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TrIncNet: a lightweight vision
transformer network for
identification of plant diseases
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In the agricultural sector, identifying plant diseases at their earliest possible stage

of infestation still remains a huge challenge with respect to the maximization of

crop production and farmers’ income. In recent years, advanced computer vision

techniques like Vision Transformers (ViTs) are being successfully applied to

identify plant diseases automatically. However, the MLP module in existing ViTs

is computationally expensive as well as inefficient in extracting promising

features from diseased images. Therefore, this study proposes a comparatively

lightweight and improved vision transformer network, also known as “TrIncNet”

for plant disease identification. In the proposed network, we introduced a

modified encoder architecture a.k.a. Trans-Inception block in which the MLP

block of existing ViT was replaced by a custom inception block. Additionally,

each Trans-Inception block is surrounded by a skip connection, making it much

more resistant to the vanishing gradient problem. The applicability of the

proposed network for identifying plant diseases was assessed using two plant

disease image datasets viz: PlantVillage dataset and Maize disease dataset

(contains in-field images of Maize diseases). The comparative performance

analysis on both datasets reported that the proposed TrIncNet network

outperformed the state-of-the-art CNN architectures viz: VGG-19,

GoogLeNet, ResNet-50, Xception, InceptionV3, and MobileNet. Moreover, the

experimental results also showed that the proposed network had achieved 5.38%

and 2.87% higher testing accuracy than the existing ViT network on both

datasets, respectively. Therefore, the lightweight nature and improved

prediction performance make the proposed network suitable for being

integrated with IoT devices to assist the stakeholders in identifying plant

diseases at the field level.

KEYWORDS

vision transformer (ViT), inception block, deep learning, automatic plant disease
detection, PlantVillage dataset, maize crop
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1 Introduction

The agricultural industry is crucial for overall economic

development in India as it contributes approximately twenty

percent of the country’s GDP, and roughly 55% of India’s

workforce is engaged in agricultural-related activities (Chand and

Singh, 2022). As the country’s population is increasing exponentially,

the demand for food is also proliferating day by day. The agriculture

sector faces many challenges in fulfilling such colossal food demand.

Hence, agrarian researchers across the country are actively engaged in

developing a sustainable food grain production system. Disease

infestation in the crops is one of such challenges as it hampers

overall food-grain production and impacts the overall food supply

chain. In this context, identifying the plant diseases in their earliest

possible stage would be a viable solution that would help in

minimizing the crop loss and maximizes the farmer’s income too.

Conventionally, farmers and plant pathologists manually examine the

plants to detect probable diseases, which is quite a difficult and

laborious task. Due to the technological advancements in computer

vision, nowadays, plant diseases are being identified with the help of

computational techniques and digital visual images of plant leaves.

In order to diagnose plant diseases via their symptomatic leaf

images, various researchers have applied different Machine Learning

(ML) techniques (Khan et al., 2022). Although ML techniques can

solve the problem of automatic plant disease recognition via digital

leaf images, but these methods prominently suffer from two issues.

First, these techniques cannot automatically extract various temporal

and spatial features of images, which are used in image classification.

Second, they are unable to process large image datasets quickly as they

are not implemented in such a manner that they can take the

computational advantages of Graphic Processing Units (GPUs). In

order to conquer the shortcomings of these techniques, researchers

have used Deep learning (DL) methods, particularly CNNs, to

recognize plant diseases in an automated manner. The CNN

automatically extracts various temporal and spatial features from the

given image via small convolutional filters to classify the images into

their corresponding classes. Moreover, it can also take the

computational advantage of the GPUs to perform various

mathematical operations faster. Therefore, many researchers have

used CNN models (either state-of-the-art CNN architectures or

customized CNN architectures) to diagnose plant diseases

automatically (Atila et al., 2021; Dhaka et al., 2021; Tiwari et al., 2021).

Vaswani et al. (2017) proposed the Transformer model that

revolutionized the natural language processing domain. Thereafter,

Dosovitskiy et al. (2021) designed a novel ViT model for image

classification based on the Transformer model. It encompasses

multiple encoder blocks connected by a direct connection only.

Each encoder block of ViT model is comprised of Multi-Head

Attention, Layer Normalization, and MLP modules. Dosovitskiy

et al. (2021) found that it outperformed various state-of-the-art

CNN architectures. Therefore, researchers have applied the ViT

model to detect plant diseases automatically (Borhani et al., 2022).

Despite of great performance of the ViT model, this model suffers

from a major drawback that it contains an MLP module in its

encoder block which is computationally expensive as well as
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inefficient in extracting various temporal and spatial features from

the images under study. Therefore, we addressed these drawbacks

and developed a comparatively less computationally expensive ViT

network for diagnosis of plant diseases. The major contribution of

the present study has been provided below:
• We proposed a computationally lightweight and improved

Vision Transformer (ViT) network also known as

“TrIncNet” for image-based plant disease detection. The

TrIncNet model is composed of multiple modified encoder

blocks aka Trans-Inception blocks. Each Trans-Inception

block comprises of inception module in place of MLP

module for extracting various temporal and spatial

features from leaf images. Additionally, skip connections

are added between each Trans-Inception block to make the

proposed network more resistant towards the vanishing

gradient problem.

• The proposed network has been trained and tested on two

plant disease image datasets viz: PlantVillage dataset

(Mohanty et al., 2016) and in-field Maize image dataset

(Haque et al., 2022) for showcasing their applicability in

the real-world scenario. Moreover, we performed the

comparative performance analysis of the proposed

network with the existing state of the art networks (e.g.,

ViT, VGG-19, GoogLeNet, ResNet-50, Xception,

InceptionV3, MobileNet, etc) on both the dataset.
This paper is organized into eight sections. Section 1 (current

section) highlights the devastating impact of plant diseases,

importance of crop protection, constraints of the conventional

approaches of disease detection and management, importance of

computer vision based technologies etc.: Section 2 explores and

discusses the relevant works related to the current study, Section 3

explains and describes the approach of proposed model development;

Section 4 describes the dataset and experimental setup used in the

present study; Section 5 presents the experimental results and finding

of the current study; Section 6 briefly discusses and interprets the

results of the current studies; and section 7 concludes the whole study

and aligns the future perspective of this study.
2 Related works

Many research efforts are made in the literature to automatically

identify plant diseases via their digital leaf images. Earlier,

researchers have applied different ML techniques (Trivedi et al.,

2020; Varshney et al., 2021). Though ML methods effectively

identify plant diseases, but they suffer from two main limitations.

