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In modern plant breeding, genomic selection is becoming the gold standard to

select superior genotypes in large breeding populations that are only partially

phenotyped. Many breeding programs commonly rely on single-nucleotide

polymorphism (SNP) markers to capture genome-wide data for selection

candidates. For this purpose, SNP arrays with moderate to high marker density

represent a robust and cost-effective tool to generate reproducible, easy-to-

handle, high-throughput genotype data from large-scale breeding populations.

However, SNP arrays are prone to technical errors that lead to failed allele calls.

To overcome this problem, failed calls are often imputed, based on the

assumption that failed SNP calls are purely technical. However, this ignores the

biological causes for failed calls—for example: deletions—and there is increasing

evidence that gene presence–absence and other kinds of genome structural

variants can play a role in phenotypic expression. Because deletions are

frequently not in linkage disequilibrium with their flanking SNPs, permutation

of missing SNP calls can potentially obscure valuable marker–trait associations.

In this study, we analyze published datasets for canola and maize using four

parametric and two machine learning models and demonstrate that failed allele

calls in genomic prediction are highly predictive for important agronomic traits.

We present two statistical pipelines, based on population structure and linkage

disequilibrium, that enable the filtering of failed SNP calls that are likely caused by

biological reasons. For the population and trait examined, prediction accuracy

based on these filtered failed allele calls was competitive to standard SNP-based

prediction, underlying the potential value of missing data in genomic prediction

approaches. The combination of SNPs with all failed allele calls or the filtered

allele calls did not outperform predictions with only SNP-based prediction due to

redundancy in genomic relationship estimates.

KEYWORDS

genomic selection, genome structural variants, presence-absence variations, machine
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1221750/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1221750/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1221750/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1221750&domain=pdf&date_stamp=2023-10-23
mailto:Sven.E.Weber@agrar.uni-giessen.de
https://doi.org/10.3389/fpls.2023.1221750
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1221750
https://www.frontiersin.org/journals/plant-science


Weber et al. 10.3389/fpls.2023.1221750
1 Introduction

Genomic prediction has become the gold standard to identify

genetically superior accessions within breeding materials.

Henderson (1975) was among the first breeders to use relatedness

based on pedigree information, along with phenotypic data, for

breeding value prediction in a mixed linear model framework.

Based on recent advances in genome sequencing technologies,

genomic data is used today to replace pedigree relationships in

statistical prediction models (Bernardo, 1994; Meuwissen et al.,

2001; VanRaden, 2008). The increasingly accurate genome

sequencing today allows the identification of millions of

polymorphisms across the genome with high quality and

confidence. Along with phenotypic measurements, these

genotypic profiles can be used to predict the breeding values of

non-phenotyped individuals with statistical models (Lande and

Thompson, 1990; Meuwissen et al., 2001; VanRaden, 2008).

These statistical methods utilize phenotypic and genotypic

information from some genotypes (training population) to predict

genotypes with only genotypic information. Over the years, several

mathematical models have been proposed for genomic prediction;

the commonly used models include GBLUP (Bernardo, 1994;

Meuwissen et al., 2001; VanRaden, 2008), Reproducing Kernel

Hill Regression (RKHS) (de los Campos et al., 2009), and models

from the Bayesian alphabet like Bayesian LASSO (Park and Casella,

2008) or Bayesian ridge regression (Pérez and de los Campos, 2014).

These models differ in their assumption of variance components,

marker effects, marker modes of action, and model assumptions.

More recently, machine learning algorithms have also been

implemented for genomic prediction (Azodi et al., 2019; Pérez-

Enciso and Zingaretti, 2019).

Genotypic information utilized for genomic prediction

normally comprises biallelic single-nucleotide polymorphisms

(SNPs) that are enormously abundant in eukaryotic genomes

(Rafalski, 2002; Frazer et al., 2007; Ganal et al., 2009). Besides

their high frequency, SNPs are not always able to explain all of the

genetic variations, particularly for more complex traits, which tend

to be characterized by “missing heritability” (Manolio et al., 2009;

Forer et al., 2010). Genome structural variants (SV) are another type

of genomic polymorphism that might explain some of this missing

heritability (Manolio et al., 2009; Génin, 2020; Theunissen et al.,

2020; Zhou et al., 2022). Plant genomes exhibit widespread SV

including copy number variations, deletions, or insertions (Eichten

et al., 2011; Fuentes et al., 2019; Gabur et al., 2019; Schiessl et al.,

2019; Yang et al., 2019; Chawla et al., 2021), and because these are

not always in linkage disequilibrium with neighboring SNPs, their

effects are not always captured by the surrounding SNP variants

(Gabur et al., 2018). However, such polymorphisms have been

shown to be associated with a wide range of agronomical important

traits (Gabur et al., 2018; Vollrath et al., 2021a; Vollrath et al.,

2021b; Yuan et al., 2021). Specifically, it was shown that SVs are

associated with disease resistance and flowering time in canola

(Gabur et al., 2018; Gabur et al., 2020; Vollrath et al., 2021a;

Vollrath et al., 2021b), disease resistance and boron toxicity

tolerance in barley (Sutton et al., 2007; Muñoz-Amatriaıń et al.,

2013), pathogen response and aluminum tolerance in maize (Beló
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et al., 2010; Maron et al., 2013), and plant height and heading date

in wheat (Li et al., 2012; Nishida et al., 2013), for example [for a

comprehensive review, see Gabur et al. (2019)].

In large-scale breeding populations, SNPs are usually assessed

with SNP arrays; however, these platforms are prone to technical

errors that result in failed allele calls. Markers with a very high failed

call rate are commonly discarded from downstream genetic

analyses (Zhao et al., 2013; Lehermeier et al., 2014; Werner et al.,

2018a; Knoch et al., 2021). For the remaining markers, failed allele

calls need to be imputed to avoid large numbers of missing data

points for further genetic studies. There are numerous methods to

impute missing allele calls, with the simplest being the population

mean/median (Endelman, 2011; Covarrubias-Pazaran, 2016;

Covarrubias-Pazaran, 2018) or more advanced algorithms like

“BEAGLE”, “SHAPEIT”, and “IMPUTE2” (Browning and

Browning, 2007; Howie et al., 2011; Delaneau et al., 2012;

Browning et al., 2018) which rely on allele frequencies,

haplotypes, and flanking marker information. Regardless of the

approach, imputation assumes that each missing marker call

represents a genuine technical error. However, using whole-

genome sequencing and patterns of inheritance in structured

populations, Gabur et al. (2018) have demonstrated that, in

complex crop genomes, missing allele calls can often be caused by

polymorphic presence–absence variations resulting from deletions

of sequences spanning SNP loci. Omitting or imputing failed allele

calls can hence obscure valuable marker–trait associations.

Commonly, SNPs with excessive failed calls are frequently

eliminated from new iterations of genotyping arrays because they

are considered technically unreliable (Boichard et al., 2012; Bayer

et al., 2017). This can lead to considerable loss of potentially

important genotype information and false imputations.

Whole-genome long-read sequencing data can be used to

accurately identify structural variants (Francia et al., 2015;

Dumschott et al., 2020; Chawla et al., 2021), enabling the

validation of presence–absence variations detected in SNP array

data (Gabur et al., 2018). However, genotyping a whole breeding

population with thousands of genotypes via whole-genome long-

read sequencing is economically not feasible. Targeted long-read

sequencing of agronomically interesting genomic regions using

ReadUntil (Edwards et al., 2019) might provide an alternative,

which is a financially viable approach to identify genome

structural variations at the population scale. However, application

at scale in a breeding program may still be challenging.

