other

environments. For this reason, it is important to account for the

G×E effect, as it can result in a significant decrease in prediction

accuracy when ignored (Crossa et al., 2017; Resende et al., 2018). To

address this challenge, breeders collect data from multiple

environments to develop more robust models that can account

for the G×E effect. They also use prediction models that model G×E

to identify genomic regions that exhibit stable performance across

different environments. By considering the G×E effect, breeders can

develop more accurate genomic prediction models that can be used

to predict the performance of lines in new environments (Crossa

et al., 2017; Resende et al., 2018).

Several genomic prediction approaches can be used to improve

the prediction of lines in new environments. One approach is to

collect data from multiple environments and use it to develop more

robust genomic prediction models that can account for the (G×E)

effect (Hickey and Gorjanc, 2020). Another approach is to use

machine learning algorithms that can identify important

environmental variables that contribute to the G×E effect and

incorporate them into the genomic prediction models (Guo et al.,

2019). Additionally, researchers can develop multi-trait models that

predict multiple traits simultaneously, as this can improve the

accuracy of prediction across environments. Yet another
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approach is to use a multi-population model, which incorporates

data frommultiple populations with different levels of relatedness to

increase the diversity of the training population. Finally,

incorporating functional genomic data, such as gene expression

or epigenetic data can also improve the prediction accuracy in new

environments. Overall, a combination of these approaches may be

required to address the challenge of predicting the performance of

lines in new environments.

Most statistical and machine learning models can fail to

accurately predict performance in a completely new environment

because they rely on assumptions and patterns learned from the

data on which they were trained, and these may not hold true in a

new environment or dataset that has different underlying

characteristics (Hastie et al., 2009). Also, predicting specific

genotypes in new environments becomes challenging when faced

with such high levels of genetic variability and the environments

used as training and testing are very different.

In statistical models, the assumptions made about the

distribution of the data, the relationships between variables and

the model structure may differ in a new environment. For example,

if a linear regression model is trained on data that has a linear

relationship between the independent and dependent variables, and

in a new environment the relationship is non-linear, the model will

not perform well in making predictions (Breiman, 2001).

Similarly, machine learning models can overfit the training

data, which means that they may learn the noise or idiosyncrasies

of the specific training data rather than the general patterns that can

be applied to new data (Goodfellow et al., 2016). This can result in

poor performance when predicting in a new environment with

different data. To address this difficulty, there are two approaches

that can be considered. The first approach involves having access to

diverse and representative training data and using conventional

models and techniques, such as cross-validation, to improve the

prediction of genotypes in new environments (Hastie et al., 2009).

The second approach is to propose radical modeling approaches

that can significantly enhance the prediction of tested genotypes in

new environments compared to conventional models. Since

achieving high prediction accuracy for tested genotypes in

completely new environments is very challenging, this paper

explores a novel method with a fundamentally different modeling

approach from conventional models. Instead of directly training the

prediction models with the response variable, as typically done in

conventional models, the proposed model is trained using the

difference of response variables between environments in the

training set. This approach is crucial for reducing the distribution

mismatch between the training and testing sets. Additionally, it

allows for the computation of predictions for the tested genotypes in

the new environment as an ensemble. The final predictions are

generated by combining information from the response variables

of each environment in the training set and predictions of the

multiple differences. The number of differences computed is

denoted by ( I

2), where I represent the number of environments

available in the training set.
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Materials and methods

Data sets

We present the eight data sets used for benchmarking the

proposed method and the conventional methods. These datasets

have been employed in previous studies and the quality control for

the genomic data consists in removing markers that had more than

15% missing values and those with a minor allele frequency (MAF)

of< 0.05.

Data set 1. Maize
This maize data set was included in Souza et al. (2017) and

comes from the University of Sao Paulo (USP). It consists of 722

(with 722 × 4 = 2888 observations) maize hybrids obtained by

crossing 49 inbred lines. The hybrids were evaluated in four

environments (E1-E4) in Piracicaba and Anhumas, São Paulo,

Brazil, in 2016 using an augmented block design with two

commercial hybrids as checks to correct for micro-environmental

variation. The parent lines were genotyped with an Affymetrix

AxiomMaize Genotyping Array of 616 K SNPs. Markers with MAF

of 0.05 were removed. After applying QC, 54,113 SNPs were

available to make the predictions.