First, they are unable to capture the various spatial and temporal

features of images automatically. Second, processing large image

datasets can be slow and time-consuming with traditional ML

techniques as they are not developed in a way that they can

leverage the advantages of GPUs. To conquer the shortcomings of

ML algorithms, researchers have utilized DL methods, particularly

CNNs, to identify plant diseases automatically. For example,
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Mohanty et al. (2016) analyzed the performances of GoogLeNet and

AlexNet architectures and found that GoogLeNet outperformed

AlexNet with 99.34% testing accuracy. Other research works

(Sakkarvarthi et al., 2022; Biswas and Yadav, 2023) used different

state-of-the-art CNN architectures to identify plant diseases. Haque

et al. (2021) used GoogLeNet architecture to recognize the Maydis

Leaf Blight (MLB) disease in Maize crops. They used real-field

Maize leaf images for model training and got 99.14% testing

accuracy. In another research work, Haque et al. (2022)

investigated the effect of the dense layer, global average pooling

layer, and flatten layer on the performance of InceptionV3 (Szegedy

et al., 2016) model in detecting three types of diseases in Maize

plants. Nigam et al. (2023) experimented with eight EfficientNet-

based CNN architectures to identify Stem Rust, Stripe Rust, and

Leaf Rust diseases in wheat plants. They found that EfficientNet-B4

CNN architecture outperformed other architectures with 99.35%

testing accuracy.

Some researchers tried to build a lightweight DL model for the

plant disease diagnosis. Bedi and Gole (2021a) developed a hybrid

model with the help of Convolutional Autoencoder (CAE) and

CNN to identify peach plants’ Bacterial Spot disease, and their

model attained 98.38% testing accuracy. In (Bedi and Gole, 2021b),

an effort was made by authors to increase the accuracy of peach

plants’ Bacterial Spot disease identification to 99.51% by developing

a novel DL model by combining the Ghost (Han et al., 2020) and

Squeeze-and-Excitation (Hu et al., 2018) modules. Xiang et al.

(2021) developed a lightweight network to identify the severity of

plant diseases. They designed a lightweight CNN model with the

help of multiple-size convolutional filters and channel shuffle

operation. Their best model achieved 90.6% accuracy and 84.3%

f1-score. Haque et al. (2022) proposed a lightweight custom CNN

model for detecting the diseases of maize crop based on the maize

dataset from plant data repository. Their proposed network worked

quite well on test dataset and obtained 99.1% classification accuracy.

Sharma et al. (2023) designed a lightweight DLMC-Net model by

using novel collective blocks and passage layers. Moreover, they

used depth-wise separable convolution operation to reduce the

number of weight parameters. Their proposed DLMC-Net model

achieved 93.56%, 92.34%, 99.50%, and 96.56% accuracy in detecting

diseases from the leaf images of citrus, cucumber, grapes, and

tomato plants, respectively.

In some recent studies, attention-mechanism is also utilized to

enhance the efficacy of different DL frameworks. Karthik et al.

(2020) applied attention to the ResNet architecture for disease

diagnosis in tomato plants and achieved 98% accuracy in

detecting ten tomato plant diseases. Chen et al. (2021) embedded

channel and spatial attention modules in the DenseNet CNN

architecture and used the Depthwise separable convolution

operation in place of standard convolution operation. They tested

the applicability of their approach in identifying diseases in Maize

plants on their own collected dataset and PlantVillage dataset. They

reported in the paper that their model attained 95.86% and 98.5%

accuracy on their collected and PlantVillage datasets, respectively.

Zhao et al. (2022) designed RIC-NET model using Residual and

Inception blocks. They used Convolutional Block Attention Module

(CBAM) to enhance the RIC-NET model’s performance. Their
Frontiers in Plant Science 03
model identified the diseases in potato, corn, and tomato plants

with 99.55% accuracy, as claimed by the authors. Li et al. (2023)

designed a novel Muti-Dilated-CBAM-DenseNet (MDCDenseNet)

architecture to identify Maize plant diseases in the farmlands. Their

proposed model attained 98.84% testing accuracy on the Maize

plant leaf images collected from the agricultural fields of

Northeastern Agricultural University, China. Naik et al. (2022)

used the squeeze-and-excitation network-based CNN model

(SECNN) to detect five diseases (down curl of a leaf, Geminivirus,

Cercospora leaf spot, yellow leaf disease, and up curl) in Chili

plant’s leaf images. Their proposed model attained 98.63% and

99.12% accuracy without augmentation and with augmentation,

respectively. Moreover, they tested the model’s performance on the

PlantVillage dataset and found that the SECNN model achieved

99.28% accuracy. Pandey and Jain (2022) proposed a novel

attention-based learning paradigm to improve the CNN model’s

performance in diagnosing plant diseases from leaf images. Their

proposed model achieved 99.93% accuracy on the PlantVillage

dataset. Kaya and Gürsoy (2023) used the Muti-Head Attention

operation in the DenseNet-121 CNN architecture to identify plant

diseases and achieved 98.17% accuracy on the PlantVillage dataset.

Due to the powerful capabilities of the Vision Transformer (ViT)

model in image classification, Thai et al. (2021) applied the ViTmodel

to identify diseases in the cassava field. They observed that the ViT

model outperformed other standard CNN architectures like

EfficientNet and ResNet-50 by giving 1% higher accuracy. Another

work that utilized the ViT model for plant disease detection was done

by Wu et al. (2021). They used the ViT model and a novel multi-

granularity feature extractionmodule to identify tomato plant diseases.

As per their paper, the proposed approach outperformed others by

roughly 2% higher accuracy. In research work done by Lu et al. (2022),

a novel ghost-convolutional Transformer model was proposed to

detect diseases in grape plants and attained 98.14% accuracy in

identifying eleven grape plant diseases. Some recent studies have

combined the ViT and CNN models to solve various computer

vision problems. Si et al. (2022) designed Inception-Transformer

model for image classification and segmentation tasks. They tested

their model on the ImageNet and COCO datasets and found that it

surpassed other DL models. Similarly, Bana et al. (2022) designed a

Generative Adversarial Network (GAN), which utilized the ViTmodel

and Inception module for image colorization. Another research work

done by Zhang et al. (2022) combined the goodness of ViT and CNN

models to design a novel Tranvolution model to diagnose plant

diseases automatically. They tested their model on the PlantDoc

dataset and found that the Tranvolution model outperformed other

research works present in the literature.
3 Model development

3.1 Existing vision transformer network

The ViT network is a Transformer (Vaswani et al., 2017) based

DL model designed by Dosovitskiy et al. (2021) to perform image

classification and segmentation tasks. This model comprises

multiple stacked encoder blocks, and each encoder block of the
frontiersin.org
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ViT model contains three modules: Multi-Head Attention module,

Layer Normalization module, and MLP module. The ViT model’s

architectural design is shown in Figure 1.

