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Cotton (Gossypium hirsutum L.) seed morphological structure has a significant

impact on the germination, growth and quality formation. However, the wide

variation of cotton seed morphology makes it difficult to achieve quantitative

analysis using traditional phenotype acquisition methods. In recent years, the

application of micro-CT technology has made it possible to analyze the three-

dimensional morphological structure of seeds, and has shown technical

advantages in accurate identification of seed phenotypes. In this study, we

reconstructed the seed morphological structure based on micro-CT

technology, deep neural network Unet-3D model, and threshold segmentation

methods, extracted 11 basics phenotypes traits, and constructed three new

phenotype traits of seed coat specific surface area, seed coat thickness ratio

and seed density ratio, using 102 cotton germplasm resources with clear year

characteristics. Our results show that there is a significant positive correlation (P<

0.001) between the cotton seed size and that of the seed kernel and seed coat

volume, with correlation coefficients ranging from 0.51 to 0.92, while the cavity

volume has a lower correlation with other phenotype indicators (r<0.37, P<

0.001). Comparison of changes in Chinese self-bred varieties showed that seed

volume, seed surface area, seed coat volume, cavity volume and seed coat

thickness increased by 11.39%, 10.10%, 18.67%, 115.76% and 7.95%, respectively,

while seed kernel volume, seed kernel surface area and seed fullness decreased

by 7.01%, 0.72% and 16.25%. Combining with the results of cluster analysis, during

the hundred-year cultivation history of cotton in China, it showed that the

specific surface area of seed structure decreased by 1.27%, the relative

thickness of seed coat increased by 8.70%, and the compactness of seed

structure increased by 50.17%. Furthermore, the new indicators developed

based on micro-CT technology can fully consider the three-dimensional

morphological structure and cross-sectional characteristics among the

indicators and reflect technical advantages. In this study, we constructed a
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1219476/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1219476/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1219476/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1219476/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1219476/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1219476&domain=pdf&date_stamp=2023-10-13
mailto:yongjiangzh@sina.com
mailto:guoxy73@163.com
https://doi.org/10.3389/fpls.2023.1219476
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1219476
https://www.frontiersin.org/journals/plant-science


Li et al. 10.3389/fpls.2023.1219476

Frontiers in Plant Science
microscopic phenotype research system for cotton seeds, revealing the

morphological changes of cotton seeds with the year in China and providing a

theoretical basis for the quantitative analysis and evaluation of seed morphology.
KEYWORDS

cotton, seed morphological structure, micro-CT, phenotypic analysis,
temporal succession
1 Introduction

Cotton is the main source of natural fiber and is widely cultivated

both in China and worldwide due to its high economic importance

(Ruan, 2005). The cotyledon, epicotyl, hypocotyl, radicle and seed

coat are the structural components of cotton seed (Maeda et al.,

2021). Additionally, cotton exhibits dark-colored pigment spots

known as cotton phenol. The seed’s morphological structure is

closely associated with its functions, and differences exist in seed

functions based on their various morphological structures. The size

and shape of seeds are key agronomical traits that influence cotton

yield and quality (Wu et al., 2022). Larger and fuller seeds

demonstrate superior early growth, uniformity, and higher metrics

such as single plant dry matter weight, root-to-shoot ratio, emergence

rate, and leaf area (Liu et al., 1997; Wang et al., 2008). Additionally,

the size and surface area of seeds can impact their water-holding

capacity, rate of moisture absorption, and metabolic rate (Ozarslan,

2002; Feng et al., 2008). Further, there is a positive correlation

between kernel-to-coat ratio, and seed oil content (Pahlavani and

Abolhasani, 2006). A vibrant seed color, a prominent oil gland, and a

full seed are indicative of greater vitality in cotton seed (Wang, 2007).

The seed coat is the outermost protective layer of a seed, and its

thickness is related to seed germination, drought, and other

environmental stresses (Schüler et al., 2014). Knowing the relative

thickness of the seed coat can help better comprehend the biological

characteristics of seeds (Schüler et al., 2014). A seed cavity is a gas

structure that is difficult to measure inside a seed. In a study of the

subcutaneous cavity in maize, the subcutaneous cavity volume of

maize seed was found to be one of the most significant factors

affecting the grain breakage rate (Hou et al., 2019). However, there is

no clear research on the formation and quantification of cotton seed

cavities. Therefore, accurate measurement of seed morphological

structures is of great significance for exploring seed functions and

environmental adaptability. However, cotton seeds display irregular

morphology. Traditional measurement methods, like using calipers

to measure the linear dimensions of seeds or dissecting seeds to

obtain internal physical parameters, produce unsatisfactory

outcomes. Consequently, this impedes the progress of studying the

morphological structure of cotton seeds. Therefore, agronomists

urgently need accurate seed structure analysis methods to study the

functional morphological relationships of seeds.

With the continuous advancement of agricultural digital

technology and imaging technology, notable progress has been

made in the analysis and evaluation of seed morphological
02
structures. Regarding the methods used now for seed imaging,

there are mainly four key aspects. The first part involves using two-

dimensional (2D) images to examine seed shape. Capturing 2D

images allows for the extraction of valuable information regarding

the external morphology of seeds, including their size, shape, color

and texture (Hacisalihoglu and Armstrong, 2023). 2D images

commonly comprise a range of image types, such as red-green-

blue (RGB) images, thermal imaging, and fluorescence images.

Zhong et al. (2016) extracted the thickness index of wheat seeds

using two-dimensional image light projection. In a study by

Brodersen and Kuhl (2023) focusing on seaweed seeds, it was

observed that photosynthesis in the seed sheath enhances the

availability of oxygen in the central region of the seed under light

exposure. This, in turn, increases respiratory energy production for

biological synthesis and relieves internal oxygen deprivation within

the seed. Additionally, Kranner et al. (2010) identified a significant

correlation between temperature distribution changes and the seed

imbibition process. Thermal imaging technology has demonstrated

its viability as an alternative to conventional methods for assessing

seed vigor. However, many agronomic traits need to be analyzed in

a three-dimensional model (3D).