Data set 2. Japonica
Monteverde et al. (2019) reported a rice data set that belongs to

the tropical Japonica population with four traits (namely Grain

Yield (GY): Percentage of Head Rice Recovery (PHR), Percentage of

Chalky Grain (GC), and Plant Height (PH)) and in four

environments (years: 2010, 2011, 2012, and 2013). A total of 127

lines were evaluated each year, and 16,383 SNP markers remained

after coding the marker as 0, 1 and 2. In this vein, a total of 508

assessments were evaluated in the four environments.

Data set 3 (EYT_1), data set 4 (EYT_2), and data
set 5 (EYT_3)

These three data sets were collected by the Global Wheat

Program of the International Maize and Wheat Improvement

Center (CIMMYT) and belong to elite yield trials (EYT)

established in four different cropping seasons with four

environments. Data set 3 (EYT_1) is from cycle 2013–2014; data

set 4 (EYT_2) is from cycle 2014–2015; and data set 5 (EYT_3) is

from cycle 2015–2016. The EYT data sets 1, 2 and 3 contain 766,

775 and 964 lines, respectively.

An alpha-lattice design was used as the experimental design,

and the lines were sown in 39 trials, each covering 28 lines and two

checks in six blocks with three replications. Several lines and traits

were available for some environments in each data set. In this study,

we included four traits measured for each line in each environment:

days to heading (DTHD; number of days from germination to 50%

spike emergence); days to maturity (DTMT, number of days from

germination to 50% physiological maturity or the loss of the green

color in 50% of the spikes); PH; and GY. For full details on the

experimental design and how the best linear unbiased estimates

(BLUEs) were computed, see Juliana et al. (2018).
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The lines examined in the data sets were evaluated in four

environments. For data set 3 (EYT_1), the environments were bed

planting with five irrigations (Bed5IR), early heat (EHT), flat

planting and five irrigations (Flat5IR), and late heat (LHT). For

data set 4 (EYT_2), the environments were bed planting with two

irrigations (Bed2IR), Bed5IR, EHT, and Flat5IR. For data set 5

(EYT_3), the environments evaluated were Bed2IR, Bed5IR,

Flat5IR, and flat planting with drip irrigation (FlatDrip).

Genome-wide markers for the 2515 (776 + 775 + 964) lines in

the three data sets were obtained through genotyping-by-

sequencing (Elshire et al., 2011) at Kansas State University using

an Illumina HiSeq2500. After filtering, 2038 markers were obtained

from an initial set of 34,900 markers. The imputation of missing

markers data was carried out using LinkImpute and implemented in

TASSEL (Trait Analysis by Association Evolution and Linkage)

version 5 (Bradbury et al., 2007). Lines that had more than 50%

missing data were removed, providing a final total of 2515 lines that

were used in this study (776 lines in the third data set, 775 lines in

the fourth data set, and 964 lines in the fifth data set).
Data set 6. Indica
This dataset contains information on the phenotypic

performance of the same four traits reported for rice from the

Japonica data set (GY, PHR, GC and PH), which was also reported

also by Monteverde et al. (2019) in three environments in 2010,

2011 and 2012. For each year, 327 lines were evaluated. The total

number of assessments in this balanced data set is 981 since each

line is included once in each environment. After quality control,

markers for 16,383 SNPs remained and were coded as 0, 1, and 2.

Data set 7. Groundnut
This data set was reported by Pandey et al. (2020) and includes

information on the phenotypic performance of 318 groundnut lines

for various traits in four locations. The traits under study include

pods per plant (NPP), pod yield per plant (PYPP) measured in

grams, seed yield per plant (SYPP) measured in grams and yield per

hectare (YPH) measured in kilograms. The four locations are

denoted as Aliyarnagar_R15, Jalgoan_R15, ICRISAT_R2015, and

ICRISAT_PR15-16. The data set is balanced, giving a total of 1272

assessments with each line included once in each location. Marker

data were available for all lines, and 8268 single-nucleotide

polymorphism (SNP) markers remained after quality control

(with each marker coded with 0, 1, or 2).

Data set 8. Disease
In this data set with 438 wheat lines, three traits (diseases) were

measured: Pyrenophora tritici-repentis, which causes a disease known

as yellow spot, yellow leaf spot, tan spot, yellow leaf blotch, or

helminthosporiosis; Parastagonospora nodorum, a major wheat

fungal pathogen that affects the leaves and other parts of the plants;

and Bipolaris sorokiniana, the cause of seedling diseases, common

root rot and spot blotch in several crops such as barley and wheat.

Over a long period during the same year, these 438 lines were

evaluated in the greenhouse for several replicates, which were

subsequently considered environments (Env1, Env2, Env3, Env4,
frontiersin.org
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Env5, and Env6) as the experiments were established in different

greenhouses and planting dates. For the three traits measured, the

total number of observations was 438� 6 = 2628. It should be noted

that this data set was also used by Montesinos-López et al. (2020).