The Multi-Head Attention module performs multiple self-

attention operations parallelly, through which the model can

capture global dependencies between image patches. The Layer-

Normalization module normalizes its previous layer’s activations to

improve the model’s stability and performance. The MLP module

comprises two densely connected layers that extract various features

from image patches. However, the MLP module suffers from a
Frontiers in Plant Science 04
major drawback: all layers of this module are densely connected to

each other. Therefore, it requires a huge number of weight

parameters to be trained, which makes the ViT model

computationally heavy. Moreover, the MLP module is unable to

capture the temporal and spatial features of images efficiently and

effectively, which can later enhance the performance of model in

image classification. Hence, in this study, a novel TrIncNet model

has been designed and developed, which fixes these drawbacks of

the ViT model, and the description of the TrIncNet model has been

given in the next subsection.
FIGURE 1

Architectural design of the existing ViT network.
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3.2 Proposed vision transformer network

In order to conquer the shortcoming of ViT model, the MLP

module has been replaced with the Inception module in the ViT

model’s encoder block, and this modified encoder block is named as

“Trans-Inception block”. The reason for using the Inception

module in place of the MLP module is that the Inception module

performs convolution and max-pooling operations parallelly. Thus,

it uses significantly less number trainable weight parameters as

compared to the MLP module. Moreover, it can also extract various

spatial and temporal features of images effectively and efficiently,

which can enhance the performance of the model to perform image

classification. In this research work, a novel Trans-Inception

Network also known as TrIncNet model is proposed, which

comprises of multiple stacked Trans-Inception blocks. As per our

best belief, this model has not been proposed in any existing studies

present in the literature. Furthermore, each Trans-Inception block

of the TrIncNet model is also surrounded by a skip connection

which makes the model much more resistant to the vanishing

gradient problem. The architectural design of TrIncNet model and

its Trans-Inception block has been shown in Figure 2.

Each Trans-Inception block of the TrIncNet model comprises

three modules: Multi-Head Attention, Layer Normalization, and
Frontiers in Plant Science 05
Inception modules. Out of these three modules, two modules:

Multi-Head Attention and Layer Normalization modules are

taken from the ViT model’s encoder block, and the Inception

module is added to the Trans-Inception block in this research

work. All modules of the Trans-Inception block have been

described below:

3.2.1 Multi-head attention module
It performs m   self-attention operation parallelly, where m is a

hyperparameter representing the number of heads used in this module.

In this research work, twelve-headed attention has been used. The

phenomenon of human eye perception inspires self-attention

operation, as the human eye focuses only on the part of information

while ignoring other things. This operation aims to gather the

relationship among all patches of an image. Let there be k such

patches, i.e., (e1,   e2,   e3,  …,   ek) represented by E ∈ Rk�d , where d

is the embedding dimension in which the information of each patch

has been embedded. In self-attention operation, three learnable weight

matrices: Query (WQ ∈ Rd�dq ), Key (WK ∈ Rd�dk ), and Value

(WV ∈ Rd�dv ) are trained using the backpropagation algorithm,

where dq, dk, and dv are the number of columns present in Query,

Key, and Value weight matrices. In self-attention operation, first, the

input sequence E is multiplied with these learnable matrices to get Q =

EWQ, K = EWK , and V = EWV matrices. After obtaining the Q, K ,

and V matrices, the self-attention score (Z) matrix is calculated by

equation 1 (Vaswani et al., 2017).

Z = softmax(
QKtffiffiffiffiffi
dk

p ) · V (1)

The outputs of all m heads are concatenated together and then

multiplied by an output weight matrix (WO ∈ Rk�mdv  ) according

to equation 2, where Zi is the self-attention score matrix of ith head.

Zmultihead = concat(Z1,Z2,…,Zi,…,  Zm)
tWO (2)
3.2.2 Layer normalization module
To conquer Batch Normalization’s shortcomings, Ba et al.

(2016) proposed the Layer Normalization technique. This

technique normalizes the activations in the feature direction

instead of the batch direction. Hence, it removes the shortcoming

of Batch Normalization by removing the dependence on batches.

Moreover, it normalizes every feature of the activations to unit

variance and zero mean. In the Layer Normalization paradigm, first,

means and variances are calculated for each channel of the feature

map as per equation 3 and equation 4, respectively. Second, the

normalized feature maps are computed by equation 5, and at last,

scaling and shifting are done with the help of two learnable

parameters, i.e., g and b , by equation 6.

md,c =
1

HW o
H

h=1
o
W

w=1
xdhwc (3)

s 2
d,c =  o

H

h=1
o
W

w=1
(xdhwc − md,c)

2 (4)
FIGURE 2

Architectural design of the proposed TrIncNet network.
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xnormd,hwc =  
xdhwc − md,cffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s 2
d,c + ϵ

q (5)

yd = g   xnormd + b ≡ LNg ,b (xd) (6)

where NF denotes the number of the feature maps, 1 ≤ d ≤ NF ,

H, W, and C are the height, weight, and channels of the feature

map, respectively, and 1 ≤ c ≤ C.

3.2.3 Inception module
The Inception module performs three convolutional operations

with 5� 5, 1� 1, and 3� 3 filters and a 3� 3 max-pooling

operation simultaneously; therefore, it can extract various

temporal and spatial features of images parallelly with different

receptive fields. As the Inception module performs convolution and

max-pooling operations; thus, it has various advantages over the

MLP module, which are listed below:

3.2.3.1 Spatial invariance (Shift invariance)

It refers to the property of the convolution operation, which

makes it able to recognize the object in the image irrespective of its

position. The convolution operation holds this property because the

filter size is much lesser as compared to image size.

3.2.3.2 Local translation invariance

Through this property, the Inception module can recognize the

rotated or tilted object in the image. The pooling operation of

Inception module helps to achieve this property.