The second part focuses on the detection of the chemical

composition of seeds using spectral technology. Spectral imaging

is a fusion of spectroscopy and imaging technology. This method

utilizes the absorption, scattering, or transmission characteristics of

seeds to acquire chemical composition information within the seeds

across varying wavelengths of light. This method offers several

advantages, including high speed, high efficiency, non-contact, non-

destructive, and reliable results. Commonly utilized hyperspectral

images, multispectral images, near-infrared (NIR) imaging, and so

on. In the current study, Fourier transform near-infrared (FT-NIR),

dispersive diode array (DA-NIR) and hyperspectral imaging (HSI)

have been successfully used to detect the quality of seed components

such as protein, oil, water and starch. Furthermore, these methods

have demonstrated the capability to predict chemical quality traits

(Hacisalihoglu and Armstrong, 2023). Moreover, although

fluorescence and thermal infrared images are not composed of a

continuous spectrum of visible light wavelengths, they still involve

the interaction between matter and light as well as the process of

energy conversion of light. Therefore, they can also be classified as

part of the spectrum. The combination of fluorescence and

hyperspectral imaging also holds great potential for assessing

heavy metal content (Zhou et al., 2023). Additionally, the fusion

of proximal spectral phenotyping and 3D modeling registration has
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emerged as a new development trend (Liu et al., 2020), but it has

received limited attention in the field of seed research.

The third component is the 3D imaging technology using serial

sections. Serial sections entail physically slicing the sample into thin

slices. Next, each slice is observed and imaged under a microscope

before layering the images to reconstruct the 3D structure of the

entire sample. For instance, Ogawa et al. (2000) reconstructed the

3Dmorphological structure of rice seeds using consecutive sectional

images. Commonly used 3D imaging techniques that make use of

serial sections include traditional transmission electron microscopy

(TEM) and scanning electron microscopy (SEM). This method

provides detailed internal ultrastructural features of seeds, such as

cell morphology and number (Rashid et al., 2020). In a study

examining protein and vacuole formation in pea seed cotyledons,

researchers reconstructed serial sections of tissues obtained on the

12th and 15th days, providing evidence for the possible formation

of protein bodies (Craig et al., 1979). In a distinct study, Bhawana

et al. (2014) utilized focused ion beam-scanning electron

microscopy (FIB-SEM) to capture the 3D features of aleurone

cells in Arabidopsis seeds. Consecutively slicing experimental

samples is a time-consuming and destructive process that can

lead to the exclusion of specific regions of interest (Prior et al.,

1999). Moreover, incorrect thickness intervals between slices can

cause deformation in the sections (Yamane et al., 2022).

The final part is 3D imaging technology. Commonly used 3D

imaging techniques in seed research comprise magnetic resonance

imaging (MRI), X-ray micro-computed tomography (Micro-CT,

also known as mCT), confocal microscopy, and structured light

imaging technology. 3D imaging technologies have the capability to

examine anatomical internal structures without the need to slice

them (Mohoric et al., 2009). Micro-CT utilizes X-rays for scanning

and reconstructing the 3D structure of samples. This technique can

provide high-resolution images, making it valuable for analyzing

the internal structure of seeds (Yu et al., 2022). MRI employs

magnetic fields and radio waves to generate high-contrast images

containing anatomical information. MRI can offer insights into the

internal structure and water distribution of seeds in seed research

(Metzner et al., 2015). A 3D microscope employs lasers or near-

infrared light sources for scanning samples and generating 3D

models of seeds using stacked images. Structured light imaging

involves using structured patterns generated by light sources to

obtain the 3D external shape of samples. Despite having relatively

larger errors compared to other techniques (Yu et al., 2022),

structured light imaging still has certain applicability in studying

the external morphology of seeds. In principle, MRI signals are

based on the flow of water, while X-ray tomography is based on the

differential absorption of X-rays by the sample, but compared with

MRI, micro-CT can achieve higher spatial resolution (Metzner

et a l . , 2015) . Laser confocal microscopy (LSM) can

nondestructively observe and analyze the internal microstructure

of cells by constructing a 3D model of samples through 3D layer

imaging, but it is slower than micro-CT imaging (Gubatz et al.,

2007; Fanuel et al., 2018). So it seems appropriate to use micro-CT

methods to explore seed structures.

In recent years, the application of micro-CT technology has

become increasingly prevalent in the analysis of crop seeds. This
Frontiers in Plant Science 03
innovative technology has been used to analyze the 3D

morphological structure of seed organs in crops like rice, wheat,

sorghum and maize. For example, micro-CT technology was used

to measure the chalkiness index and quantify the crack size of rice

seeds, promoting the genetic analysis of rice chalkiness regulation

and quality evaluation in production (Su and Xiao, 2020). Le et al.

(2019) assessed the morphology of wheat grain and its different

compartments, quantifying the crease shape for each grain. Crozier

et al. (2022) extracted phenotypic quantitative data from sorghum

grain, including embryo volume, endosperm hardness, endosperm

texture, endosperm volume, pericarp volume, and seed kernel

volume, to enable the identification of genotypes with superior

structural characteristics. Additionally, Yin et al. (2021) used micro-

CT technology to analyze the variation of maize kernels from base

to top, revealing the positional effect on grain growth and

development. Overall, micro-CT technology offers a unique 3D

perspective on characterizing seed morphological structure and vast

potential for exploring the relationship between seed morphological

structure, quality, and water transport (Warning et al., 2014). This

technology represents a robust tool for studying the relationship

between seed morphological structure and function and exploring

the mechanisms of seed quality control. However, although this

technology has been widely used on various crops, the micro-CT-

based analysis technology of cotton seed has not yet been

established, and the 3D structural phenotypic information on

cotton seed remains undefined.

Over time, different breeding goals and specific production

issues have resulted in varying growth characteristics and

ecological adaptability of plant varieties, which can be reflected in

significant differences in crop phenotypes. Seed phenotype plays a

crucial role in contributing to crop phenotypes and reflects the

profound genetic changes caused by intentionally or

unintentionally human selection. For example, significant changes

have occurred in the morphology and size of wheat grains during

domestication and breeding due to the demand for flour protein

particle content and hydrolytic enzyme activity (Gegas et al., 2010).