The response was measured on a continuous scale from 1 (resistance)

to 5 (susceptible).

DNA samples were genotyped using 67,436 SNPs. For a given

marker, the genotype for each line was coded as the number of

copies of a designated marker-specific allele carried by the line

(absence = zero and presence = one). The markers that had more

than 15% missing values were removed, as well as markers with

MAF< 0.05. A total of 11,617 SNPs were still available for analysis

after quality control and imputation.
M1-Conventional GBLUP model

One of the predictors implemented under a GBLUP model was:

Yij = m + Li + gj + gLij + eij (1)

where Yij denotes the response variable measured at genotype j at

environment i; m denotes a general mean; Li denotes the random

effects of environments (or locations) distributed as L = (L1,…, LI)
T

∼ NI (0,s 2
LH), where H denotes the environmental relationship

matrix computed as proposed by VanRaden (2008), but in place of

using genomic information, it was estimated using only the design

matrix of environments; that is, H = XLX
T
L

r , where XL is the design

matrix of environments of dimension n� I, where n denotes the

number of observations; gj, j = 1,…, J , are the random effects of lines,

gLij are the random effects of environment × line interaction (GE)

and ϵij denotes the random error terms assumed normally distributed

with mean 0 and variance s 2. Furthermore, it is assumed that g =

(g1,…, gJ )
T ∼ N J(0,s2

gG), gL = (gL11,…, gL1J ,…, gLIJ )
T ∼ NIJ (0,

s 2
gLH ȯZgGZ

T
g ), where G is the genomic relationship matrix

(VanRaden, 2008), ȯ denotes the Hadamard product and H is the

environment relationship matrix of size nxn. When Model (1) was

implemented, it was denoted as M1_GE, but when model (1) was

implemented without the genotype by environment interaction

component (gLij) it was denoted as M1_NO_GE. The

implementation of these models was done in the R statistical

software (R Core Team, 2023) version 4.2.3 in the BGLR library of

Pérez and de los Campos, 2014.
M2-Proposed method

This method is proposed for the prediction of tested lines in

untested environments. We assume that we have a balanced data set

where the same J lines were evaluated in all the environments (E)

and the number of environments is at least I=3. Assuming that we

have only one response variable (yij for i=1,.,I, j=1,.,J). The method

consists of the following steps:

Step 1: Compute all resulting combination (RC) of choosing

two environments of all available environments (I), that is, RC =

(
I
2
).
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Step 2: Make explicit all the combinations of two environments:

(E1, E2) … (E1, EI)…(EI−1, EI).

Step 3: Compute the variable difference (di,i0 ,j = yij − yi0j) for

each pair of environments.

Step 4: Build a data frame by stacking all the RC blocks of

variable difference (di,i0 ,j = yij − yi0 j) computed in Step 3. Also we add

others columns of the same length to identified lines, Env_i, Env_i´,

yij, yi´j, and di,i0 ,j.

Step 5. Since the goal of prediction is tested lines in untested

environments, we put NA in the new response variable, di,i0 ,j, where

is present the environments that will be predicted. Then all rows of

this data frame with NAs conform the testing set and the rows

without NAs in di,i0 ,j correspond the training set. Then we train the

following GBLUP model:

di,i0 ,j = m + gj + eij (2)

Where m is also a general intercept, gj is the random effect of

genotypes with the same distribution as given in model (1), eij is a
residual term with normal distribution and mean 0 and variance s 2:

However, now the response variable is di,i0 ,j, instead of the original

response variable (yi,j). It is also important to point out that now

with model (2) we made predictions for the observations of the

variable difference of the testing set (d̂ i,i0 ,j), not for the original

response variable. For this reason, the final predictions of the testing

set in terms of the original response variables are obtained as a kind

of ensemble with the following expression:

ŷ i,j =
1

I − 1oi0=1
(yi0 ,j + d̂ i,i0 ,j) (3)

Next, to clarify the steps required for implementing the

proposed method M2, we provide an example for J=3 lines and

I=3 environments, and we denote environment 1as E1, environment

2 as E2 and environment 3 as E3. For Step 1, we compute RC =

(
3
2
) = 3. For Step 2, the following are the resulting combinations:

(E1, E2), (E1, E3) and (E2, E3). For Step 3 these are the following

variable differences:

d1,2 = (y11 − y21, y12 − y22, y13 − y23),

d1,3 = (y11 − y31, y12 − y32, y13 − y33),

d2,3 = (y21 − y31, y22 − y32, y23 − y33)

For Step 4 we provide the following table (Table 1) that will be

the input for the data.frame.