3.2.3.3 Parameter sharing

In convolution operation, weight parameters are shared with

the help of convolutional filters. The size of these convolutional

filters is much lesser than the image size, and only these filters are

trained to extract the images’ features. Hence, the total trainable

parameters present in the Inception module are much lesser than

those in the MLP.
3.3 Asymptomatic analysis on weight
parameters used by ViT and
TrIncNet models

To analyze the efficiency of the novel Trans-Inception block

over the original encoder of the ViT model, asymptomatic analysis

has been done on the number of weight parameters used by these

blocks. As it can be seen from Figures 1, 2, the Trans-Inception

block is different from the original encoder block of ViT only in

terms of the Inception module’s presence. Therefore, the

asymptomatic analysis is done only between the MLP and

Inception modules. Let, I ∈ RM�N is the input to the MLP

module of the ViT, where M is the number of patches in one leaf

image, and N is the size of one embedded patch. As mentioned in

(Dosovitskiy et al., 2021), the MLP module present in the encoder

block of the ViT model contains two fully connected layers having
Frontiers in Plant Science 06
output sizes 2N and N , respectively. Hence the total number of

weight parameters used by the MLP module for one patch of leaf

image is O(2N � N   +  N � 2N) ⇒ O(N2), asymptomatically.

Similarly, for M number patches, total O(MN2) weight

parameters are used by the MLP module. On the other hand, if F

is the maximum number of filters used by any convolution

operation of the Inception module, then it requires O(max

(M2F2)) weight parameters asymptomatically (calculated in

Appendix). The above analysis shows that the proposed Trans-

Inception block requires significantly fewer weight parameters to

train than the ViT model’s encoder block. Furthermore, lesser

weight parameters used by any model imply that it would require

less training time and inference time. Hence, the TrIncNet model

needs a smaller amount of inference time and training time as

compared to the ViT model. Details of experimentation done in this

work are described in the next section.
4 Experimental material

4.1 Dataset description

The experimentation of this research work is carried out on the

Maize dataset (which comprises real-field leaf images having

complex backgrounds) and the PlantVillage dataset (which acts as

a benchmark dataset for plant disease detection problems). These

datasets are described below:

4.1.1 Maize dataset
The Maize dataset contains 13,971 leaf images which were

captured from multiple agricultural fields of Indian Institute of

Maize Research, Ludhiana, India. The images are captured non-

invasively by maintaining 25-40 cm distance from the camera

device to the affected part of the plant and focused on the top/

front view of symptomatic parts of the plant. In this dataset, leaf

images of three diseases, i.e., Turcicum Leaf Blight (TLB), Banded

Leaf and Sheath Blight (BLSB), and Maydis Leaf Blight (MLB), are

present along with the healthy leaf images. Few representative leaf

images from each class of the dataset are shown in Figure 3.

4.1.2 PlantVillage dataset
It is a benchmark dataset used to measure the performance of

any DL or ML model for automatically recognizing diseases in

plants (Mohanty et al., 2016). This dataset contains 54,503 leaf

images of 14 plant species which have been categorized into 38

classes. Few representative leaf images from each class of the dataset

are shown in Figure 4.
4.2 Data preprocessing

It is an important step in designing a DL framework for

automatically diagnosing diseases in plants. In this research work,

following data preprocessing techniques have been used:
frontiersin.org
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4.2.1 Image resizing
It is used to either increase or decrease the image’s resolution.

The major advantage of image resizing is that it speeds up the DL

model’s training process. Therefore, the images of both datasets

have been resized to 256 × 256 dimension via ImageDataGenerator

class of the Keras library.

4.2.2 Image normalization
The pixel value varies between 0 to 255, and using these pixel

values while training the Deep Learning model, computation

becomes complex for high pixel values. Therefore, pixel values of

images should be normalized between 0 and 1. This can be done by

dividing each image pixel value by 255.

4.2.3 Data augmentation
DL models need a large amount of data to generalize a model or

prevent the overfitting problem. Data augmentation is a process

that increases the dataset’s size by applying various image

processing techniques like rotation, flipping, etc. (Bedi et al.,

2021). There are two types of data augmentation: online data

augmentation and offline data augmentation. In offline data

augmentation, the output images are saved on disk after going

through the various image processing operations and then used for

model training. Whereas in online data augmentation, the

transformed images are directly used in model training. Since the

leaf images present in the Maize dataset are fewer in number and

during model training, it causes model overfitting. Therefore, in

order to tackle this problem, the size of the Maize dataset is

artificially increased via offline data augmentation. After

augmentation, the Maize dataset has 100000 leaf images.

4.2.4 Data Splitting
In this step, the leaf images of both datasets are randomly split

into the training subset, validation subset, and test subset as per the
Frontiers in Plant Science 07
70:15:15 ratio. The training subset’s leaf images are utilized for

training the models, and validation subset has been utilized to

adjust the values of hyperparameters so that the best-performing

model can be achieved. Finally, the test subset is utilized for

measuring the TrIncNet model’s effectiveness on unseen leaf images.
4.3 Experimental setup

The Nvidia DGX Server having Intel(R) Xeon(R) CPU with 528

GB RAM and NVidia Tesla V100-SXM2 32 GB Graphic Card, is

used to carry out the experiments of this research work. Python

programming language is used to write the scripts for the

experiments; however, any programming language can be used

for experimentation. The Keras Python library embedded in

Tensorflow 2.6.0 has been utilized to develop the TrIncNet model,

the ViT model, and six state-of-the-art CNN architectures.

The TrIncNet model’s performance is compared with the ViT

(Dosovitskiy et al., 2021) model and six state-of-the-art CNN

architectures: VGG-19 (Simonyan and Zisserman, 2015),

GoogLeNet (Szegedy et al., 2015), ResNet-50 (He et al., 2016),

Xception (Chollet, 2017), InceptionV3 (Szegedy et al., 2016),

MobileNet (Howard et al., 2017). These models are trained for

500 epochs and 32 batch size using Adam optimizer to minimize the

categorical cross-entropy loss between the logits and actual labels of

leaf images. Early stopping with patience value 20 is used to prevent

model overfitting., i.e., if validation accuracy is not improved for

twenty consecutive iterations, then model training would stop.

As already discussed, the TrIncNet model is designed by

replacing the MLP model with the Inception module in the

encoder block of the ViT model. Therefore, in order to examine

the effect of this replacement on number of weight parameters, ViT

and TrIncNet models are implemented using the hyperparameters

given in Tables 1, 2, respectively. These values for different
FIGURE 3

Leaf images from each class of the Maize dataset.
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hyperparameters of the ViT and TrIncNet models have been

derived via extensive experimentation. The layer-wise

implementation details of ViT and TrIncNet models have been

tabulated in Tables 3, 4, respectively.