Furthermore, SNP arrays are well established as one of the main

methods of choice for breeders to genotype their populations, hence

the detection of presence–absence variations using these arrays

comes at no additional cost. Most published work, to date, linking

structural variants to quantitative traits have focused on association

studies (see Gabur et al. (2019) for a detailed review). Only few

studies have investigated their use for genomic prediction (Hay

et al., 2018; Lyra et al., 2019; Chen et al., 2021; Knoch et al., 2021;

Lamb et al., 2021), most of which utilize structural variants called

from long- or short-read sequencing data. The aim of this study was

to examine the value of potential presence–absence variants in the

form of failed allele calls from SNP arrays in genomic predictions.

To our knowledge, previously, this has only been done in
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association studies (Gabur et al., 2018; Gabur et al., 2020; Vollrath

et al., 2021a; Vollrath et al., 2021b), making this the first attempt to

utilize failed allele calls in genomic prediction. Specifically, the

following questions were addressed: (1) How predictive are failed

allele calls in genomic prediction and (2) can the addition of failed

allele call information to standard SNPs improve genomic

prediction accuracy? To answer these questions, published

datasets from maize and canola were utilized for genomic

predictions based on failed allele calls and genome-wide SNP

markers, respectively. Prediction accuracy from cross-validation

was subsequently used to assess marker–trait associations.

Genomic prediction was performed with GBLUP, Bayesian

LASSO, EGBLUP, RKHS, and Gradient Boosting and Support

Vector Machines. Furthermore, two naive methods were

developed and deployed to select failed allele calls based on

population information. Using failed allele calls as indicators for

presence–absence events, we show that these are as predictive as

standard SNP markers for agronomic traits, underlining the

potential information content of missing data in SNP arrays.
2 Materials and methods

2.1 Datasets

Two previously published datasets were examined in this study.

The first was a canola dataset from a spring-type canola hybrid

breeding program (Jan et al., 2016). Here two male sterile lines were

crossed to 475 doubled-haploid (DH) pollinators to create 950 test

crosses. The test crosses were subsequently tested for seed yield,

flowering time, field emergence, lodging, oil content, oil yield, and

glucosinolate content in a multi-environment trial at four different

locations in 2 years. All parental lines were genotyped with the

Illumina Brassica 60 k SNP array (Clarke et al., 2016). In total, 910

test crosses with complete phenotypic and genotypic records are

available. The phenotypic data was published on an adjusted trait

mean per genotype.

The second dataset represent two nested association mapping

(NAM) populations of Flint and Dent maize. The population

consists of 10 Dent and 11 Flint half-sib DH families. The lines

were evaluated as test crosses, the DH Dent lines were all crossed to

a single Flint tester line (UH007), and all DH Flint lines were

crossed to a single Dent tester (F353). All DH lines were genotyped

with the Illumina MaizeSNP50 SNP array (Ganal et al., 2011). This

population was first described in Bauer et al. (2013), while

Lehermeier et al. (2014) published phenotypic data from four

locations for the Dent panel and at six locations for the Flint

panel, including dry matter yield (DMY), dry matter content

(DMC), plant height (PH), days till tasseling (DtTAS), and days

till silking (DtSILK). The published field data was adjusted

independently in the Flint and Dent pool, following the methods

of the original publication. In total, complete phenotypic and

genotypic data were available for test crosses from 847 Dent

maternal lines and 918 Flint maternal lines.
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2.2 Genotypic data

SNP matrices were filtered to remove markers with non-unique

positions (multiple BLASTn hits offlanking sequences) on reference

genomes. In canola, we utilized the Brassica napus Express 617

genome v2 (Lee et al., 2020) and in maize the B73 AGPv2 genome

(Schnable et al., 2009). The genotypic data for the two maize pools

was filtered jointly as one population. Compared to standard

filtering pipelines, which removed SNPs with a certain proportion

of failed calls, we treated failed SNP calls as third allele. In the first

step, the coding for the original marker matrix was A/A, A/B, B/B,

and F/F (“homozygous missing/failed allele”). Consequently, in this

set, the markers were filtered according to an expected ≥0.095

(treating F as third allele), which corresponds to a minor allele

frequency ≥0.05 in a biallelic case. From that, two copies of this

matrix were created, one corresponding to the standard SNPs and

one corresponding to the failed allele calls.

The copy corresponding to standard SNPs was then phased and

imputed with the software “BEAGLE V5.2” (Browning and

Browning, 2007; Browning et al., 2018). Subsequently, the

markers were filtered for minor allele frequency ≥0.05 (to rule out

monomorphic markers which could arise after imputation) and

converted into numeric format (0, 1, 2 for A/A, A/B, and B/B).

The copy corresponding to the failed allele calls was recoded to

successful call/successful call (regardless of allelic state) and F/F

(“homozygous missing/failed allele”). This matrix was then also

filtered for minor allele frequency ≥0.05 (to rule out monomorphic

markers) and then converted into numeric format (0, 2 for

successful call/successful call and F/F).

For canola, the processing resulted in 31,085 markers with

successful allele calls and 7,169 markers with failed allele calls. In

maize, we obtained 39,624 markers with successful allele calls and

8,024 markers with failed allele calls.
2.3 Population structure

For both datasets, the population structure was assessed by

calculating the Euclidean distance between genotypes based on

standard SNP markers and failed allele calls, respectively.

Subsequently, the genotypes of each species were clustered into

two subpopulations each using k-means clustering. A principal

component analysis based on the genetic distance was conducted,

and the first two principal components were utilized to visualize

population stratification.
2.4 Methods to filter failed SNP calls with
biological reasons

In the following two sections, we introduce two pipelines

designed to distinguish between random failed allele calls and

non-random systematic failed allele calls. This is done to

strengthen the confidence that those failed allele calls stem from
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some biological reason, which hinders an allele call. These pipelines

only rely on population measures and statistical tests.

2.4.1 Pool specificity
An important step in hybrid breeding is the creation of distinct

genetic pools. Hence, the datasets assessed in this study naturally

show a strong population structure corresponding to divergent

genetic pools. In such populations, a proportion of alleles become

pool-specific due to selection and genetic drift. On the other hand,

technical errors can, by definition, not be pool specific; hence, they

cannot show a bias between two different hybrid breeding pools. We

thus assumed that there should be no relationship between

subpopulation assignment and SNP call failure. In the breeding

populations examined here, the populations for each species

investigated split into two major gene pools. Hence, we expect

that technical errors and successful allele calls should distribute

equally in the two subpopulations. A c2 test of independence was

utilized to test if there is an influence of subpopulation on allele call

or failure. Pool assignment was based on k-means clustering with

standard SNPs. Specifically, we tested for each failed allele call

as follows:
Fron
• H0: failed allele call versus successful marker call and pool

assignment is not related in the populations.

• H1: failed allele call versus successful marker call and pool

assignment is related in the populations.
WhenH0 is rejected, this is considered to be biological evidence

for pool specificity of marker failure rather than a technical failure.

Hence, we filter this failed allele call marker from the set of all failed

allele calls and use it further in prediction models. After adjustment

according to Benjamini and Hochberg (1995), the p-values were

compared at a threshold of a = 0.05.

2.4.2 Linkage disequilibrium
Linkage disequilibrium (LD) between markers on the same

chromosome was calculated as r2 (Hill and Robertson, 1968) in

“SelectionTools” (http://population-genetics.uni-giessen.de/

~software/), treating each failed allele call as an independent

marker with the same genome position as its corresponding

standard SNP.