This change has led to the classification of wheat cultivars, such as

common wheat, hard wheat, cone wheat, and dense wheat. The

shape of grains is divided into four categories: angular, oval,

cylindrical, and elliptical, based on the shape of wheat seed

kernels. Production-wise, wheat is often divided into two types

based on the color of the grain: red skin and white skin. The red-

skinned variety has a thicker skin, poor ventilation, and long

dormancy, but is resistant to grain sprouting (Lang et al., 2021).

However, seed morphological structure evolution is often ignored,

and more focus is given to plant architecture evolution because of

the similarity between germplasm. Cotton seeds are mainly

identified based on features such as color and the chemical

composition content of the seed kernel, as there is no clarity on

the evolutionary characteristics of the seed morphological structure

of cotton.

Given the absence of a 3D structure in cotton seeds and the

challenge of accurately quantifying the internal structure, along with

the unclear understanding of seed evolution, this study collected

representative seed samples from different years and employed

micro-CT technology to analyze the morphological structure of the
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seeds. The results elucidated the process and trend of changes that

occurred in the cotton seed throughout the different years. It was

hypothesized that (1) the parameters of the micro-CT equipment can

resolve the 3D morphological structure of the cotton seed; (2) there is

a significant correlation around the morphological indicators of the

cotton seed; and (3) the morphology of the cotton seed has distinct

temporal characteristics as breeding progresses. The purpose of this

study is to establish a micro-CT-based method for obtaining the

morphology of the cotton seed, analyze the internal morphological

characteristics of cotton, and investigate the evolution of cotton seed

morphological structure. This study provides a high-throughput

method for assessing the morphology of the seed morphological

structure and a theoretical basis for the quantitative evaluation and

analysis of the seed morphological structure.
2 Materials and methods

2.1 Experimental materials

The experiment was conducted at the Digital Plant Laboratory

of the Beijing Academy of Agriculture and Forestry Sciences in

2022. The study incorporated 102 diverse types of cotton seeds

(Table S1). 83 of these seeds were cotton varieties with explicitly

identifiable breeding years and were grouped into four years based

on the breeding timeline (Yu, 2018). Years 1-4 pertain to cotton

varieties that were introduced from overseas or domestically

cultivated and widely promoted in China within the years 1904-

1958, 1958-1970, 1970-1990, and 1990-2020, respectively.

Among them, 51 seeds and 5 seeds were sown and harvested in

Hebei Province and Xinjiang Province, respectively, in 2020. Sixty-

one samples were stored in the national cotton germplasm

resources Mid-Term Genebank at a temperature of 0°C ± 2°C

and a relative humidity of 50% ± 7%.
2.2 Cotton seeds retrieving and analyzing
methods establishing

2.2.1 Micro-CT image acquisition
The micro-CT device used for this study was the SkyScan 1172

(Bruker, USA). The scanning resolution was set at 2K (2000×1332),

with a scan pixel pitch of 12.86 μm and an angular step of 0.400°.

The scan was conducted using a voltage of 40 kV and a current of

250 μA, and each individual scan required approximately 29-30

minutes to complete. To improve the accuracy and efficiency of

scanning, three cotton seeds were secured on a homogeneous foam

panel, and the panel was fixed to the rotary table of the micro-CT

scanning equipment to decrease the influence of other fixed

matrices on image grayscale. After each scan, 488 images (. TIF)

were acquired for each variety, resulting in a total size of 2.41 GB.

The CT Scan NRecon software (Bruker, US) was utilized for image

reconstruction. Each reconstructed image had a format of BMP

with a resolution of 2000×2000px, and their sizes ranged from

approximately 3 to 4 GB.
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2.2.2 Single seed segmentation
First, the original image was downsampled by a factor of 3. The

threshold for image binarization was automatically determined

using the Otsu algorithm (Otsu, 1979). Morphological operations

were employed to eliminate internal holes and generate an image

mask. Next, the three-dimensional watershed algorithm (Neubert

and Protzei, 2014) was utilized to segment individual seed kernels.

To extract micro-CT images of individual seed kernels, the

segmented image was combined with the original image using the

“AND” operation.

2.2.3 Seed kernel phenotyping pipeline
In the micro-CT images of cotton seeds, there is high pixel

grayscale in their seed kernels and seed coats. To enhance the

efficiency of seed image processing, we aim to develop a

phenotyping pipeline. The dataset we used comprises 286

scanned images of 20 seed kernels. Next, we employed the

effective interactive segmentation (EISeg) method described by

Hao et al. (2022) to manually label the embryonic region of these

images (Figure 1A). Among these structures, the seed kernel is more

easily identifiable and labelable. However, manually labeling the

seed coat and cavity structure resulted in significant errors.

Therefore, we only labelled the kernel for model training.

Additionally, the data was divided into training and testing sets

with a ratio of 8:2, chosen randomly.

We utilized the PyTorch - cpu0.8.2 deep learning framework,

along with libraries such as SimpleITK, numpy, scipy, skimage, and

vedo in Python (3.9.0). The U-net 3D network architecture was

illustrated in Figure 1B. This network consisted of an encoder and a

decoder, taking in images of size 32× 128× 128 and producing seed

kernel masks of size 32× 128× 128. The network was divided into 4

layers, performing 5 down sampling operations during the encoding

phase and 5 up sampling operations during the decoding phase. Each

layer was composed of two Conv3D-BN-ReLU modules connected

by residual connections. The number of convolutional kernels in each

layer was 16, 32, 48, 64, and 96, respectively. MaxPool and

ConvTranspose were used for downsampling and upsampling,

respectively. LeakyReLU was employed as the activation function in

the activation function and normalization layer, while InstanceNorm

was used as the normalization layer to enhance the model’s expressive

power. To restore the low-resolution feature maps to the original

image resolution, bilinear interpolation was applied in the

upsampling layer. Furthermore, the model’s output was normalized

and probabilized using the Softmax and Sigmoid functions. The

model configuration included setting the Epoch to 300, the learning

rate to 0.0001, the Batch_size to 4, and performing the training using

the Adaptive Momentum Estimation (Adam) optimization

algorithm. The loss function used was Dice_Loss. The accuracy of

the network was evaluated using the Dice similarity coefficient

(DICE) and Intersection over Union (IoU).