It can be perceived from Tables 3, 4 that the Inception module

present in the TrIncNet model has used 32.67% fewer weight

parameters compared to the MLP module present in the ViT

model. This results in a 2.41% overall decrement in weight

parameters from the ViT model to the TrIncNet model for both
Frontiers in Plant Science 08
datasets. The results obtained during the experimentation of this

research work are given in the next section.
5 Experimental results

The proposed TrIncNet network was trained and tested on two

agricultural image datasets viz. PlantVillage and Maize dataset. The

prediction performance of proposed network was evaluated on the
FIGURE 4

Leaf images from each class of the PlantVillage dataset.
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validation and test subsets of both the datasets and comparative

analysis was done with the existing ViT model and six state-of-the-

art CNN architectures: VGG-19, GoogLeNet, ResNet-50, Xception,

InceptionV3, and MobileNet.
5.1 Performance of the proposed network
on Maize dataset

The plot of validation loss and validation accuracy of the

TrIncNet model, along with the ViT model and six state-of-the-

art CNN architectures for the Maize dataset, has been depicted in

Figure 5. It can be observed from Figure 5 that the proposed

TrIncNet model attained the maximum validation accuracy, i.e.,

97.0% and minimum validation loss, i.e., 0.035. Among the other six

DL models, the GoogLeNet model attained second finest results for

both validation accuracy and validation loss. Moreover, Xception

and InceptionV3 models have achieved comparable accuracy, i.e.,

90.38% and 90.23%, and comparable loss, i.e., 0.091 and 0.095.

Other DL models which are used for comparison have attained
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validation accuracies in the range of 73.18% to 91.78% and

validation losses in the range of 0.286 to 0.082.

To study the efficacy of the TrIncNet model more thoroughly, f1-

score, precision, recall, and accuracy are also computed for the

TrIncNet model along with the ViT model and six state-of-the-art

CNN architectures on the Maize dataset’s test subset. These results

have been given in Figure 6. It can be observed from Figure 6 that the

TrIncNet model achieved the best results for each above-mentioned

metrics, i.e., 96.93% accuracy, 96.98% precision, 96.83% recall, and

96.9% f1-score on the Maize dataset. The Xception and InceptionV3

models have attained comparable results, and ResNet-50 have got

minimum values for the aforementioned metrics. Moreover,

GoogLeNet, ViT, MobileNet, and VGG-19 models achieved

95.72%, 91.55%, 91.64%, and 84.46% f1-score, respectively.

The number of weight parameters utilized by the TrIncNet

model, along with the ViT model and six state-of-the-art CNN

architectures trained on the Maize dataset, have been compared in

Figure 7. It is observed by seeing Figure 7 that Xception, VGG-19,

and InceptionV3 models require a comparable number of trainable

parameters, i.e., 20.03 million, 20.87 million, and 21.81 million.

Whereas ResNet-50 uses 23.60 million, and the GoogLeNet model

uses 8.21 million trainable weight parameters. It can also be

observed from Figure 7 that the TrIncNet model requires 6.95

million trainable weight parameters, which is 2.41% lesser than the

ViT model, which requires 7.12 million weight parameters.

Although the MobileNet model have minimum trainable weight

parameters, i.e., 3.23 million, but it did not perform well as

compared to the proposed TrIncNet model.

The TrIncNet model’s performance on Maize dataset has been

compared in Table 5 with the research work done by Haque et al.

(2022). The reason for comparing it with only this research work is

that the TrIncNet model is trained on the same Maize dataset,

which was used by Haque et al. (2022) in their research work.

It can be perceived from Table 5 that the TrIncNet model

achieved approximately one percent higher testing accuracy than

the research work done by Haque et al. (2022) in detecting three

diseases (MLB, TLB, and BLSB) of Maize plants under real-field

conditions. Moreover, the TrIncNet model requires approximately

68.1% lesser trainable weight parameters than the research work

done by Haque et al. (2022). In the next subsection, results obtained

on the PlantVillage dataset are discussed.
5.2 Performance of the proposed network
on PlantVillage dataset

In order to evaluate the TrIncNet model’s performance with the

ViT model and six state-of-the-art CNN architectures, we have

analyzed the trend of validation loss and validation accuracy w.r.t

the epochs (depicted in Figure 8) obtained during the training. It

has been observed by analyzing the plot given in Figure 8, that the

Xception, GoogLeNet, and InceptionV3 models have attained

comparable accuracies, i.e., 99.76%, 99.78%, 99.28%, and

comparable loss, i.e., 0.04, 0.04, and 0.05. Furthermore, other DL

models used for comparison have attained validation accuracies in

the range of 92% to 97% and validation losses in the range of 0.18 to
TABLE 1 Values of hyperparameters for the ViT model’s implementation.

Hyperparameter Value

Image size 256� 256

Patch size p� p 16� 16

Size of Embedded Patch (N) 256

Number of Encoder blocks 2

Number of Heads (m) 12

Activation function
SoftMax (Output Layer)

ReLu (Hidden Layers)

Layer_normalization_rate (epsilon) 10−6
TABLE 2 Values of hyperparameters for the TrIncNet model’s
implementation.

Hyperparameter Value

Image size 256� 256

Patch size (p� p) 16� 16

Size of Embedded Patch (N) 256

Number of Trans-Inception blocks 2

Number of Heads (m) 12

Activation function SoftMax (Output Layer)

ReLu (Hidden Layers)

Layer_normalization_rate (epsilon) 10−6

Number of Filters (used in the Inception module) 96, 16, 64, 128, 32, 32

Padding (used in the Inception module) Same

Stride (used in the Inception module) 1� 1
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0.08. It can also be observed from Figure 8 that the proposed

TrIncNet model attained highest validation accuracy and lowest

validation loss, i.e., 99.95%, and 0.02, respectively.

The performance of TrIncNet model along with ViT model and

six state-of-the-art CNN architectures has been analyzed more

thoroughly by computing f1-score, precision, recall, and accuracy

on the test subset of PlantVillage dataset for all models. These

results have been compared in Figure 9, and it can be observed from

Figure 9, that the proposed TrIncNet outperformed the ViT model

and six state-of-the-art CNN architectures with 99.93% accuracy,

99.92% precision, 99.91% recall, and 99.91% f1-score. Whereas,

GoogLeNet, VGG-19, ViT, and MobileNet models achieved

97.22%, 96.96%, and 96.68%, and 97.68% f1-score, respectively.

We have also calculated the number of weight parameters used

by the TrIncNet model for the PlantVillage dataset and compared
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them with the weight parameters of the ViT model and six state-of-

the-art CNN architectures on the same dataset. This comparison of

weight parameters has been shown by a line chart in Figure 10. It

can be seen by analysing the line chart given in Figure 10 that the

ResNet-50 and GoogLeNet models use 8.24 million and 23.67

million trainable parameters, respectively. Whereas the VGG-19,

Xception, and InceptionV3 models require comparable weight

parameters. Although, it can also be observed from Figure 10 that

the MobileNet model requires minimum trainable weight

parameters, i.e., 3.27 million, but it did not perform well as

compared to the proposed TrIncNet model.