If a failed marker call is purely due to a technical error, the failed

call should not be in LD with any other marker. If the failed call is in

considerable LD with markers on the same chromosome, we can

assume that the failure is inherited together with other markers and

the failure has a biological reason. Subsequently, a simple Student’s

t-test can be used to compare the LD patterns. If the LD of the failed

marker with all other standard SNP calls on the same chromosome

is considerably lower than its standard SNP counterpart, we can

assume that the failure is due to a technical error. Specifically, for

each failed marker call, we test the following hypotheses:
• H0: failed allele call and successful marker call show the same

average LD to all standard markers on the same

chromosome.
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• H1: failed allele call and successful marker call show lower

average LD to all standard markers on the same

chromosome.
When H0 is failed to reject, failed allele calls are considered to

be in LD to markers on the same chromosome. Hence, we filter this

failed allele call marker from the set of all failed allele calls and use it

further in prediction models. After adjustment according to

Benjamini and Hochberg (1995), the p-values were compared at a

threshold of a = 0.05.
2.5 Genomic prediction models

Six genomic prediction models were used to predict test cross

performance. Two variations of GBLUP, two Bayesian methods,

and two machine learning methods were used, covering parametric

and non-parametric models. We applied standard GBLUP and

extended GBLUP (EGBLUP) to account for second-order

additive*additive epistasis (Jiang and Reif, 2015). Furthermore, we

used the Bayesian LASSO model (Park and Casella, 2008) due to its

capability for marker-specific shrinkage and the semiparametric

model RKHS for modeling of higher-order epistasis (de los Campos

et al., 2009). These approaches were complemented by the machine

learning algorithms gradient boosting (Friedman, 2001) and

support vector machines (SVM) (Boser et al., 1992).

In GBLUP and EGBLUP, the underlying mixed linear model is:

y = Xb + Zaa + Zii + e

where y is the vector of observations for a trait under

consideration,   b is the vector of fixed effects, a is the vector of

random additive marker effects, i is the vector of random epistatic

effects, and e is the random residual term. Za and Zi are design

matrices relating the random effects to the phenotypic records. X is

the design matrix for fixed effects and, in the case of the canola

dataset, a column of ones modeling the intercept and an additional

column for the male sterile mother. In the maize datasets, X has a

column of ones for the intercept and an additional 10 (Dent dataset)

or 11 (Flint dataset) columns that assign individuals to half-

sib families.

It is assumed that a∼N(0,Gas 2
a ),   i∼N(0,Gaas 2

aa)   and   e∼N

(0, Is2
e ),   where s 2

a ,  s 2
aa, and s 2

e are additive genetic variance,

epistatic genetic variance, and error variance, respectively. Ga and

Gaa are the respective additive and epistatic relationship matrices,

and I is an identity matrix. Depending on the inclusion of epistatic

effects, the corresponding terms were included or omitted.

The additive genomic relationship matrix was calculated

following VanRaden (2008):

G =
ZZ 0

2o​pi(1 − pi)

In the case of prediction based on standard SNPs, the elements

of Z are represented by (0-2pi) for homozygous allele A, (1-2pi) for

the heterozygous state, and (2-2pi) for homozygous allele B, with pi
being the allele frequency of the B allele. For prediction based on all
frontiersin.org
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failed calls or filtered failed allele calls, the elements of Z are

represented by (0-2pi) for successful allele calls and (2-2pi) for

failed allele calls, with pi being the allele frequency of the failed allele

call. Furthermore, the combination of (i) SNPs and failed allele calls,

(ii) SNPs and failed allele calls filtered by pool specificity, and (iii)

SNPs and failed allele calls filtered by LD were considered.

A second-order (additive*additive) epistatic relationship matrix

can be approximated with Gaa = G#G, where # denotes the

pointwise (Hadamard) product operation (Henderson, 1985; Jiang

and Reif, 2015).

All the mixed linear models described in this section were

implemented and solved with the r package “sommer”

(Covarrubias-Pazaran, 2016; Covarrubias-Pazaran, 2018),

which also computes al l model parameters including

variance components.

The formula describing the Bayesian LASSO model, following

Park and Casella (2008), is:

y = Xb +Ma + e

where y is the vector of observations for a trait under

consideration, b is the vector of fixed non-genetic effects, a is the

vector of additive effects, X is the design matrix as described in the

GBLUP section, and M is the incidence matrix relating phenotypic

records with the respective marker. In standard SNP-based

predictions, the elements of M are 0 for homozygous allele A, 1

for heterozygous, and 2 for homozygous allele B. In the case of

prediction based on failed or filtered failed allele calls, the elements

of M are 0 for a successful allele call and 2 for the failed allele call.

Furthermore, we also considered the combination of (i) SNPs and

failed allele calls, (ii) SNPs and failed allele calls filtered by pool

specificity, and (iii) SNPs and failed allele calls filtered by LD. The

coefficients of the fixed (b) effects are assigned flat priors, and the

coefficients of the marker effects (a) are assigned double-

exponential priors. This allows the shrinkage of some marker

effects to effectively zero, introducing sparsity into the model.

This model allows a stronger shrinkage of the marker effects,

which may be useful especially for technical errors. Here e is the

random residual term. This model was conducted in the r software

with the package “BGLR” (Pérez and de los Campos, 2014), which

computes all the model parameters. Default settings were utilized.

Following de los Campos et al. (2009) with kernel averaging, the

RKHS model has the following form:

y = Xb +oL

l=1
ul + e

with

p(b , u1,…uL, e) ∝  
YL

l=1 N(uj0,  Kuls
2
ul)  N(ej0,   Is 2

e )  

where y is the vector of observations, while Kul represents an

n*n kernel calculated based on the Euclidean distance between

genotypes called (a) standard SNPs, (b) failed allele calls, (c) failed

allele calls filtered by pool specificity, and (d) failed allele calls

filtered by LD or a combination of (a) with (b), (c), or (d). The

kernel was chosen to be a Gaussian kernel with the lth value of the

bandwidth parameter {0.1, 0.5, 2.5}. Xb is treated in a similar
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manner to the Bayesian LASSO, and ul is assumed to be random.

That way, the different random effects, i.e., the three kernel matrices

from the three bandwidth parameters, are weighted by their

variance components. Again, e is the random residual term. This

model was also conducted in the r software with the package

“BGLR” (Pérez and de los Campos, 2014), which computes all the

model parameters using the default setting of the package.

Gradient boosting sequentially builds ensembles of decision

trees. The algorithm starts with an intercept estimation.

Subsequently, it sequentially fits models on the residual of its

predecessor (Friedman, 2001). The goal of each model is to

minimize the prediction error of the previous model. Generally,

the model can be described with following formula:

y = 1m +  oM

m=1
hfm(X) + e

where y is the vector of observations, m is the overall intercept,

and f is the base learning function, i.e., a decision tree. h is a

shrinkage parameter, controlling the overall contribution of each

decision tree to the total prediction. X is a matrix of (a) standard

SNPs, (b) failed allele calls, (c) failed allele calls filtered by pool

specificity, and (d) failed allele calls filtered by LD or a combination

of (a) with (b), (c), or (d). Furthermore, in the case of the canola

dataset, an additional column for the male sterile mother was

added. In the maize datasets, an additional 10 (Dent) or 11

(Flint) columns were added that assign individuals to half-sib

families. This model was conducted with the r package “xgboost”

(Chen and Guestrin, 2016). Hyperparameters “eta”, “gamma”,

“max_depth” , “min_chi ld_weight” , “subsample” , and

“colsample_bytree” were optimized via Bayesian hyperparameter

optimization using the r package “rBayesianOptimization”

(Yan, 2022).