During both the training and inference stages of the model, the

input images were processed in a chunking manner. In the training

stage, 32× 128× 128 volumetric data samples were randomly

extracted from the original images and their corresponding labels

as inputs to the network (Figure 1B). During the inference stage,
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volumetric data of size 32 ×128 ×128 was sequentially extracted

with a stride of (24, 96, 96), and then fed into the segmentation

network for inference, ultimately obtaining the seed kernel mask

image (Figure 1C).

Throughout 200 training iterations with a learning rate of

0.0001, the loss consistently decreased, converging to a model’s

accuracy of 97.7% (Figure 1E).

2.2.4 Seed coat and cavity extraction
We utilized the Otsu algorithm (Otsu, 1979), a basic image

processing technique, to segment the seed coat and cavity based on

the disparity in gray levels between the target object and the

background in the given image. We performed a gray-level

histogram analysis on each individual seed kernel to determine

the threshold for binarization and obtain the seed mask image.

Subsequently, this image was utilized to create a mask

encompassing the contour of the seed. Finally, by utilizing the

“AND” operation, the masks corresponding to the seed coat and

cavity were merged with the original image, resulting in the

production of seed coat and cavity images (Figure 1D).

Open-source medical imaging processing tools, including Itk-

SNAP (Yushkevich et al., 2006) and 3D Slicer (www.slicer.org)
Frontiers in Plant Science 05
(Fedorov et al., 2012), were employed for rendering and 3D

visualization purposes.
2.3 Sampling and measurements

2.3.1 Micro-CT analysis
Based on the target mask image and the target surface model

reconstructed by the Marching Cube algorithm (Lorensen and

Cline, 1987). Based on the surface model, 11 phenotypic traits of

cotton seeds, comprising seed, seed coat, seed kernel, and cavity

morphological structure (Table S2) were extracted. It is important

to mention that the seed surface area is also known as the seed coat

surface area, and the usage of these terms in the paper depends on

the context of the paragraph.

2.3.2 Manual measurement
In order to compare the measured dimensions of seeds with their

corresponding extracted data, it is necessary to use a vernier caliper to

measure and record their length, width, and thickness. We defined

length as the maximum dimension of the seed, while width is the

maximum dimension perpendicular to its length (Hu et al., 2018).
B C

D E

A

FIGURE 1

Micro-CT-based cotton seed imaging processing flow. (A) micro-CT image sequence. (B) U-net network. (C) Segment seed kernel mask. (D) Segment
seed coat and cavity. (E) Loss and accuracy curves on training set.
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We defined the thickness as the straight-line size perpendicular to

both the length and width directions (Hu et al., 2018).
2.4 Seed morphological structure
evaluation indicators

The seed coat specific surface area is expressed by the ratio of

the seed coat surface area to its volume, which can reflect the surface

area of the seed coat per unit volume. The larger the specific surface

area of the seed, the greater its exposure to the surrounding

environment.

Seed coat specific surface area   (m2=m3) = Seed coat surface area(m2)=Seed coat volume(m3) (1)

The seed coat thickness ratio is defined as the average seed coat

thickness divided by the seed thickness. The seed coat thickness

ratio represents the relationship between the thickness of the seed

coat and that of the seed, with a higher value indicating thicker seed

coat.

Seed coat thickness ratio = Average seed coat thickness (m)=Seed thickness (m) (2)

The seed density ratio is defined as the ratio of the cavity

volume of to the seed kernel volume. It is commonly used to

evaluate the internal morphological structure of seeds, with a

smaller SDR value indicating a denser internal structure of the

seeds.

Seed density ratio = Cavity volume(m3)=Kernel volume(m3) (3)

2.5 Data analysis

Experimental data were organized using Microsoft Excel 365

(Microsoft Corporation, USA) with statistical analyses carried out

using SPSS Statistics 25 (IBM Corporation, USA) for variance

analysis and variety clustering. ANOVA analysis of variance

(generalized linear model) was used. When the data conformed to a

normal distribution, we used LSD multiple comparisons for data that

conforms to normality. For data that did not conform to normality, in

order to avoid false positive results, we used Bonferroni multiple

comparison results. The least significant difference (LSD) method

was applied for multiple comparisons, with significant differences

between different seed parameters compared on a P<0.05 level. The

average seed coat thickness indicator was excluded from the clustering

analysis due to its insignificant change. Therefore, ten seed phenotypic

indicators were standardized using the Z-score method and classified

using the Ward method in combination with squared Euclidean

distance as the similarity measure, to categorize the indicators of

different cotton varieties.
3 Results

3.1 Establishment of micro-CT acquisition
and analysis method for cotton seeds

Since cotton is a dicotyledonous crop, the cotyledons of cotton

seeds are curled and closely connected to the radicle and hypocotyls.
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Meanwhile, distinguishing between the radicle, hypocotyl,

primordial epicotyl, and two cotyledons was difficult in our

micro-CT images. Thus, these anatomical components were

regarded as a unified morphological structure known as the seed

kernel for the purpose of segmentation and computational analysis.

Figure 2 presented 3D reconstruction images of the 102 cotton

varieties and the seed coat, cavity, and seed kernel of 12 cotton

varieties from various angles.

Upon observing the micro-CT scan images of cotton seeds, it

became evident that the cavity structure occurs between the seed

kernel and seed coat (Figure 3A). Three other types of cavity

morphological structures also existed, namely the internal cavity

of the seed kernel (Figure 3B), the cavity between the endosperm

residue and the seed coat (Figure 3C), and the cavity between the

internal and external seed coat. However, unlike other crop seeds,

the latter three cavity morphological structures of cotton seeds are

atypical and mainly occur in dry, dehydrated, or even dead seeds.