The performance of the TrIncNet model on PlantVillage dataset

has also been compared in Table 6 with several recent research

works present in the literature in which the PlantVillage dataset is

used for model training. It can be observed from Table 6 that the
TABLE 3 ViT model’s implementation details.

Layer No. Layer Name Input Shape Connected to Output Shape Parameters

1 Input Layer 256� 256� 3 – 256� 256� 3 0

2 Patches 256� 256� 3 Input Layer 256� 768 0

3 Patch Encoder 256� 768 Patches 256� 256 262400

4 Layer Normalization #1 256� 256 Patch Encoder 256� 256 512

5 Multi-Head Attention #1 256� 256 Layer Normalization #1 256� 256 3155200

6 Add #1 256� 256, 256�
256

Multi-Head attention #1, Patch
Encoder

256� 256 0

7 Layer Normalization #2 256� 256 Add #1 256� 256 512

8 MLP Module #1
Dense #1 256� 256 Layer Normalization #2 256�512 131584

Dense #2 256� 512 Dense #1 256�256 131328

9 Add #2 256� 256, 256�
256

Dense #2,
Add #1

256� 256 0

10 Add #3 256� 256, 256�
256

Add #2,
Patch Encoder

256� 256 0

11 Layer Normalization #3 256� 256 Add #3 256�256 512

12 Multi-Head attention #2 256� 256 Layer Normalization #3 256� 256 3155200

13 Add #4 256� 256, 256�
256

Multi-Head attention #2, Add #3 256� 256 0

14 Layer Normalization #4 256� 256 Add #4 256� 256 512

15
MLP Module
#2

Dense #3 256� 256 Layer Normalization #4 256� 512 131584

Dense #4 256� 512 Dense #3 256� 256 131328

16 Add #5 256� 256, 256�
256

Dense #4,
Add #4

256� 256 0

17 GlobalAveragePooling1D
#1

256� 256 Add #5 256 0

18 Dense #5 256 GlobalAveragePooling1D #1 64 16448

19 Dense #6 (Output Layer) 64 Dense #1 4 (for the Maize dataset),
38 (for the PlantVillage

dataset)

262, 2470

Total Weight Parameters 7117382 (for the Maize dataset)
7119590 (for the PlantVillage dataset)
The value written in bold font highlights the layers of MLP module in this table. These layers are the only difference between existing ViT model and our proposed TrIncNet model.
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TABLE 4 TrIncNet model’s implementation details.

Layer No. Layer Name Input Shape Connected to Output Shape Parameters

1 Input Layer 256� 256� 3 – 256� 256� 3 0

2 Patches 256� 256� 3 Input Layer 256� 768 0

3 Patch Encoder 256� 768 Patches 256� 256 262400

4 Layer Normalization #1 256� 256 Patch Encoder 256� 256 512

5 Multi-Head Attention #1 256� 256 Layer Normalization #1 256� 256 3155200

6 Add #1 256� 256, 256� 256 Multi-Head attention #1,
Patch Encoder

256� 256 0

7 Layer Normalization #2 256� 256 Add #1 256� 256 512

8

Inception
Module #1

Reshape #1 256� 256 Layer Normalization #2 16� 16� 256 0

Conv2D #1 16� 16� 256 Reshape #1 16� 16� 96 24672

Conv2D #2 16� 16� 256 Reshape #1 16� 16� 16 4112

Conv2D #3 16� 16� 256 Reshape #1 16� 16� 64 16448

MaxPooling2D #1 16� 16� 256 Reshape #1 16� 16� 256 0

Conv2D #4 16� 16� 96 Conv2D #1 16� 16� 128 110720

Conv2D #5 16� 16� 16 Conv2D #2 16� 16� 32 12832

Conv2D #6 16� 16� 256 MaxPooling2D #1 16� 16� 32 8224

Concatenate #1 16� 16� 64,16� 16� 128, 16�
16� 32, 16� 16� 32

Conv2D #3,
Conv2D #4,
Conv2D #5,
Conv2D #6

16� 16� 256 0

Reshape #2 16� 16� 256 Concatenate #1 256� 256 0

9 Add #2 256� 256, 256� 256 Reshape #2,
Add #1

256� 256 0

10 Add #3 256� 256, 256� 256 Add #2,
Patch Encoder

256� 256 0

11 Layer Normalization #3 256� 256 Add #3 256� 256 512

12 Multi-Head attention #2 256� 256 Layer Normalization #3 256� 256 3155200

13 Add #4 256� 256, 256� 256 Multi-Head attention #2,
Add #3

256� 256 0

14 Layer Normalization #4 256� 256 Add #4 256� 256 512

15

Inception
Module #2

Reshape #3 256� 256 Layer Normalization #4 16� 16� 256 0

Conv2D #7 16� 16� 256 Reshape #3 16� 16� 96 24672

Conv2D #8 16� 16� 256 Reshape #3 16� 16� 16 4112

Conv2D #9 16� 16� 256 Reshape #3 16� 16� 64 16448

MaxPooling2D #2 16� 16� 256 Reshape #3 16� 16� 256 0

Conv2D #10 16� 16� 96 Conv2D #7 16� 16� 128 110720

Conv2D #11 16� 16� 16 Conv2D #8 16� 16� 32 12832

Conv2D #12 16� 16� 256 MaxPooling2D #2 16� 16� 32 8224

Concatenate #2 16� 16� 64,16� 16� 128, 16� 16�
32, 16� 16� 32

Conv2D #9,
Conv2D #10,
Conv2D #11,
Conv2D #12

16� 16� 256 0

Reshape #4 16� 16� 256 Concatenate #2 256� 256 0

(Continued)
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proposed model has attained state-of-the-art results by using a

significantly lesser number of trainable weight parameters on the

PlantVillage dataset as compared to other studies present in

the literature.
5.3 Ablation study

In order to visualize the feature extraction abilities of the MLP

module of ViT model’s encoder block and the Inception module of

Trans-Inception block, their extracted features are plotted in

Figures 11, 12, respectively. It can be seen from Figure 11 that the

MLPmodule present in ViT model’s encoder block is able to capture

various features of leaf images. However, these features are very

limited (asmany featuremaps shown in Figure 11 are empty) and not

very rich in quality because the MLP module is inefficient in

capturing various spatial and temporal features of images.