The SVM model performs a form of nonlinear regression;

specifically, the ϵ-support vector regression (Chang and Lin, 2011)

is utilized. It performs non-linear regression by projecting the data

into higher dimensional space with a kernel function. This model was

conducted with the r package “kernlab” (Karatzoglou et al., 2004),

using the radial basis function as kernel function. Hyperparameters

epsilon and cost were optimized with Bayesian hyperparameter

optimization using the r package “rBayesianOptimization” (Yan,

2022). Prediction was based on the matrix of (a) standard SNPs,

(b) failed allele calls, (c) failed allele calls filtered by pool specificity,

and (d) failed allele calls filtered by LD or a combination of (a) with

(b), (c), or (d). Furthermore, in the case of the canola dataset, an

additional column was added for the male sterile maternal line,

whereas for maize an additional 10 (Dent dataset) or 11 (Flint

dataset) columns were added, which assign individuals to half-

sib families.
2.6 Evaluation of prediction accuracy

The prediction accuracy for the two datasets was evaluated

using fivefold cross-validation. The population was randomly

divided into five equal-sized sets. In each fold, the prediction

models were trained on four sets (training population), and then
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these trained models were utilized to predict the remaining set

(validation population) with masked phenotypic data. This process

was repeated until each set served as the validation population once.

The accuracy was measured using the Pearson correlation

coefficient (r) between the observed and predicted phenotypic

values of the validation set in each fold. To ensure robustness,

this entire procedure was repeated 30 times.
2.7 Genomic relationship

To assess how well relationship based on standard SNPs is also

captured by one of the failed allele call marker sets, we used the

relationship coefficients obtained from the relationship matrix

calculated following VanRaden (2008) (see above) and calculated

the Pearson correlation between relationship coefficients from SNPs

and those from the failed allele calls.
2.8 Simulation

To test how high prediction accuracy with failed allele calls can

get by chance, i.e., random association between failed calls (due to

random technical problems of the array), a simulation was

conducted. The basis of the simulation was the genotypic data

described in Section 2.2. Here we took the imputed marker matrices

as “true” genotypic data and simulated marker effects. In total, 100,

1,000, and 10,000 markers were sampled to serve as QTL.

Subsequently, marker effects were sampled from a normal

distribution with mean = 0 and variance = 1. The phenotype was

then obtained by adding a random residual term to the total

additive value of the individual. The residuals were sampled from

a normal distribution with mean = 0 and variance = Ve. Ve was

calculated as
Vg

H2 − Vg , where Vg is the total genetic variance, i.e.,

variance of the breeding values, and H2 is the heritability calculated

as H2 =
Vg

Vg+Ve
. Three heritabilities (H2 = 0.4, 0.6, and 0.8) were

simulated for each number of QTL.

According to the number of failed calls observed before

imputation, 658,730 entries of the marker matrix in canola and

3,712,821 entries of the marker matrix in maize were randomly

sampled to be failed calls and treated as described in Sections 2.2.

and 2.4. In each simulation, genomic prediction was conducted with

the GBLUP model based on SNPs and failed allele calls. Prediction

accuracy was then measured with fivefold cross-validation with 10

repetitions (see Section 2.6). For each combination of number of

QTL and heritability, 100 simulations were conducted to obtain a

robust result.
3 Results

3.1 Canola

In canola, k-means clustering based on standard SNP markers

revealed a considerable population stratification into two

subpopulations/pools which we designated as pool A and pool B,
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respectively (Figure 1). The lines in pool A had, on average, 686.80

(median = 618.5) failed allele calls, while the lines in pool B had, on

average, 848.21 (median = 767) failed allele calls (Supplementary

Figure S1). The first three principal components based on standard

SNPs together explain 23.25% of the variance in the marker data.

On the other hand, the population structure based on failed allele

calls also shows a distinction into two subpopulations based on k-

means clustering; however, clustering did not result in the same

subpopulation assignment compared to the standard SNPs

(Figure 1). Here the first three principal components together

explain 10.56% of the variance in the failed marker set. A visual

inspection of the first two components of the two respective marker

sets show a considerable overlap of the subpopulations.

Each possible failed allele call was tested for pool specificity. In

canola, 1,989 failed allele calls showed significant pool specificity.

The lines in pool A carry, on average, 302.26 (median = 283) pool-

specific failed allele calls, and the lines in pool B carry, on average,

398.93 (median = 409) (Supplementary Figure S1). The LD of each

possible failed allele call was compared to its standard SNP

counterpart in both datasets. This resulted in 1,084 failed allele

calls showing considerable LD with standard SNPs on the same

chromosome. The lines in pool A carry, on average, 206.72

(median = 202) failed allele calls filtered by LD, while the lines in

pool B carry 274.77 (median = 301) failed allele calls on average

(Supplementary Figure S1). Subsequently, the markers filtered by

the two methods described were utilized for the following analysis.

Combining SNPs and all failed allele calls yields a total of 38,254

markers. When SNPs are combined with failed allele calls filtered by

pool specificity, there are 33,074 markers. The combination of SNPs

with failed allele calls filtered by LD results in a set of

32,169 markers.

An analysis of genomic relationships showed a high

correspondence between the estimates of relationship based on

standard SNPs, failed allele calls, and the two filtering methods

(Figure 2). Correlations between the relationships based on SNPs

and the three failed allele call sets were generally high in canola

(Figure 2). The lowest correlation (r = 0.604) was observed between

the SNP-based relationship and the relationship based on failed

alleles (Figure 2). In contrast, stronger correlations were found

between the SNP-based relationships and the failed allele calls

filtered by pool specificity (0.786) or the failed allele calls filtered

by LD (0.779), respectively (Figure 2).

Genomic prediction based on standard SNPs resulted in

prediction accuracies ranging from 0.174 with SVM for field

emergence to 0.813 with XGB for oil content (Supplementary

Figure S2). Considerable differences could be observed between

traits, while the differences between marker sets or prediction

models were only very small (Figure 3; Supplementary Figure S2).

Only in the trait field emergence did all other models considerably

outperformed the two machine learning models SVM and XGB

(Supplementary Figure S2). Across all models with standard SNPs,

the prediction accuracy was lowest for field emergence, followed by

lodging, seed yield, glucosinolate content, days to flowering, oil

yield, and oil content (Figure 4; Supplementary Figure S2). The

prediction accuracy based on failed allele calls was generally similar

to the accuracy of standard SNP-based predictions for all traits
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(Figure 3; Supplementary Figure S2). When using markers from one

of the methods to filter failed allele calls, the prediction accuracy did

not improve compared to the prediction based on all failed allele

calls. However, we also observed no further decrease in prediction

accuracy (Figure 3; Supplementary Figure S2). When combining

both (i) SNPs and failed allele calls, (ii) SNPs and failed allele calls

filtered by pool specificity, and (iii) SNPs and failed allele calls

filtered by LD, genomic prediction did not change compared to

standard SNP-based prediction (Figure 3; Supplementary

Figure S2).
3.2 Maize

In maize, k-means clustering based on standard SNP markers

revealed a strong population stratification into two major groups
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that more or less correspond to the respective Flint and Dent pools