For Step 5, we assume that E1 will be the testing set while

environments E2 and E3 the training set. For this reason, the final

input for training is given in Table 2.

Now the predicted values were for: d1,2 = (y11 − y21, y12 − y22,

y13 − y23) and d1,3 = (y11 − y31, y12 − y32, y13 − y33). For this reason,

the final prediction of each line in the testing set, E1, in terms of the

original response variables can be obtained as:

ŷ 1,1 =
1

2 − 1
½(y2,1 + d̂ 1,2,1) + (y3,1 + d̂ 1,3,1)�,
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ŷ 1,2 =
1

2 − 1
½(y2,2 + d̂ 1,2,2) + (y3,2 + d̂ 1,3,2)�,

ŷ 1,3 =
1

2 − 1
½(y2,3 + d̂ 1,2,3) + (y3,3 + d̂ 1,3,3)�
Cross-validation strategy and
evaluation metrics

The cross-validation strategy used was to leave one environment

out. Under this strategy at each iteration, all data of an environment is

used as the testing set and the remaining data from the rest of

environments is used as the training set (Montesinos López et al.,

2022). There are as many iterations as environments so that each

environment can be used at least once as the testing. Using this

method we sought to assess how well a model can predict

information of a complete environment using data from other,
Frontiers in Plant Science 05
different environments. To evaluate the prediction accuracy of the

proposed method (M2) versus the conventional methods (M1_GE

and M1_NO_GE), we employed the following three metrics: (1)

normalize root mean square error, (2) Average Pearson’s correlation

(APC) computed between the observed and predicted values of the

testing set. (3) Percentage of top-yielding lines captured when

selected percentage was 10% (Best10) of lines by ranking of lines

within each environment. Lines within each environment were

ranked from most to least favorable. (4) Percentage of top-yielding

lines captured when selected percentage was 20% of lines (Best20) by

ranking of lines within each environment.
Data availability

The R code along with data sets of Groundnut, Japonica,

Indica and Maize are available at: https://github.com/osval78/

Novel_LOEO_Model. While the remaining data sets are

ava i l ab l e a t : h t tps : / /da ta . c immyt .org /data se t . xhtml?

persistentId=hdl:11529/10548140.
TABLE 2 Modified input for implementing model M2 with I=3 environments and J=3 environments, with NAs in the column di,i ,j for testing set and

the remaining for the training set.

Obs. Line Env_i Env_i´ yij yi ´ j di,i ´,j

1 g1 E1 E2 y11 y21 NA

2 g2 E1 E2 y12 y22 NA

3 g3 E1 E2 y13 y23 NA

4 g1 E1 E3 y21 y31 NA

5 g2 E1 E3 y22 y32 NA

6 g3 E1 E3 y23 y33 NA

7 g1 E2 E3 y31 y11 y21 − y31

8 g2 E2 E3 y32 y12 y22 − y32

9 g3 E2 E3 y33 y13 y23 − y33
front
TABLE 1 Modified input for implementing model M2 with I=3 environments and J=3 environments.

Obs. Line Env_i Env_i´ yij yi ´ j di,i ´,j

1 g1 E1 E2 y11 y21 y11 − y21

2 g2 E1 E2 y12 y22 y12 − y22

3 g3 E1 E2 y13 y23 y13 − y23

4 g1 E1 E3 y21 y31 y11 − y31

5 g2 E1 E3 y22 y32 y12 − y32

6 g3 E1 E3 y23 y33 y13 − y33

7 g1 E2 E3 y31 y11 y21 – y31

8 g2 E2 E3 y32 y12 y22 − y32

9 g3 E2 E3 y33 y13 y23 − y33
iersin.org
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Results

Here, we provide the results in five subsections for four crops

(Maize, Japonica, YET_1 and Indica) corresponding to four out of

the eight data sets and the last one corresponding to a summary

across traits and across the 8 datasets. The results for the rest of the

datasets are provided in Appendix A and B. The results are reported

in terms of APC, percentage of top-yielding lines captured when

selected percentage was 10% (Best10) and 20% (Best20) of lines and

in terms of normalized root mean square error (NRMSE).
Data set 1. Maize

In this data set, we can observe that the proposed method (M2)

was better than M1_GE and M1_NO_GE methods in terms of APC

by 65.8% and 65.7%, respectively. In terms of the power of the

methods to capture the top best 10% of the lines (Best10), M2 is

superior by 91.1% and 81.1%, regarding M1_GE and M1_NO_GE

respectively, while in terms of the power of the methods to capture

the top best 20% of the lines (Best20) M2 methods outperformed by

81.5% and 62.9% M1_GE and M1_NO_GE methods respectively.