The Inception module performs three convolution operations

with 5� 5, 1� 1, and 3� 3 filters and a 3� 3 max-pooling

operation simultaneously. The features extracted by individual

operations of the Inception module are represented in
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Figures 12A–D, and the concatenation of all features extracted by

all four operations of the Inception module is shown in Figure 12E.

It can be observed from Figure 12E that the features captured by the

Inception module are much richer in quality as compared to the

MLP module. Moreover, the Inception module is able to capture

more number of features than the MLP module. Hence, in this

research work, the MLP module of ViT model’s encoder is replaced

with the Inception module to form the Trans-Inception block, and

these multiple Trans-Inception blocks are stacked together to form

the novel TrIncNet model. In the next subsection, the TrIncNet

model’s performance is compared with the ViT model and six state-

of-the-art CNN architectures on the Maize dataset (which

comprises real-field leaf images with complex backgrounds) and

PlantVillage dataset, which acts as a benchmark dataset for plant

disease detection problems.

It can be concluded from the above discussion that the TrIncNet

model has achieved remarkable performance in diagnosing plant

disease either in lab conditions or in real-field conditions with the

minimum number of weight parameters. Therefore, it can be

integrated with different IoT devices to assist farmers in identifying

plant diseases at the earliest possible stage.
TABLE 4 Continued

Layer No. Layer Name Input Shape Connected to Output Shape Parameters

16 Add #5 256� 256, 256� 256 Reshape #4,
Add #4

256� 256 0

17 GlobalAveragePooling1D
#1

256� 256 Add #5 256 0

18 Dense #1 256 GlobalAveragePooling2D
#1

64 16448

19 Dense #2 (Output Layer) 64 Dense #1 4 (for the Maize
dataset),
38 (for the Plant-
Village dataset)

262, 2470

Total Weight Parameters 6945574 (for the Maize dataset)
6947782 (for the PlantVillage dataset)
The value written in bold font highlights the layers of Inception module in this table. These layers are the only difference between existing ViT model and our proposed TrIncNet model.
FIGURE 5

Plot of validation accuracies and validation losses of the TrIncNet model along with the ViT model and the six other state-of-the-art CNN
architectures for the Maize dataset.
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FIGURE 7

Comparison of the number of trainable weight parameters used by the TrIncNet along with the ViT model and six state-of-the-art CNN
architectures trained on the Maize dataset.
FIGURE 6

Comparison of f1-score, precision, recall, and accuracy attained by the proposed TrIncNet model along with the ViT model and six state-of-the-art
CNN architectures for the Maize dataset.
TABLE 5 Comparison of the TrIncNet model’s performance with a recent research work present in the literature for the identification of Maize plant
diseases.

Research
Work

Techniques used Dataset
used

Type of
dataset

Testing
Accuracy

Number of trainable weight
parameters
(In millions)

(Haque et al.,
2022)

InceptionV3 with Global Average
Pooling layer

Maize dataset Captured from
field

95.99% 21.78

Proposed Work TrIncNet model Maize dataset Captured from
field

96.93% 6.95
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6 Discussion

This research aims to efficiently and effectively detect plant diseases

by using digital images of their leaves and machine intelligence. The

majority of the related studies have utilized various ML techniques

(Khan et al., 2022), CNN-based techniques (Atila et al., 2021; Dhaka

et al., 2021; Tiwari et al., 2021), ViT-based techniques (Thai et al., 2021;

Wu et al., 2021; Borhani et al., 2022), or combination of ViT and CNN

techniques (Zhang et al., 2022) to identify plant diseases, but all of these

works have used the computationally expensive MLP module in the

encoder block of ViT model. Thus, in the proposed TrIncNet model,

the MLP module has been replaced with the Inception module in the

ViT model’s encoder block to reduce the computational complexity of

the ViT model. Furthermore, the TrIncNet model is much more

resistant to the vanishing gradient problem than the ViT model, as it

comprises of skip connections around each Trans-Inception block.

Results obtained from the experimentation performed on two different

datasets (Maize dataset and PlantVillage dataset) showed that despite
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of utilizing the minimum number of trainable weight parameters, the

proposed TrIncNet model achieved the highest testing accuracy in

identifying plant diseases via digital leaf images obtained either from

labs or farmlands.

Experimental results revealed that the TrIncNet model attained

higher testing accuracy than the ViT model. This trend of the results

can be argued on the fact that in the Trans-Inception block of the

proposed TrIncNet model, the MLP module is replaced with the

Inception module, which can effectively and efficiently extract

various spatial and temporal features from leaf images. This

replacement also reduced the number of trainable weight

parameters used by the proposed TrIncNet model, as the

Inception module performs convolution and max-pooling

operations which require lesser trainable weight parameters than

the fully connected layers present in the MLPmodule. It can be seen

from Tables 5, 6 that, on both datasets, the proposed model also got

higher testing accuracy with a significantly lesser number of

trainable weight parameters than the six state-of-the-art CNN
FIGURE 8

Plot of validation accuracies and validation losses of the TrIncNet model along with the ViT model and the six other state-of-the-art CNN
architectures for the PlantVillage dataset.
FIGURE 9

Comparison of f1-score, precision, recall, and accuracy attained by the proposed TrIncNet model along with the ViT model and six state-of-the-art
CNN architectures for the PlantVillage dataset.
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FIGURE 10

Comparison of the number of trainable weight parameters used by the TrIncNet along with the ViT model and six state-of-the-art CNN
architectures trained on the PlantVillage dataset.
TABLE 6 Comparison of the TrIncNet model’s performance with several recent studies present in the literature on PlantVillage dataset.

Research Work Techniques
used

Dataset
used

Testing Accuracy Number of trainable weight parameters
(In millions)

Kaya and Gürsoy (2023) Fused-DenseNet-121 PlantVillage dataset 98.17% 8.13

Ahmad et al. (2023) DenseNet-169 PlantVillage dataset 99.5% 12.70

Atila et al. (2021) EfficientNet-B5 PlantVillage dataset 99.91% 30.56

Proposed Work TrIncNet model PlantVillage dataset 99.93% 6.95
F
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FIGURE 11

Visual representation of features extracted by MLP module present in the ViT model’s encoder block.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1221557
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gole et al. 10.3389/fpls.2023.1221557
architectures and the research work done by (Atila et al., 2021;

Haque et al., 2022; Ahmad et al., 2023; Kaya and Gürsoy, 2023).