Thus, this article solely focuses on the cavity between the seed

kernel and seed coat.
3.2 Analysis of phenotypic indicators of
cotton seeds

Eleven phenotypic traits of cotton seeds were obtained through

the analysis of micro-CT images. Descriptive statistics showed that

the average seed length of 102 cotton seeds was 9.22 mm, with a

relatively small standard deviation and coefficient of variation

values (Table 1). The average values for seed width and thickness

were also stable. The thinnest and thickest seed coats had average

thicknesses of 0.10 mm and 0.21 mm, respectively, but relatively

larger coefficient of variation values than seed length, width, and

thickness. Kernel volume and kernel surface area had larger

coefficient of variation values, with values of 0.21 and 0.14,

respectively (Table 1). On average, the seed kernel accounted for

54% of the total seed volume, with the remaining 46% comprising

the seed coat and internal cavity. Notably, the coefficient of

variation of the cavity was as high as 0.71 (Table 1). Comparing

the data obtained through micro-CT with those obtained through

manual measurements, the coefficients of determination for seed

length, width, and thickness were 0.87, 0.83, and 0.81,

respectively (Figure 4).

Through Pearson correlation analysis of 11 phenotypic

characteristics of cotton seeds (Figure 5), it revealed a highly

significant positive correlation between the volume and surface area

of the seed and the volume and surface area of the seed kernel, as well

as the volume of the seed coat (r = 0.57~0.83, P< 0.001). There was a

weak correlation between the cavity volume and the seed coat volume

(r = 0.37, P< 0.001), and a weak correlation with other phenotypic

characteristics (r < 0.30, P < 0.001) (Figure 5). Additionally, the

volume and surface area of the seed kernel showed a positive

correlation with the volume and surface area of the seed and with

the volume of the seed coat (r = 0.51~0.83, P< 0.001) (Figure 5). In

addition, seed coat volume was positively correlated with the volume

and surface area indexes of other phenotypic features (r = 0.51~0.74,

P<0.001) (Figure 5). However, the seed thickness was moderately and
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positively associated with the seed coat volume (r = 0.60, P < 0.001),

and had a weak correlation with the seed volume and cavity (r< 0.03,

P< 0.001), and was not significantly correlated with other phenotypic

characteristics (Figure 5).
3.3 Changes trends in cotton seed
morphological structure in different years

Comparisons of seed phenotypic characteristics from different

years (Figure S1), from 1904-1958 to 1958-1970, showed significant

changes in length, width, seed volume, seed kernel volume, seed

surface area, seed coat volume, cavity volume, and seed fullness.

Conversely, the average seed coat thickness had a minimal and

insignificant decrease (Figure S1). 1958-1970 had a significantly

smaller length (8.56 mm), thickness (4.71 mm), seed volume (88.12

mm3), seed kernel volume (55.28 mm3), and seed coat volume (20.19

mm3) than the other years (Figure S1). From 1958-1970 to 1970-

1990, all indicators, except for seed fullness, showed an upward trend,

and most indicators had significant differences compared to 1958-

1970 (Figure S1). However, when comparing the indicators of 1904-
Frontiers in Plant Science
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1958, 1958-1970, and 1970-1990, 1904-1958 and 1970-1990 had less

significant differences in the various indicators (Figure S1). In 1990-

2020, the degree of decline in length, width, thickness, seed surface

area, seed coat volume, average seed coat thickness, and seed fullness

compared to 1970-1990 was not very significant (Figure S1).

Nevertheless, there was a remarkable decrease in seed volume, seed

kernel volume, and seed kernel surface area, by 8.56%, 14.11%, and

7.82%, respectively (Figure S1).

Comparing the changes in the seed morphological structure of

varieties domestically bred in China from 1958 to 2020 (Figure 6), we

observed an upward trend in seed volume and surface area, seed coat

volume, cavity volume and average seed coat thickness of

domestically bred varieties. They increased by 11.39%, 10.10%,

18.65%, 115.76%, and 7.85%, respectively (Figure 6). However, the

seed kernel volume, seed kernel surface area, and seed fullness

showed a downward trend, decreasing by 7.01%, 0.72%, and

16.25%, respectively (Figure 6). Among them, the seed coat volume

and average seed coat thickness had goodness-of-fit values of 0.70

and 0.88, respectively (Figure 6). The cavity volume had an R² value

of 0.9671, and the goodness-of-fit of seed fullness was the highest,

approaching 1, indicating high predictability (Figure 6).
FIGURE 2

Three-dimensional reconstruction of 102 cotton seed (green) and three-dimensional reconstruction images and three-dimensional view of seed
coat (blue), cavity (yellow), and seed kernel (red) of 12 seeds. The seeds shown in the figure are represented using the RAS coordinate system and
demonstrate consistent orientation, measured in mm. The three-dimensional morphological structure was scaled to 25 cm, and the image scale for
the three orthographic views was set to 5 cm.
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TABLE 1 Descriptive statistics for the phenotypic indicators of 102 cotton seeds.

Morphological trait Unit Mean ± SD a CV b Range

Seed Length mm 9.22 ± 0.70 0.08 7.26-11.16

Seed Width mm 5.40 ± 0.50 0.09 4.44-8.49

Seed Thickness mm 4.86 ± 0.41 0.08 3.67-6.91

Seed Volume mm³ 100.34 ± 15.40 0.15 63.3-150.71

Seed Surface Area mm² 148.51 ± 21.14 0.14 106.52-223.83

Seed Kernel Volume mm³ 54.25 ± 11.59 0.21 26.82-95.37

Kernel Surface Area mm² 89.26 ± 12.51 0.14 61.08-129.92

Seed Cavity Volume mm³ 10.33 ± 7.31 0.71 0.09-41.94

Seed Coat Volume mm³ 23.99 ± 4.27 0.18 12.96-41.27

Average Seed Coat Thickness mm 0.16 ± 0.02 0.12 0.1-0.21

Seed Fullness % 0.54 ± 0.06 0.12 0.3-0.67
F
rontiers in Plant Science
 08
a SD is the abbreviation for standard deviation; b CV is the abbreviation for Coefficient of variation.
FIGURE 3