Regarding NRMSE method M2 was also superior in terms of

prediction accuracy by 111.4% and 105.4% regarding M1_GE and

M1_NO_GE respectively. In Figure 1 can be observed that method

M2 clearly outperforms M1 methods (M1_GE and M1_NO_GE).

For more details see Table A1 in Appendix A.
Data set 2. Japonica

In Japonica, the proposed method M2 has demonstrated a

higher level of effectiveness in comparison to the methods
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M1_GE and M1_NO_GE, achieving a 2.6% and 3.2% increase in

APC, respectively. The M2 method has also exhibited superior

capability in capturing the top 10% and 20% of the lines (Best10 and

Best20), with improvements of 33.3% and 37.1% over M1_GE and

M1_NO_GE for Best10, and improvements of 28.0% and 33.3%

over M1_GE and M1_NO_GE for Best20. Additionally, the M2

method has shown greater accuracy in predicting NRMSE, with

improvements of 277.7% and 533.4% over M1_GE and

M1_NO_GE, respectively. Figure 2 visually represents the

performance of M2 as superior to M1_GE and M1_NO_GE. For

a more comprehensive analysis, refer to Table A1 in Appendix A.
Data set 3. EYT_1

The effectiveness of the proposed method M2 in comparison to

the methods M1_GE and M1_NO_GE has been evaluated in the

YET_1 dataset, resulting in a 2.1% and 4.4% increase in APC,

respectively. M2 has exhibited superior capability in capturing the

top 10% of the lines (Best10), with an improvement of 10.2% over

M1_NO_GE, but a decrease in improvement of 7.6% and 1.2% over

M1_GE and M1_NO_GE for Best20, respectively. Additionally, M2

has shown a decrease in improvement in terms of NRMSE, with

reductions of 8.1% and 24.8% over M1_GE and M1_NO_GE,

respectively. Figure 3 illustrates the performance of M2 in

comparison to M1_GE and M1_NO_GE. For a more detailed

analysis, refer to Table A1 in Appendix A.
Data set 4. Indica

In Indica, a comparison of the proposed method M2 with the

methods M1_GE and M1_NO_GE has shown a lower level of
A B C

FIGURE 1

Results for data set 1 (Maize) in terms of (A) average Pearson´s correlation (APC), (B) percentage of top-yielding lines captured when selected
percentage was 10% (Best10) and 20% (Best20) of lines and (C) normalized root mean square error (NRMSE).
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effectiveness, resulting in a 5.0% and 4.5% decrease in APC,

respectively. However, M2 has demonstrated superior capability

in capturing the top 10% and 20% of the lines (Best10 and Best20),

achieving improvements of 73.4% and 34.2% over M1_GE and

M1_NO_GE for Best10, and improvements of 59.2% and 31.7%

over M1_GE and M1_NO_GE for Best20. Additionally, M2 has

exhibited greater accuracy in predicting NRMSE, with

improvements of 95.9% and 61.4% over M1_GE and

M1_NO_GE, respectively. Figure 4 visually represents the
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superiority of M2 in comparison to M1_GE and M1_NO_GE.

For a more detailed analysis, refer to Table A1 in Appendix A.
Across data sets

Across various traits and data sets, it is evident that the

proposed method (M2) outperforms the M1_GE and

M1_NO_GE methods in terms of APC, with improvements of
A B C

FIGURE 2

Results across traits for data set 2 (Japonica) in terms of (A) average Pearson´s correlation (APC), (B) percentage of top-yielding lines captured when
selected percentage was 10% (Best10) and 20% (Best20) of lines and (C) normalized root mean square error (NRMSE).
A B C

FIGURE 3

Results across traits for data set 3 (EYT_1) in terms of (A) average Pearson´s correlation (APC), (B) percentage of top-yielding lines captured when
selected percentage was 10% (Best10) and 20% (Best20) of lines and (C) normalized root mean square error (NRMSE).
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4.3% and 4.5%, respectively. M2 has also shown superiority in

capturing the top 10% of the lines (Best10), with improvements of

35.4% and 26.3% over M1_GE and M1_NO_GE, respectively. In

terms of capturing the top 20% of the lines (Best20), M2

outperformed M1_GE and M1_NO_GE methods by 30.2% and

19.5%, respectively. Furthermore, M2 demonstrated superior

prediction accuracy in terms of NRMSE, with improvements of

42.3% and 70.0% over M1_GE and M1_NO_GE, respectively.