Conclusively, it can be said that the TrIncNet model proposed

in this study has the potential to efficiently and effectively identify

plant diseases via their digital leaf images captured either from the

lab or agricultural fields with high accuracy. Moreover, the low

computational complexity of the proposed model improves its

training and inferencing speed. This study is also opened a new

arena for further improvements in the ViT model’s architecture for

plant disease detection and other image-based tasks. In this research

work, the proposed model’s performance is evaluated on only two

datasets; however, in the future, it is planned to train the model on
Frontiers in Plant Science 16
other plant disease detection datasets that encompass leaf images with

a wider range of diseases. Furthermore, the future work also includes

the deployment of the proposed model on IoT devices such as UAVs,

enabling real-time plant disease detection in agricultural fields.
7 Conclusion

Identifying plant diseases in their earliest possible infestation stage

is one of the major research problems in the agricultural sector because

it can potentially maximize crop yield and profit of the farmers. In

order to solve this research problem, many researchers applied various
A B
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FIGURE 12

Visual representation of features extracted by the Inception module present in the Trans-Inception block. (A) Features extracted by 1 × 1 convolution
operation. (B) Features extracted by 3 × 3 convolution operation. (C) Features extracted by 5 × 5 convolution operation. (D) Features extracted by 3 × 3
max-pooling operation. (E) Concatenation of all features extracted by 1 × 1, 3 × 3, 5 × 5 convolution operations and 3 × 3 max-pooling operation.
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ML techniques, CNN-based techniques, the combination of CNN and

ML techniques, ViT-based techniques, or a combination of CNN and

ViT for automatically diagnosing diseases in plants. However, none of

the research works removed the MLP block from the ViT model’s

encoder block, as it was a computationally expensive module as well as

inefficient in extracting features from images. Hence, in this research

work, a novel TrIncNet model was proposed, which contains multiple

stacked Trans-Inception blocks. The proposed Trans-Inception block

was designed by replacing theMLPmodule with the Inceptionmodule

in the original ViT model’s encoder block. Moreover, in the TrIncNet

model, each Trans-Inception block was surrounded by a skip

connection which made the proposed model much more resistant to

the vanishing gradient problem. The performance of TrIncNet model

compared with the ViT model and six state-of-the-art CNN

architectures (ResNet-50, VGG-19, GoogLeNet, Xception,

InceptionV3, and MobileNet) using the PlantVillage dataset

(benchmark dataset for plant disease detection problems) and Maize

dataset (contains real-in-field leaf images with complex background).

During experimental study, it was found that the TrIncNet model

outperformed the ViT model and six CNN architectures with testing

accuracies of 99.93% and96.93% for the PlantVillage dataset andMaize

dataset, respectively. Moreover, during experimentation, it was found

that the proposedmodel used 6.94million trainable weight parameters,

which was theminimum among the ViTmodel and six state-of-the-art

CNN architectures. The TrIncNet model’s performance has also been

compared with other research works present in the literature, and its

performance was found best among all of them.
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Appendix

Asymptomatic analysis on the number of weight parameters

used by the Inception module

Let the input to the Inception module is I ∈ RM�N containing

M patches, and each patch is of size N . Since the Inception module

uses two-dimensional convolution operations, therefore I must be

reshaped to I 0 ∈ R
ffiffiffi
N

p � ffiffiffi
N

p �M , assuming that the value of N is a

perfect square (i.e., N ∈ 22i,   i = 1, 2, 3,…). The asymptomatic

analysis is done on each operation present in the Inception

module (shown by numbers in Figure A1).

The number of weight parameters used in convolution operation

can be expressed by equation (7) (Goodfellow et al., 2016).

W = IF � D� k� k (7)

where:

W : number of weight parameters used in convolution operation

IF : number of filters applied
TABLE A1 Asymptomatic computation of weight parameters used by an inex

Operation number Input shape Output shap

Operation 1
ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
�M

ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
� F1

Operation 2
ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
�M

ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
� F2

Operation 3
ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
�M

ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
� F3

Operation 4
ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
�M

ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
�M

Operation 5
ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
� F2

ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
� F5

Operation 6
ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
� F3

ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
� F6

Operation 7
ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
�M

ffiffiffiffi
N

p
�

ffiffiffiffi
N

p
� F7
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D : depth of input feature map

k : convolution filter’s size

Let the number of filters used in operation i is Fi, where

i = 1, 2,…,   7 (shown in Figure A1). Then the number of

weight parameters used in each operation is computed

in Table A1.

By combining the number of weight parameters used in each

operation of the Inception module (given in Table A1), the total

number of weight parameters used in this module can be

calculated as O(F1M + F2M + F3M + F2F5 + F3F6 + F7M). If F =

max (F1, F2, F3, F5, F6, F7), then the above expression can be

simplified to O(4� FM + F2) ⇒ O(FM + F2) :Hence, the total

number of trainable weight parameters required to implement

an inexpensive Inception module can be expressed by WInception in

equation (8).

WInception = max (M2, F2) =
O(M2),   F < M

O(F2),   F ≥ M

(
(8)
FIGURE A1

Block diagram of the Inception module.
pensive version of the Inception module.

e Number of weight parameters (asymptomatically)

F1 �M � 1� 1 = F1 � 1 = O(F1M)

F2 �M � 1� 1 = F2 �M = O(F2M)

F3 �M � 1� 1 = F3 �M = O(F3M)

0 (max-pooling operation does not require any weight parameters)

F2 � F5 � 3� 3 = 9� F2 � F5 = O(F2F5)

F3 � F6 � 5� 5 = 25� F3 � F6 = O(F3F6)

F7 �M � 1� 1 = F7 �M = O(F7M)

frontiersin.org

https://doi.org/10.3389/fpls.2023.1221557
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	TrIncNet: a lightweight vision transformer network for identification of plant diseases
	1 Introduction
	2 Related works
	3 Model development
	3.1 Existing vision transformer network
	3.2 Proposed vision transformer network
	3.2.1 Multi-head attention module
	3.2.2 Layer normalization module
	3.2.3 Inception module
	3.2.3.1 Spatial invariance (Shift invariance)
	3.2.3.2 Local translation invariance
	3.2.3.3 Parameter sharing


	3.3 Asymptomatic analysis on weight parameters used by ViT and TrIncNet models

	4 Experimental material
	4.1 Dataset description
	4.1.1 Maize dataset
	4.1.2 PlantVillage dataset

	4.2 Data preprocessing
	4.2.1 Image resizing
	4.2.2 Image normalization
	4.2.3 Data augmentation
	4.2.4 Data Splitting

	4.3 Experimental setup

	5 Experimental results
	5.1 Performance of the proposed network on Maize dataset
	5.2 Performance of the proposed network on PlantVillage dataset
	5.3 Ablation study

	6 Discussion
	7 Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	References
	Appendix



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