Three types of the inner structures and seed damage in cotton seeds are depicted. Among them, (A) represents the cavity between the seed coat
and the kernel, (B) depicts the cavity inside the seed coat and endosperm remnants, (C) shows the cavity inside the seed kernel, (D) represents
damage to the seed coat, (E) shows the breach between seed kernels, and (F) represents damage to the seed kernel.
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3.4 Similarity and classification of cotton
seeds from different years

A variance analysis was performed on all seed phenotypic

indicators, which demonstrated that these indicators had

statistical significance in all examined varieties. Nonetheless, the

seed coat thickness indicator was excluded from the clustering

analysis due to its insignificant change. Ten seed phenotypic

indicators were standardized using the Z-score method. After

standardizing all phenotypic data, we performed Ward clustering,

resulting in the classification of 102 varieties into three major

clusters based on the squared Euclidean distance (Figure 7).

LSD test was conducted on three groups of 102 varieties

(Figure 8), and the results showed that group-1 was classified as a

small seed group with the smallest seed volume and seed kernel
Frontiers in Plant Science 09
volume and the largest cavity volume. The seed size of the group-2

was at a medium level, the cavity volume was slightly lower than

that of the group-1, and the seed coat volume was significantly

higher than that of the group-1, but there was no significant

difference compared with the group-3, so it could be classified as

the middle seed group. Group-3 had the largest seed volume and

seed kernel volume, but the smallest cavity volume, which is

classified as the large seed group.

The 1904-1958 group exhibited an even distribution of varieties

among large, medium, and small seed clusters, at 20%, 40%, and

40%, respectively (Figure S2). In the 1958-1970 group, 75% of the

varieties was distributed in small seed clusters, while the remaining

25% were distributed in large seed clusters (Figure S2). The 1970-

1990 group showed a roughly similar distribution among three seed

clusters, accounting for 36.4%, 27.2%, and 36.4% (Figure S2). For
FIGURE 5

Correlation analysis of 11 phenotypic indicators (Seed Length, Seed Width, Seed Thickness, Seed Volume, Seed Surface Area, Kernel Volume, Kernel
Surface Area, Seed Coat Volume, Seed Cavity Volume, Average Seed Coat Thickness and Seed Fullness). Significance *< 0.05, **< 0.01; ***< 0.001.
B CA

FIGURE 4

Data evaluation of seed length (A), seed width (B) and seed thickness (C) measured values extracted based on CT images. N=306. Date represents
mean ± SE (3 biological replicates, n=9, 15 and 26 plants, respectively), letters above the bars indicate significant differences at the level of P<0.05.
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FIGURE 7

Clustering of 102 cotton varieties. Ten seed phenotypic indicators were standardized using the Z-score method and classified using the Ward
method in combination with squared Euclidean distance as the similarity measure, to categorize the indicators of different cotton varieties. The 102
varieties are divided into three categories. The first cluster comprised 46 varieties, accounting for 45.1% of the total varieties. Of these, one variety
was from 1904-1958, three varieties from 1958-1970, four varieties from 1970-1990, 32 varieties from 1990-2020, and six varieties had unknown
Years. The second cluster consisted of 41 varieties, accounting for 40.2% of the total varieties, including 2 varieties from 1904-1958, 3 varieties from
1970-1990, 30 varieties from 1990-2020, and 6 varieties with unknown Years. The third cluster encompassed 15 varieties, accounting for 14.7% of
the total varieties, including 2 varieties from 1904-1958, 1 variety from 1958-1970, 4 varieties from 1970-1990, 3 varieties from, and 5 varieties with
unknown Years.
FIGURE 6

The trend of seed morphological structure change of cotton varieties independently cultivated in China. SSA, Seed Surface Area; KSA, Seed Kernel
Surface Area; SCV, Seed Cavity Volume; ASCT, Average Seed Coat Thickness. The cultivars released years involve cotton varieties cultivated from the
country in 1958-1970, 1970-1990 and 1990-2020, respectively.
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the 1990-2020 group, the majority of the varieties were distributed

in small and medium seed clusters at 50.8% and 44.4%, respectively

(Figure S2). Only 4.8% of the varieties was distributed in the large

seed cluster (Figure S2). Thus, between 1958-2020, the seed

morphology of self-bred varieties in China transitioned from first

changing from large and small seed groups to three seed groups of

large, medium and small, and finally to the change process of

middle and small seed groups.
3.5 Evaluation of seed morphological
structure in different years

In order to facilitate better evaluation of morphological structural

differences among different varieties throughout time, this study

proposed three specific parameters, namely seed coat specific

surface area, seed coat thickness ratio and seed density ratio. The

evaluation of seed coat specific surface area among distinct

generations of cotton seeds, indicated in Figure 9A, illustrates that

respective average roughness measurements were 6.31 m-1, 6.66 m-1,

6.23 m-1, and 6.28 m-1 for the 1904-1958 through 1990-2020. While

the seed coat specific surface area increased initially from 1904-1958

to 1990-2020, it underwent a decreasing trend afterwards, but there

was no significant variation in seed coat specific surface area among

these generational cohorts. Moreover, implications derived from seed
Frontiers in Plant Science 11
coat thickness ratio analysis (Figure 9B) showed a low degree of

characterization of seed coat thickness ratio among these distinct

years, as seen by the mean value ranging between 0.031 and 0.034

showing an increasing trend— that was, the relative thickness of the

seed coat increased. Calculation from Figure 9C demonstrated that

the mean value of the seed density ratio elevated from 0.15 to 0.23

throughout the 70-year time period. However, for 1958-1970, the

seed density ratio was set at 0.10, which is considerably below the

recorded values of the remaining years. On the whole, the results of

the seed density ratio showed that the seed morphological structure in

self-bred varieties in China was becoming more compact. While the

cavity was increasing year by year, the seed kernel size was increasing

at a faster rate than the cavity. The seed thickness ratio and specific

surface area of the seed coat exhibited an upward trend. However, the

comparative approach, taking into account the overall morphological

structure of the seed, offered a more compelling depiction of the

average change in seed coat thickness.