Figure 5 visually depicts the superiority of M2 over the M1

methods (M1_GE and M1_NO_GE). For a more comprehensive

analysis, please refer to Table A1 in Appendix A. In the figures of

Appendix B (Figures B1–B4) is summarized the prediction

performance of methods M2, M1_GE and M1_NO_GE for the

remaining data sets (EYT_2, EYT_3, Groundnut and Disease).
Discussion

The primary goal of genomic prediction is to predict the genetic

potential or performance of individuals for a trait of interest, such as

yield, disease resistance, or quality traits. This prediction is based on

the genetic markers that are present in the individual’s genome,

which are used as predictors in a statistical model that relates them

to the trait of interest.

However, in GS, the goal is to predict the performance of

untested lines based on their genomic information. This prediction

is typically based on a model that relates the genetic markers to the

trait of interest using a training set of lines with known phenotypic

values. The challenge is to ensure that the model is accurate and

robust enough to predict the performance of untested lines, even
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though it has not seen its phenotypic data during training. This is

because the genomic information of untested lines may differ from

that of the training lines, due to genetic variation, environmental

effects or other factors. Therefore, it is essential to develop robust

and accurate models that can generalize well to new and diverse

populations and thus achieve successful genomic selection.

The specific goals in genomic prediction may vary depending

on the application and the breeding objectives. Some common goals

include: (1) predicting tested lines in tested environments, (2)

predicting untested lines in tested environments, (3) predicting

tested lines in untested environments and (4) untested lines in

untested environments. Of these four prediction goals, in general

terms we believe that the ranking of the least to the most

challenging is as follows (1)<(2)<(3)<(4). That is, goals (3) and

(4) are more challenging since the impact of not having enough

information of a new environment usually significantly increases

the uncertainty of the predictions. This is related to the G×E

interaction effect that influences the development and expression

of an organism’s traits since it refers to the complex interplay

between genetic factors and environmental factors and this G×E

interaction effect cannot be estimated efficiently under prediction

goals (3) and (4) due to lack of information of the new environment.

As pointed out before prediction goals (3) and (4) are very

challenging since most of the time involve diverse environments

and in order to improve predictions, it is common practice to

enhance genomic prediction models with supplementary elements

that consider the variability resulting from different environments

and their interplay with the genotype (Widener et al., 2021). These

enhanced GP models can be broadly classified into two primary

categories: naïve or non-informed, and informed. The naïve or non-
A B C

FIGURE 4

Results across traits for data set 6 (Indica) in terms of (A) average Pearson´s correlation (APC), (B) percentage of top-yielding lines captured when
the selected percentage was 10% (Best10) and 20% (Best20) of lines and (C) normalized root mean square error (NRMSE).
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informed approach involves incorporating a primary random effect

for the environment, along with a two-way interaction effect that

considers the relationship between each marker genotype and each

environment. The G × E model, also known as the genotype-

environment interaction model, has demonstrated improved

prediction accuracy compared to conventional GP models that

only consider the main effects of genotype and environment

(Jarquıń et al., 2014; Lopez-Cruz et al., 2015; Widener et al., 2021).

The second approach, known as the informed approach,

incorporates environmental covariates (ECs) that are measured in

each environment. These ECs are then integrated into the model

using kernel-based methods, allowing for the inclusion of variance-

covariance structures that account for the interaction between

environmental factors and marker genotypes. This resulting model

incorporates the quantification of interactions between each marker

genotype and each EC to predict GEBVs (genomic estimated

breeding values). It has the potential to outperform the naïve G ×

E models (Jarquıń et al., 2014; Basnet et al., 2019). However, still

nowadays with these sophistication in the modeling process is very

challenging to obtain high prediction accuracy in prediction goals (3)

and (4) since: (a) it is not available the key information of the whole

environment that need to be predicted and (b) there is a strong G × E

interaction and mismatch between the training and testing

distributions. For these reason novel approaches are required to

improve prediction accuracy under these two prediction goals.