(Figure 1). The lines in the Dent pool had, on average, 1,796.76

(median = 1,756) failed allele calls, while the lines in the Flint pool

had on average 2,088.72 (median = 2,100) failed allele calls

(Supplementary Figure S1). k-means clustering based on standard

SNP markers assigned 10 genotypes of the Flint pool wrongly to the

Dent pool (Figures 1, 3). Here the first three principal components

together explain 33.03% of the variance in the marker data. The

population structure based on failed allele calls also shows a strong

distinction into two subpopulations. Clustering based on failed

allele calls assigned only one genotype of the Flint pool

incorrectly to the Dent pool (Figures 1, 4). The first three

principal components cumulatively explain 27.38% of the

variance in the failed marker set. A visual inspection of the first

two principal components of the two respective marker sets did not

show any overlap between the Flint and Dent pools (Figure 1).
A B

DC

FIGURE 1

Population structure displayed by the first two principal components of the genetic distance in canola (A, B) and maize (C, D) based on standard
single-nucleotide polymorphisms (A, C) and failed allele calls (B, D). The colors (red and blue) represent clusters based on k-means clustering, while
the D and F shapes in maize represent true Dent and Flint clusters.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1221750
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Weber et al. 10.3389/fpls.2023.1221750
A

B

C

FIGURE 3

Prediction accuracy (r) based on standard single-nucleotide polymorphisms (SNPs), failed SNP calls (failed), failed SNP calls filtered by pool specificity
(failed PS), and failed SNP calls filtered by LD (failed LD) as well as their combination with GBLUP (light blue), Bayesian Lasso (dark blue), EGBLUP
(light green), RKHS (dark green), SVM (pink), and XGB (red). In canola seed yield (A), maize Dent dry matter yield (B) and maize Flint dry matter yield
(C). Values above the boxplots represent median values across all cross-validation runs.
A

B

FIGURE 2

Correlation plot of genomic relationship coefficients based on single-nucleotide polymorphisms, failed allele calls (failed), failed allele calls filtered by
pool specificity (failed PS), and failed allele calls filtered by LD (failed LD) in (A) canola (green) and (B) maize (orange).
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Further subclusters could be seen in both the Flint and Dent pools

which likely correspond to different families of the NAM

population within the Dent and Flint material (Figure 1).

Testing each possible failed allele call for pool specificity showed

that 7,286 markers with failed allele calls show pool specificity. The

lines in the Dent pool carry, on average, 1,647.95 (median = 1,614)

pool-specific failed allele calls, whereas the lines in the Flint pool

carry, on average, 1,962.51 (median = 1,996) (Supplementary Figure

S1). The LD-based method, on the other hand, filtered 2,156 failed

allele calls that show considerable LD with standard SNPs on the

same chromosome. Here the lines in the Dent pool carry, on

average, 650.34 (median = 661) failed allele calls filtered by LD,

while the lines in the Flint pool carry, on average, 913.88 (median =

949) (Supplementary Figure S1). Subsequently, the markers filtered

by these two methods were utilized for the following analysis. The

combination of SNPs and all failed allele calls yields a total of 47,648

markers. When we merge SNPs with failed allele calls filtered by

pool specificity, there are 46,910 markers. Meanwhile, the

combination of SNPs with failed allele calls filtered by LD

produces a set of 41,780 markers.

An analysis of genomic relationships in maize showed high

correlations between estimates of relationship based on standard

SNPs, failed allele calls, and the two filtering methods (Figure 2). In

maize, the lowest correlation (r = 0.982) detected was observed

between the SNP-based relationship and failed allele calls (Figure 2).

However, the difference to the correlations between standard SNPs

and failed allele calls filtered by pool specificity (r = 0.984) or failed

allele calls filtered by LD (r = 0.983) was considerably lower than the

corresponding differences in canola (Figure 2). In all correlation

plots of relationhip estimates, there were observable clusters

corresponding to the strong distinction into genetically distinct

pools (Figure 2).

3.2.1 Dent pool
Within the maize Dent pool, genomic prediction based on

standard SNPs resulted in prediction accuracies in the range from

0.505 with EGBLUP for DMY to 0.850 with SVM for DMC. There

were considerable differences between traits and models, while the

differences between marker sets were only very small. With
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standard SNPs, the prediction accuracy across all models was

lowest for DMY, followed by PH, DtSILK, DtTAS, and DMC

(Figure 3; Supplementary Figure S3). Interestingly, GBLUP,

EGBLUP, and XGB showed lower prediction accuracies

compared to all other models across all traits, with the exception

of PH (Figure 3; Supplementary Figure S3), for which XGB showed

slightly higher prediction accuracies than GBLUP and EGBLUP

(Supplementary Figure S3). Across traits, there was no consistent

ranking between the remaining models Bayesian LASSO, RKHS,

and SVM, with Bayesian LASSO yielding the highest prediction

accuracy for DMY, PH, and DtTAS, whereas SVM yielded the

highest prediction accuracy for DMC and DtSILK. Using all failed

allele calls reduced the prediction accuracy only marginally, while

the two alternative methods to filter failed allele calls gave a similar

prediction accuracy compared to the use of all failed allele calls

(Figure 3; Supplementary Figure S3). The combination of both (i)

SNPs and failed allele calls, (ii) SNPs and failed allele calls filtered by

pool specificity, and (iii) SNPs and failed allele calls filtered by LD in

genomic prediction did not change the prediction accuracy

compared to standard SNP-based prediction (Figure 3;

Supplementary Figure S3).

3.2.2 Flint pool
Within the maize Flint pool, genomic prediction based on

standard SNPs resulted in prediction accuracies in the range from

0.598 with XGB for DMY to 0.909 with GBLUP for DtSILK

(Figure 3; Supplementary Figure S3). There were considerable

differences again between traits and models. The differences

between marker sets were only very small (Figure 3;

Supplementary Figure S4). Across all models, the prediction

accuracy based on standard SNPs was the lowest for DMY,

followed by PH, DtSILK, DtTAS, and DMC (Figure 3;

Supplementary Figure S4). Generally, the prediction accuracies

obtained from XGB were among the worst across all traits, while

GBLUP and EGBLUP showed considerably lower prediction

accuracies only for DtTAS and PH (Figure 3; Supplementary

Figure S4). Generally, the differences between models were much

smaller in scale than the differences in prediction accuracy between

traits (Figure 3; Supplementary Figure S3). The prediction based on
A B

FIGURE 4

Venn diagram: Maize pool assignment to Dent (red) and Flint (yellow) subpools vs. pool assignment based on k-means clustering into cluster 1 (blue)
and cluster 2 (gray) based on the genetic distance from standard single-nucleotide polymorphisms (A) and failed allele calls (B).
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failed allele calls reduced the prediction accuracy again only