The correlation analysis of the three parameters, presented in

Table 2, identified a significant association among them. Of these

parameters, seed coat specific surface area and seed coat thickness

ratio showed the highest correlation coefficient (r = -0.80, P< 0.001),

suggesting the likelihood of their representing similar traits. Hence,

when assessing seed morphological structure, either of the

parameters could be utilized without necessitating the

requirement to utilize both.
B

C D E

A

FIGURE 8

The three clustering results from the statistical analysis of the variations in cotton seed morphology were Seed Length, Width, and Thickness (A),
Seed Volume and Seed Kernel Volume (B), Cavity Volume and Seed Coat Volume (C), Seed Surface Area and Seed Kernel Surface Area (D), and Seed
Fullness (E). LSD test was used for normal distribution data. Date represents mean ± SE (3 biological replicates, n=46,41 and 15 varieties,
respectively), letters above the bars indicate significant differences at the level of P<0.05.
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4 Discussion

4.1 Analyzing the microscopic phenotype
characteristics of seeds

Micro-CT nondestructive imaging technology has been widely

used in plant phenomics (Guelpa et al., 2015; Hu et al., 2020; Wu
Frontiers in Plant Science 12
et al., 2021). This paper presented a novel technique for studying the

microscopic phenotype of cotton seeds. In most studies, researchers

obtained a large number of micro-CT images from single seeds by

scanning micro-CT and processing them individually by manual

frame selection or commercial software, which took a lot of labor

time (Hou et al., 2019; Dong et al., 2020). Therefore, this paper aims

to transform the original batch seed kernel micro-CT image
B

C

A

FIGURE 9

Comparison of differences in Seed Coat Specific Surface Area (A), Seed Coat Thickness Ratio (B), and Seed Density Raito (C) among four Years.
Given are the means ± SEM. Boxes represent first and third quartile (upper and lower margins), and median (horizontal line). N=306, significance:
*<0.05, **<0.01.
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processing problem into a single seed kernel segmentation problem.

Additionally, the analysis of individual seed kernel components is

also transformed into a semantic segmentation problem, focusing

on the seed kernel and cavity components that possess the most

prominent internal characteristics. The method improved the

efficiency of seed treatment and quickly extracted 11 seed

structural traits. The micro-CT equipment took 29-30 minutes to

scan a single seed, and scans three seeds each time. In contrast to the

conventional commercial software utilized for single seed

processing, the seed processing technique described in this paper

is characterized by its brevity and enhanced efficiency.

Consequently, a complete microscopic phenotype technique

system for cotton seeds has been established, which provides

significant technical support for furthering the exploration of the

internal morphological structure of the seeds.

The contrast of the image obtained by micro-CT theoretically

depends on the density, thickness and molecular structure of the

sample (Lusic and Grinstaf, 2013). Owing to the communication of

the seed cavity under a damaged seed coat with the external air

(Figure 3D), obtaining accurate segmentation and quantification

would be impracticable. This makes it difficult to distinguish

grayscale pixels. Hence, in this study, only seeds with undamaged

seed coats were utilized for accurate segmentation and

quantification. Moreover, dehydration in seeds may result in the

potential connection of the internal cavity of the seed kernel

(Figure 3E) with the exterior cavity of the seed kernel,

consequently rendering the task of obtaining accurate

segmentation and quantification challenging. Furthermore, we

also observed the situation of seed kernel breakage (Figure 3F),

which is comparably infrequent. Given the unclear structure of the

kernel, we segmented cotton seeds into three components: seed

coat, cavity, and kernel. Here is a study that is similar to our

segmentation results. In walnut, researchers only segmented the

cavity, seed kernel and shell (Bernard et al., 2020). Conversely, in

seeds of monocotyledonous crops, Hou et al. (2019) defined three

types of cavities in maize seeds: the embryonic cavity, the

endosperm cavity, and the subcutaneous cavity outside the

endosperm. However, the seed coat and endosperm of maize

seeds are fused together, so the authors treated them as a whole

during calculations. Although this paper extracted two phenotypic
Frontiers in Plant Science 13
indicators, seed coat volume and average seed coat thickness, inner

and outer seed coat features were not successfully segmented.

Further research and exploration are needed to accurately

segment seed morphological structures.

Wu et al. (2022) analyzed the correlations of seed traits

including weight of 100 seeds, seed length, seed width, seed

length-width ratio, seed area, seed perimeter, seed diameter, and

sphericity with an automatic seed testing machine and found that

these morphological traits are environmentally stable. In the

correlation analysis conducted by Wu et al. (2022), the

correlation between seed length and seed width was low, while

the correlation between the seed width and seed thickness was high,

which was consistent with our research results. Nevertheless, there

was a strong positive correlation between seed length and thickness,

as well as between seed surface area, width, and thickness, which

contradicted the findings presented in this paper.

Seed kernel is the best source of seed protein and oil, which

relates to seed size (Huang et al., 2022). It means that a larger seed

kernel size may produce more nutrients. Our study found a positive

correlation between seed kernel size and seed volume, which is

consistent with previous research results (Bernard et al., 2020). In

addition, the condition of the kernel is an important indicator of

seed quality, and larger cotton seed kernels contribute to seedling

growth (Ahmed et al., 2020). Clearly, seed kernel size is mainly

influenced by seed coat and size; that is, the larger the seed, the

larger the seed kernel. Micro-CT scanning of the seed’s internal

shape and structural characteristics is a reliable method to predict

cotton growth.

In this study, the variation coefficient of cavity volume was too

high. Correlation analysis of 102 cultivars indicated a positive

correlation between seed coat volume and cavity volume,

suggesting that the formation of cotton seed cavities may be

related to the morphological structure of the seed coat. However,

it is unclear whether this structural feature varies among cultivars,

and further exploration is necessary to determine the reasons for the

high variability coefficient.