It is important to point out that the proposed method was

designed for the prediction goal (3; tested lines in untested

environments), and according to our results, it significantly

outperforms the conventional methods (M1_GE and

M1_NO_GE). For example, across traits and environments the
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proposed method (M2) outperformed the conventional method by

at least 4.3% in terms of APC, while for capturing the best lines in

the top 10% and 20% of the ordered lines in each environment there

were gains of at least 26.3% and 19.5% respectively. However, in

terms of NRMSE, the gain of the proposed M2 method was at least

42.3%. From these empirical results, we interpret that the proposed

method significantly reduces the mismatch in distribution between

the training and testing set and for this reason the proposed method

improves the prediction accuracy of the lines in the new

environment. Under this prediction goal, tested lines in untested

environments and the mismatch in distribution between the

training and testing set is attributed to non-stationary

environments often caused by temporal or spatial changes that

relate to the nature of the particular environment, which is very

common in real-world applications in plant breeding programs.

However, for the nature of the proposed M2 from our results we can

infer that this method significantly reduces the mismatch in

distribution between the training and testing sets.

We also believe that the proposed method is more efficient in

terms of prediction power in part due the nature of how the final

predictions are computed (See equation 3 in materials and methods),

that is, the proposed method (M2) performs a peculiar type of

ensemble that use the observed values of the tested lines on those

environments that conform the training and the predicted differences

corresponding to the testing. This means that the proposed method

(M2) takes advantage of the virtues of ensemble methods which are:

1) improving the accuracy and robustness of machine learning

models by combining the predictions of multiple models; 2)

reducing the risk of overfitting and increasing the generalization

ability of the final model, by leveraging the diversity of the models; 3)
A B C

FIGURE 5

Results across traits and data sets for the two methods in terms of (A) average Pearson´s correlation (APC), (B) percentage of top-yielding lines
captured when selected percentage was 10% (Best10) and 20% (Best20) of lines and (C) normalized root mean square error (NRMSE).
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increasing the robustness of models by reducing the impact of outliers

and errors in individual models; 4) being applied to a wide range of

machine learning problems, including classification, regression, and

clustering; and 5) handling large and complex datasets, as well as

noisy and imbalanced data. For these reasons, ensemble methods are

widely used in industry and academia, and have been shown to

consistently improve the performance of machine learning models.

Although the proposed method enhances the accuracy of

predictions when applied to tested lines in untested environments,

predicting breeding values or phenotypic information for an entire

environment using a reference population that has genotypic and

phenotypic information from available environments is a challenging

task. Typically, statistical machine learning methods struggle to attain

good accuracy in this process. Therefore, research that can

significantly improve prediction accuracy is crucial to ensuring the

reliability of the GS methodology in breeding programs. Nevertheless,

further empirical validations are necessary to ensure the effectiveness

of the proposed method. Thus, we encourage other researchers to

assess the proposed method using other data and the R code provided

in https://github.com/osval78/Novel_LOEO_Model.

It should be noted that the proposed method can be

implemented using various statistical machine learning

algorithms. However, we chose to utilize the GBLUP model

because it is currently one of the most potent and advanced

models for GS. Additionally, this method offers the potential to

incorporate other techniques, such as predictor markers and

pedigree data. Nonetheless, further empirical evaluations are

required to evaluate the efficacy of this method. Also, it is

important to point out that the proposed method only was

developed for tested lines in untested environments (new

environments) for this reason additional work is required to

apply this method to other cross-validation methods.
Conclusions

In this research was proposed an alternative to improve the

prediction accuracy under the scenario of predicting tested lines in

untested environments. Instead of training the model with the original

response variable available in the training set, the new method trained

the model with a modified response variable (a difference of response

variables) that helped to decrease the lack of a non-stationary

distribution between the training and testing and as a by product

improved the prediction accuracy. The gain in prediction accuracy of

the proposed method, M2, regarding the conventional approach

(M1_GE, M1_NO_GE) in terms of Pearson´s correlation was of at

least 4.3%, while in terms of percentage of top-yielding lines captured

when was selected the 10% (Best10) and 20% (Best20) of lines was at

least of 19.5%, while in terms of NRMSE was of at least of 42.29%.

These gains in prediction accuracy empirically show that the proposed

method is very promising for genomic selection in the context of

predicting tested lines in untested environments. For this reason, we

encourage more empirical validation to support our findings.
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Appendix A
TABLE A1 Results of prediction accuracy for all datasets with the two methods in terms of NRMSE, APC, Best10 and Best20. RE_NRMSE was
computed dividing the NRMSE of M1_GE (or M1_NO_GE) and the NRMSE of M2.