marginally. The two methods to filter failed allele calls did not

improve the prediction accuracy compared to the prediction based

on all failed allele calls. However, no large decrease in prediction

accuracy could be observed. Combining both (i) SNPs and failed

allele calls, (ii) SNPs and failed allele calls filtered by pool specificity,

and (iii) SNPs and failed allele calls filtered by LD in genomic

prediction did not change the prediction accuracy compared to

standard SNP-based prediction (Figure 3; Supplementary

Figure S3).
3.3 Simulation

Applying the filtering methods to the random failed allele calls

within each simulation repetition only rarely yielded any failed

allele call after filtering. If failed allele calls were left in the

simulations, there were only up to two failed allele calls left after

filtering. Consequently, we applied genomic prediction only with

the complete set of failed allele calls in each simulation. Generally,

the prediction accuracies based on SNPs for all simulated traits in

both crops followed closely the simulated heritability, independent

of the number of QTL. With failed allele calls, on the other hand,

the prediction accuracy was close to zero across all simulation runs

(Supplementary Figures S5–S7). It is worth to mention that, in

many simulation cross-validation combinations, no genetic

variance could be attributed to failed allele calls; hence, here only

the intercept of the model contributed to the prediction

(Supplementary Figures S5–S7).
4 Discussion

Utilizing data from three populations in two important crops,

we show that failed allele calls can be informative to identify

valuable genotype-trait associations in the context of genomic

prediction. While the marker number was considerably decreased

with failed allele calls compared to standard SNPs, the prediction

accuracy was comparable. We developed two alternative pipelines

to distinguish failed allele calls with a genuine biological cause from

random technical errors. The markers obtained from those two

pipelines yielded similar prediction accuracies compared to

standard SNPs and to all failed allele calls despite a lower marker

density. Therefore, regarding prediction accuracy in genomic

prediction, there is no necessity for additional analysis of failed

allele calls. Nevertheless, the two pipelines provided enhance the

confidence that these failed allele calls arise from a non-random

event, possibly attributable to a biological reason. The combinations

of the different marker sets did not improve the prediction accuracy,

which is likely due to the highly redundant estimation of genomic

relationship. However, in cases where failed calls are caused by

deletions that are not in LD with neighboring SNPs, it is plausible

that they could contribute to improved trait prediction, just as they

have been shown to do for QTL analysis [e.g., Gabur et al. (2018);

Gabur et al. (2019)].
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In both datasets investigated here, failed allele calls were very

useful in identifying population structure and relationship,

indicating a high relevance of presence–absence variation for

population differentiation. Due to different marker filtering and

distance calculation, the PCA and the clustering yielded different

results in canola than in a previous study using the same dataset

(Jan et al., 2016). Interestingly, the failed allele calls were more

effective at the identification of present Flint and Dent maize

material based on clustering. Sun et al. (2018) and Beló et al.

(2010) revealed strong differences between genetically distant maize

genotypes in the frequency of copy number variations.

Furthermore, in both datasets, one of the two pools had higher

average numbers of failed allele calls per line, which can also be

observed with the two methods described to filter failed allele calls.

This indicates a role of structural variation events underlying failed

SNP cal ls in subpopulat ion (Gabur et a l . , 2018) or

pool development.

There are several pipelines to detect copy number variations

from SNP arrays relying on light intensity signals generated during

a single base extension (Colella et al., 2007; Wang et al., 2007;

Greenman et al., 2010; Xu et al., 2014; Grandke et al., 2017).

However, in case of zero light signal, these pipelines cannot

distinguish a genomic deletion from a technically failed allele call.

Gabur et al. (2018) provide an alternate strategy to reliably identify

genomic deletions using SNP array data. They used segregation

patterns of failed allele calls in a nested association mapping

population of Brassica napus to validate real deletions from

technical artifacts of the SNP arrays. Several studies implemented

this pipeline to filter and use large numbers of failed allele calls

(Gabur et al., 2018; Gabur et al., 2020; Vollrath et al., 2021a;

Vollrath et al., 2021b), which are normally removed from

downstream analyses by a standard filtering process. However,

the pipeline described in those studies cannot be applied in the

present study since it relies on deviations from expected allele

frequencies in segregating families, whereas the populations

investigated here are genetically diverse breeding populations.

Therefore, we used pool assignment and LD to filter failed allele

calls. These two approaches can be applied to a wider range of

populations as they do not need clear family structures while being

simple and straightforward to implement. In canola, these two

alternative methods delivered similar results: 1,989 failed allele calls

filtered based on pool specificity and 1,084 failed allele calls filtered

via analysis of LD. A pipeline to place markers with unknown

chromosomal positions based on LD accurately placed 5,920 out of

21,251 unplaced markers (Yadav et al., 2021). Here with the LD-

based filtering method, marker alleles are filtered rather than

unplaced markers. The key advantage is that, rather than setting

an arbitrary threshold, LD between markers on the same

chromosome is used to set a dynamic threshold. Generally, the

two pipelines that we developed consider any non-random cause for

the allele call failure; however, they cannot classify the cause. While

the cause for the allele call failure can have high importance in the

detection of major QTL and causal genes, for genomic prediction of

quantitative traits, the cause is less relevant as a single marker

usually has only a small effect on the prediction (Tayeh et al., 2015;
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van Binsbergen et al., 2015; Werner et al., 2018a; Werner et al.,

2018b; e Sousa et al., 2019).

With the advancements in genotyping technology and the

decreasing costs associated with it, genotyping by sequencing

(GBS) has emerged as a promising alternative to SNP arrays for

genotyping breeding populations (Poland and Rife, 2012; Kim et al.,

2016; Chung et al., 2017). Unlike the closed architecture of SNP

arrays, which typically only allows the identification of two alleles,

GBS has the added advantage of detecting other variants, such as

small deletions (Poland and Rife, 2012). This capability offers a

potential solution to the aforementioned limitations by directly

identifying the true variant at a given locus.

In the canola analysis, the genomic prediction accuracy based

on all marker sets roughly corresponded to the original results of

Jan et al. (2016). However, for all traits, a small improvement in

prediction accuracy could be observed. Compared to Jan et al.

(2016), we filtered for SNP markers with a fixed position on the

reference genome Express 617 (Lee et al., 2020). Furthermore, we

applied a different filtering method for allelic diversity; these

together resulted in an additional 2,799 markers. The prediction

accuracy across traits and marker sets generally did not deviate

considerably from prediction accuracies reported in previous

studies, although minor differences can be observed in field

emergence and glucosinolate content (Würschum et al., 2014; Jan

et al., 2016; Werner et al., 2018a; Werner et al., 2018b; Knoch

et al., 2021).

In the maize analysis, the genomic prediction accuracy obtained

from all marker sets corresponded to the original results of

Lehermeier et al. (2014). The differences can be attributed to the

considerably different cross-validation scheme that we used in

comparison with the previous study. Furthermore, the different

filtering, especially for allelic diversity, resulted in 5,508 more

markers compared to the original publication. The accuracies

were generally higher than in the canola analysis. As seen in the

high prediction accuracies reported in other studies of hybrid

prediction in maize (Technow et al., 2012; Crossa et al., 2014;

Technow et al., 2014; Millet et al., 2019), we also observed generally

high prediction accuracies for all traits and marker sets.

Interestingly, the prediction accuracies varied between Flint and

Dent datasets. For the traits DtSILK and DtTAS, the prediction

accuracy was higher in the test crosses with Dent maternal lines

than in the hybrids with Flint maternal lines. Moreover, the two

models implemented in a frequentist framework, i.e., GBLUP and

EGBLUP, delivered poorer predictions than the remaining models

for all traits with the Dent test crosses. This behavior was not

observed in the Flint or canola test crosses.

Importantly, predictions based on one of the three marker

sets including failed allele calls always gave prediction accuracies

competitive with standard SNP-based predictions. The

simulation study indicates that this prediction accuracy seems

to be not occurring by chance as the randomly sampled failed

allele calls in the simulations resulted in a prediction accuracy

close to zero. While failed allele calls were observed to be equally

predictive as standard SNPs, it is essential to note that this might

not directly translate to the entire germplasm of the given crop.
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This is because SNP arrays usually undergo thorough validation

before being released for use. Of course, SNPs are influenced and

linked to structural variations like deletions and insertions

(Hinds et al., 2006; McCarroll et al., 2006; Redon et al., 2006;

Gabur et al., 2018). Our analyses indicated that at least a

proportion of the failed allele calls stem from structural

variants. The two hybrid breeding crops maize and canola are

known to be highly influenced by structural variants (Schnable

et al., 2009; Springer et al., 2009; Beló et al., 2010; Lai et al., 2010;

Swanson-Wagner et al., 2010; He et al., 2017; Samans et al., 2017;

Hurgobin et al., 2018; Sun et al., 2018; Chawla et al., 2021).