Generally, the variability coefficient of average seed coat

thickness was small across cultivars, and average seed coat

thickness had no significant correlation with most phenotypes

except for those related to seed coat volume. This is consistent

with the findings of Bernard et al. (2020). Therefore, there may be

unidentified factors that affect the average seed coat thickness.
4.2 Differences and evaluation of seeds in
different years

Understanding the changing trend of seed size is critical for

germplasm enhancement. Researching the evolution law of

germplasm contributes significantly to the growth and regulation of

cotton seeds and organs, and has vital implications in setting breeding

objectives, selecting parent materials, and offspring (Huang et al., 2022).
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Seed
Density
Ratio

Seed Coat
Specific
Surface Area

1 -0.80*** -0.26**

Seed Coat Thickness Ratio 1 0.26**

Seed Density Ratio 1
**Represents significant correlation at P<0.01, ***Represents significant correlation at
P<0.001.
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The application of computed tomography scanning technology has

revealed the correlation between small cavities in soybeans and their

oil content. More small cavities are present in modern soybeans

compared to ancient soybeans, suggesting a gradual upsurge in

soybean oil demand (Zong et al., 2017). It indicates that micro-CT

has significant potential to explore the crop domestication process.

Our study classified 83 cotton varieties into four distinct periods

and uncovered various alterations in seed morphological structure

throughout the course of cotton development in China. Our

research exhibited that there were notable variations in seed

coats, seed kernels, and cavities amongst cotton seeds from

different periods. However, the average seed coat thickness did

not demonstrate a noticeable trend. There was a growing trend in

the seed coat, kernel, and cavity sizes of self-bred varieties in China.

This suggested that the focus of breeding bred varieties in China is

on increasing seed and kernel sizes, with less emphasis on the

average seed coat thickness.

This paper presents three innovative indicators to assess the

morphological structure of the seeds. Our objective is to improve

the understanding of the relationship between seed size, seed coat

thickness, and internal morphological structure throughout the

breeding process. Among them, the seed coat specific surface area

of domestic self-bred varieties in China were showing a decreasing

trend. This may be because with a larger specific surface area, water

is absorbed more quickly for seed, and the rapid absorption of water

can damage seed cells and affect the cleanliness of seedlings (Main

et al., 2014). These indicators could help develop better breeding

plans and strategies. The indicators proposed in this paper also

reflected the differences in seed relative thickness and internal

morphological structure compactness between China’s self-bred

modern varieties and foreign-introduced varieties. As modern

varieties replaced the old, the gap between these indicators and

foreign varieties gradually narrows.

Unlike the previous approach of only judging the seed size

based on one-dimensional data, our study introduced 3D

phenotypic indicators in addition to traditional one-dimensional

data for seed classification, as opposed to solely assessing seed size.

Our study revealed that between 1958-2020, seed morphology in

China transitioned from first changing from large and small seed

groups to three seed groups of large, medium and small, and finally

to the change process of middle and small seed groups. The shift in

seed size may be due to two primary factors. First, the medium seed

group exhibits a more significant response to nitrogen use than both

the larger and smaller seed groups. Large seed varieties exhibit

longer fibers, greater fiber strength, improved uniformity in fiber

length, and smaller particle sizes compared to small seed varieties

(Main et al., 2014). Second, in terms of nutrient effects, small seeds

exhibit faster germination and emergence compared to large seeds.

Crops with larger seeds necessitate greater nutrient accumulation

for germination and emergence, potentially impacting seed health

and uniform emergence rates (Wang et al., 2008; Vidak et al., 2022).

Consequently, breeders tend to favor smaller seeds in the cultivation

process to achieve optimal growth conditions.
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4.3 Seed morphological structure and
germination prediction

Researchers often use micro-CT to analyze the structural

characteristics of seeds and predict their germination potential.

Through micro-CT images of chili peppers and germination tests,

Ahmed et al. (2020) found that the shape and length of the

embryonic root correlated with the germination quality of seeds.

They believed that seeds with compact internal morphological

structures (low air cavity ratio) and appropriate kernel shapes

were able to germinate better. Additional investigation is required

to further explore the correlation between the volume and

proportion of the morphological structure of cotton seeds and

the process of cotton seed germination. However, some studies

have shown that certain doses of X-rays may kill or cause

mutations in seeds, leading to abnormal kernel morphological

structures such as degeneration, folding, lateral bending, and

fracture (Gargiulo et al., 2020). Therefore, when exploring the

relationship between seed morphology and germination, attention

should be paid to the effects of X-ray radiation dose and exposure

time on seed germination.
5 Conclusions

Using micro-CT scanning, this study conducted quantitative

and comparative analyses of the morphological structure of 102

cotton seeds through 3D reconstruction and image segmentation. A

non-destructive high-throughput analysis method was established

to accurately identify the linear size, volume, and other indicators of

seeds, as well as quantify phenotype indicators such as seed surface

area, seed kernel volume, seed kernel surface area, cavity volume,

seed coat volume, and average seed coat thickness. The study

demonstrated a positive correlation between seed kernel size and

seed size, while seed cavity size and average seed thickness were less

influenced by other morphological indicators. During the period

between 1904 and 2020, the overall trend in the physical

morphological structure of cotton seeds in China decreased.

However, for locally-bred cotton varieties (1958-2020), the size of

the physical morphological structure of the seed increased, then

decreased, demonstrating an overall increasing trend in size. Cluster

analysis results showed that the seed type of China’s independently

bred cotton varieties underwent a transformation from large and

small seed groups to large, medium, and small seed groups, and

then to medium and small seed groups. The study proposes three

seed morphological structure evaluation indicators, indicating that

with the replacement of varieties, the specific surface area of the

seed increases, the relative thickness of the seed coat increases, and

the internal morphological structure of the seed becomes denser.

Overall, these findings demonstrate that the morphological

evolution history of cotton seeds in China provides important

theoretical support for cotton variety breeding and seed

quality evaluation.
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