Dataset Method NRMSE NRMSE_SE APC APC_SE Best10 Best20 RE_NRMSE RE_APC RE_Best10 RE_Best20

Disease M1_GE 1.8404 0.3335 0.5775 0.0114 65.3933 65.7133 2.224 1.033 1.518 1.518

Disease M1_NO_GE 1.6291 0.3877 0.5756 0.0112 73.03 74.0333 1.969 1.037 1.359 1.347

Disease M2 0.8274 0.0133 0.5967 0.0112 99.2367 99.7467

EYT_1 M1_GE 3.484 1.4185 0.5986 0.0411 73.3675 79.2475 0.919 1.021 0.971 0.924

EYT_1 M1_NO_GE 2.872 1.0158 0.5852 0.0394 64.625 74.1025 0.758 1.044 1.102 0.988

EYT_1 M2 3.7893 1.2261 0.611 0.0413 71.24 73.2425

EYT_2 M1_GE 3.2028 1.1613 0.6691 0.0298 66.085 70.74 0.852 1.006 1.163 1.206

EYT_2 M1_NO_GE 2.896 1.2411 0.6622 0.0296 77.6475 87.515 0.77 1.017 0.99 0.975

EYT_2 M2 3.7597 1.3385 0.6734 0.0293 76.8725 85.32

EYT_3 M1_GE 4.0245 1.1487 0.5462 0.0405 72.0425 85.66 0.872 1.009 0.963 0.847

EYT_3 M1_NO_GE 4.1838 1.2904 0.5355 0.0392 74.1175 84.31 0.907 1.03 0.936 0.861

EYT_3 M2 4.6132 1.2692 0.5513 0.0426 69.3975 72.56

Groundnut M1_GE 2.2021 0.641 0.4461 0.0675 59.6475 60.73 1.829 0.836 1.561 1.609

Groundnut M1_NO_GE 2.6168 0.9039 0.449 0.07 65.7475 70.0775 2.173 0.831 1.416 1.395

Groundnut M2 1.2043 0.1619 0.373 0.0704 93.1075 97.7375

Indica M1_GE 2.5865 0.7248 0.5 0.0616 50.765 56.8875 1.959 0.95 1.734 1.592

Indica M1_NO_GE 2.1303 0.8705 0.4974 0.06 65.56 68.75 1.614 0.955 1.342 1.317

Indica M2 1.3202 0.1009 0.4748 0.06 88.01 90.565

Japonica M1_GE 6.4636 2.5752 0.5398 0.0717 69.2325 72.1175 3.777 1.026 1.333 1.28

Japonica M1_NO_GE 10.8401 4.0901 0.5362 0.0705 67.3075 69.2325 6.334 1.032 1.371 1.333

Japonica M2 1.7115 0.3607 0.5536 0.0773 92.3075 92.3075

Maize M1_GE 2.1638 0.7671 0.3437 0.026 50.35 54.42 2.114 1.658 1.91 1.815

Maize M1_NO_GE 2.1023 0.7128 0.3439 0.0258 53.12 60.66 2.054 1.657 1.811 1.629

Maize M2 1.0235 0.1219 0.5698 0.0163 96.18 98.79

Across_data M1_GE 3.246 1.0963 0.5276 0.0437 63.3604 68.1895 1.423 1.043 1.354 1.302

Across_data M1_NO_GE 3.8772 1.3774 0.5268 0.0408 67.9421 74.2758 1.7 1.045 1.263 1.195

Across_data M2 2.2811 0.5741 0.5505 0.0436 85.794 88.7837
F
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While the RE_APC, RE_Best10, RE_Best20 were computed dividing the APC, Best10 and Best20 of M2 model and the APC, Best10 and Best20 of M1_GE (or M1_NO_GE).
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FIGURE B1

Results across traits for data set 4. EYT_2 in terms (A) average Pearson´s correlation (APC) and (B) percentage of top-yielding lines captured when
selected percentage was 10% (Best10) and 20% (Best20) of lines and (C) normalized root mean square error (NRMSE).
A B C

FIGURE B2

Results across trait for data set 5 (EYT_3) in terms of (A) average Pearson´s correlation (APC) and (B) percentage of top-yielding lines captured when
selected percentage was 10% (Best10) and 20% (Best20) of lines and (C) normalized root mean square error (NRMSE).
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A B C

FIGURE B3

Results across trait for data set 7 (Groundnut) in terms (A) average Pearson´s correlation (APC) and (B) percentage of top-yielding lines captured
when selected percentage was 10% (Best10) and 20% (Best20) of lines and (C) normalized root mean square error (NRMSE).
A B C

FIGURE B4

Results across trait for data set 8 (Disease) in terms of (A) average Pearson´s correlation (APC) and (B) percentage of top-yielding lines captured
when selected percentage was 10% (Best10) and 20% (Best20) of lines and (C) normalized root mean square error (NRMSE).
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