Furthermore, it is well known that structural variations like

deletions, insertions, or inversions can be associated with

agronomical traits (Würschum et al., 2015; Gabur et al., 2018;

Gabur et al., 2019; Schiessl et al., 2019; Gabur et al., 2020;

Vollrath et al., 2021a; Vollrath et al., 2021b) and differential

gene expression (Shen et al., 2006; McHale et al., 2012; Tan et al.,

2012; Chiang et al., 2017; Alonge et al., 2020). Hence, it can be

assumed that the inclusion of SV data can improve the genomic

prediction accuracy for some traits in crops; however, just like

what is shown here, an improvement is not consistently observed

(Hay et al., 2018; Lyra et al., 2019; Knoch et al., 2021).

Furthermore, in cattle, only a marginal improvement in

prediction accuracy was observed for important milk traits

when accounting for structural variations from whole-genome

sequencing (Chen et al., 2021).

Although machine learning has promising capabilities in

genomic prediction (Montesinos-López et al., 2018; Pérez-Enciso

and Zingaretti, 2019; Montesinos-López et al., 2021; Montesinos

López et al., 2022), with encouraging results in human (Bellot et al.,

2018; Lello et al., 2018), animal (González-Recio et al., 2010; Long

et al., 2010; Gianola et al., 2011), and plant research (Heslot et al.,

2012; Crossa et al., 2017; Montesinos-López et al., 2018; Azodi et al.,

2019; Bayer et al., 2021), we failed to observe any fundamental

advantage of two tested machine learning algorithms for any trait,

population, or marker set. In contrast to the findings of González-

Recio et al. (2010); Li et al. (2018), and Abdollahi-Arpanahi et al.

(2020), we did not observe a competitive prediction accuracy of the

boosting algorithm XGB in comparison to the other prediction

models for 14 out of the 17 examined traits. This corresponds to the

findings of Perez et al. (2022). Hyperparameter tuning is crucial for

machine learning (Pérez-Enciso and Zingaretti, 2019; Zingaretti

et al., 2020; Montesinos López et al., 2022). In this study, we applied

a Bayesian hyperparameter optimization which, based on a given

set of hyperparameter start ing values, optimizes the

hyperparameters sequentially with the objective of reducing the

mean squared prediction error. It is possible that this optimization

algorithm becomes obstructed in a local optimum, resulting in low

prediction accuracies. However, it seems unrealistic that this would

have occurred in every cross-validation run. Alternatively, the size

of the training datasets that we used might be too small for machine

learning models, which usually cope with n > p problems (Azodi

et al., 2019).

Incomplete LD between markers and QTL can lead to apparent

or phantom epistasis. This can cause statistically significant marker
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interactions in association studies (Wood et al., 2014; de los

Campos et al., 2019) and improved prediction accuracies with

models considering epistasis (Schrauf et al., 2020). For

predictions using only one of the failed marker sets, we need to

assume the occurrence of considerable phantom epistasis due to

the considerably lower marker number, which tends to result in

lower LD between markers and QTL (Wood et al., 2014; de los

Campos et al., 2019). For this reason, we extended the prediction

portfolio from GBLUP and Bayesian LASSO to also include

EGLUP and RKHS regression for explicit modeling of epistasis

and the two machine learning methods SVM and XGB for

modeling of nonlinear effects. However, models considering

epistasis or nonlinear effects did not consistently outperform

simple GBLUP or Bayesian LASSO in any of the failed marker

sets. A possible explanation could be that, despite the reduced

marker density, a sufficient proportion of QTL can nevertheless be

covered by these markers. Indeed marker density can often be

reduced without a considerable loss of prediction accuracy (de

Roos et al., 2009; Zhang et al., 2019; Kriaridou et al., 2020). Besides

co-segregation or LD between markers and QTL, another

important factor impacting genomic prediction is the accurate

estimation of relationship (Habier et al., 2010; Daetwyler et al.,

2013; Habier et al., 2013). In fact, accurate pedigree information

can already yield prediction accuracies that are comparable to

predictions based on genomic information (Burgueño et al., 2012;

Crossa et al., 2014; Deomano et al., 2020). The high correlations

between relationship coefficients obtained from SNP markers and

the three marker sets from failed allele calls show that information

about failure of allele calls can be a good estimate for relationships

between genotypes. The correlations between SNP markers and the

three respective marker sets from failed allele calls were

considerably lower in canola than in maize; however, losses in

prediction accuracies were on a similar level in both species. Since

SNPs are still only a fraction of all genetic information present on

the genome, even SNPs are only able to “sample” a true

relationship (Goddard et al., 2011), which could explain the

comparable loss of prediction accuracy between the two datasets.

However, the high correlation between relationship coefficients

also explains the lack of gain in prediction accuracy, indicating that

the information added by the failed SNP calls is at least partly

redundant. In populations in Hardy–Weinberg equilibrium, this

redundant information likely corresponds to SNPs within older

deletions that are in LD with surrounding SNPs, whereas more

recent structural variants leading to deletions (and failed SNP calls)

are not always in LD with redundant SNPs and more likely to

contribute additional information to predictions.

While we only observed marginal to no increases in

prediction accuracy based on combinations of SNPs with failed

marker calls, they may be especially beneficial in the context of

association studies, where it has been shown that previously

undetected QTL can be identified with the inclusion of failed SNP

allele calls (Gabur et al., 2018). Furthermore, the analytical

approaches applied here are straightforward to implement with

no additional cost.
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5 Conclusion

Our study confirms that failed allele calls from SNP array data

can be highly predictive for agronomical traits in canola and maize.

Based on population structure (pool specificity) and LD, we were

able to distinguish random errors from systematic allele call failure,

enabling the filtering of presence–absence marker data representing

deletions with potential impacts on traits. In all examined traits and

datasets, genomic prediction using presence–absence markers

filtered from failed SNP calls was nearly as accurate as SNP-based

prediction. This is likely due to the following: (a) capture of

previously overlooked genomic regions, (b) accurate estimation of

relationships (similar to SNP-based relationship), and (c) capture

of dominance effects caused by deletions which differentiate

between heterotic pools in hybrid breeding. However, prediction

accuracy did not improve when combining SNP information with

failed allele calls, which can be attributed to the high redundancy

between estimates of genomic relationship. Nevertheless, we

recommend the inclusion of information of allele call failure into

genomic prediction, as it adds information that is potentially highly

predictive for agronomic traits not always in LD with neighboring

SNPs and is available to plant breeders using SNP array datasets for

genotyping at no additional cost.
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(2020). Genomic prediction of sugar content and cane yield in sugar cane clones in
different stages of selection in a breeding program, with and without pedigree
information. Mol. Breed. 40, 38. doi: 10.1007/s11032-020-01120-0

de Roos, A. P. W., Hayes, B. J., and Goddard, M. E. (2009). Reliability of genomic
predictions across multiple populations. Genetics 183, 1545–1553. doi: 10.1534/
genetics.109.104935
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2023.1221750/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1221750/full#supplementary-material
https://doi.org/10.1186/s12711-020-00531-z
https://doi.org/10.1016/j.cell.2020.05.021
https://doi.org/10.1534/g3.119.400498
https://doi.org/10.1534/g3.119.400498
http://prodinra.inra.fr/record/256105
https://doi.org/10.3389/fpls.2017.01792
https://doi.org/10.1002/tpg2.20112
https://doi.org/10.1534/genetics.118.301298
https://doi.org/10.1007/s00122-009-1128-9
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.2135/cropsci1994.0011183X003400010003x
https://doi.org/10.2135/cropsci1994.0011183X003400010003x
https://doi.org/10.1371/journal.pone.0034130
https://doi.org/10.1145/130385.130401
https://doi.org/10.1086/521987
https://doi.org/10.1016/j.ajhg.2018.07.015
https://doi.org/10.1016/j.ajhg.2018.07.015
https://doi.org/10.2135/cropsci2011.06.0299
https://doi.org/10.2135/cropsci2011.06.0299
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1111/pbi.13456
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.3390/ani11020541
https://doi.org/10.3390/ani11020541
https://doi.org/10.1038/ng.3834
https://doi.org/10.1007/s13580-017-0297-8
https://doi.org/10.1007/s00122-016-2746-7
https://doi.org/10.1007/s00122-016-2746-7
https://doi.org/10.1093/nar/gkm076
https://doi.org/10.1371/journal.pone.0156744
https://doi.org/10.1371/journal.pone.0156744
https://doi.org/10.1101/354639
https://doi.org/10.1101/354639
https://doi.org/10.1038/hdy.2013.16
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1534/genetics.112.147983
https://doi.org/10.1534/genetics.112.147983
https://doi.org/10.1038/nmeth.1785
https://doi.org/10.2527/jas.2008-1259
https://doi.org/10.1534/g3.119.400101
https://doi.org/10.1007/s11032-020-01120-0
https://doi.org/10.1534/genetics.109.104935
https://doi.org/10.1534/genetics.109.104935
https://doi.org/10.3389/fpls.2023.1221750
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Weber et al. 10.3389/fpls.2023.1221750
Dumschott, K., Schmidt, M. H.-W., Chawla, H. S., Snowdon, R., and Usadel, B.
(2020). Oxford Nanopore sequencing: new opportunities for plant genomics? J. Exp.
Bot. 71, 5313–5322. doi: 10.1093/jxb/eraa263

Edwards, H. S., Krishnakumar, R., Sinha, A., Bird, S. W., Patel, K. D., and Bartsch, M.
S. (2019). Real-time selective sequencing with RUBRIC: read until with basecall and
reference-informed criteria. Sci. Rep. 9, 11475. doi: 10.1038/s41598-019-47857-3

Eichten, S. R., Foerster, J. M., de Leon, N., Kai, Y., Yeh, C.-T., Liu, S., et al. (2011).
B73-mo17 near-isogenic lines demonstrate dispersed structural variation in maize.
Plant Physiol. 156, 1679–1690. doi: 10.1104/pp.111.174748

Endelman, J. B. (2011). Ridge regression and other kernels for genomic selection with
R package rrBLUP. Plant Genome 4, 250–255. doi: 10.3835/plantgenome2011.08.0024

e Sousa, M. B., Galli, G., Lyra, D. H., Granato, I ́.S.C., Matias, F. I., Alves, F. C., et al.
(2019). Increasing accuracy and reducing costs of genomic prediction by marker
selection. Euphytica 215, 18. doi: 10.1007/s10681-019-2339-z

Forer, L., Schönherr, S., Weissensteiner, H., Haider, F., Kluckner, T., Gieger, C., et al.
(2010). CONAN: copy number variation analysis software for genome-wide association
studies. BMC Bioinf. 11, 318. doi: 10.1186/1471-2105-11-318

Francia, E., Pecchioni, N., Policriti, A., and Scalabrin, S. (2015). “CNV and structural
variation in plants: prospects of NGS approaches,” in Advances in the Understanding of
Biological Sciences Using Next Generation Sequencing (NGS) Approaches. Eds. G.
Sablok, S. Kumar, S. Ueno, J. Kuo and C. Varotto (Cham: Springer International
Publishing), 211–232. doi: 10.1007/978-3-319-17157-9_13

Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A., et al.
(2007). A second generation human haplotype map of over 3.1 million SNPs. Nature
449, 851–861. doi: 10.1038/nature06258

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting
machine. Ann. Stat 29, 1189–1232. doi: 10.1214/aos/1013203451

Fuentes, R. R., Chebotarov, D., Duitama, J., Smith, S., Hoz, J. F. D., Mohiyuddin, M.,
et al. (2019). Structural variants in 3000 rice genomes. Genome Res. 29, 870–880.
doi: 10.1101/gr.241240.118

Gabur, I., Chawla, H. S., Liu, X., Kumar, V., Faure, S., von Tiedemann, A., et al.
(2018). Finding invisible quantitative trait loci with missing data. Plant Biotechnol. J. 16,
2102–2112. doi: 10.1111/pbi.12942

Gabur, I., Chawla, H. S., Lopisso, D. T., von Tiedemann, A., Snowdon, R. J., and
Obermeier, C. (2020). Gene presence-absence variation associates with quantitative
Verticillium longisporum disease resistance in Brassica napus. Sci. Rep. 10, 4131.
doi: 10.1038/s41598-020-61228-3

Gabur, I., Chawla, H. S., Snowdon, R. J., and Parkin, I. A. P. (2019). Connecting
genome structural variation with complex traits in crop plants. Theor. Appl. Genet. 132,
733–750. doi: 10.1007/s00122-018-3233-0

Ganal, M. W., Altmann, T., and Röder, M. S. (2009). SNP identification in crop
plants. Curr. Opin. Plant Biol. 12, 211–217. doi: 10.1016/j.pbi.2008.12.009

Ganal, M. W., Durstewitz, G., Polley, A., Bérard, A., Buckler, E. S., Charcosset, A.,
et al. (2011). A large maize (Zea mays L.) SNP genotyping array: development and
germplasm genotyping, and genetic mapping to compare with the B73 reference
genome. PloS One 6, e28334. doi: 10.1371/journal.pone.0028334

Génin, E. (2020). Missing heritability of complex diseases: case solved? Hum. Genet.
139, 103–113. doi: 10.1007/s00439-019-02034-4

Gianola, D., Okut, H., Weigel, K. A., and Rosa, G. J. (2011). Predicting complex
quantitative traits with Bayesian neural networks: a case study with Jersey cows and
wheat. BMC Genet. 12, 87. doi: 10.1186/1471-2156-12-87

Goddard, M. E., Hayes, B. J., and Meuwissen, T. H. E. (2011). Using the genomic
relationship matrix to predict the accuracy of genomic selection. J. Anim. Breed. Genet.
128, 409–421. doi: 10.1111/j.1439-0388.2011.00964.x
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Muñoz-Amatriaıń, M., Eichten, S. R., Wicker, T., Richmond, T. A., Mascher, M.,
Steuernagel, B., et al. (2013). Distribution, functional impact, and origin mechanisms of
copy number variation in the barley genome. Genome Biol. 14, R58. doi: 10.1186/gb-
2013-14-6-r58

Nishida, H., Yoshida, T., Kawakami, K., Fujita, M., Long, B., Akashi, Y., et al. (2013).
Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-
A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect
on heading time. Mol. Breed. 31, 27–37. doi: 10.1007/s11032-012-9765-0

Park, T., and Casella, G. (2008). The bayesian lasso. J. Am. Stat. Assoc. 103, 681–686.
doi: 10.1198/016214508000000337

Perez, B. C., Bink, M. C. A. M., Svenson, K. L., Churchill, G. A., and Calus, M. P. L.
(2022). Prediction performance of linear models and gradient boosting machine on
complex phenotypes in outbred mice. G3 Genes|Genomes|Genetics 12, jkac039.
doi: 10.1093/g3journal/jkac039
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