
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Muhammad Fazal Ijaz,
Sejong University, Republic of Korea

REVIEWED BY

Parvathaneni Naga Srinivasu,
Prasad V. Potluri Siddhartha Institute of
Technology, India
Alireza Sanaeifar,
University of Minnesota Twin Cities,
United States
Jana Shafi,
Prince Sattam Bin Abdulaziz University,
Saudi Arabia

*CORRESPONDENCE

Dasheng Wu

19940019@zafu.edu.cn

RECEIVED 16 May 2023

ACCEPTED 28 July 2023

PUBLISHED 17 August 2023

CITATION

Wang S, Wu D and Zheng X (2023) TBC-
YOLOv7: a refined YOLOv7-based
algorithm for tea bud grading detection.
Front. Plant Sci. 14:1223410.
doi: 10.3389/fpls.2023.1223410

COPYRIGHT

© 2023 Wang, Wu and Zheng. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 17 August 2023

DOI 10.3389/fpls.2023.1223410
TBC-YOLOv7: a refined YOLOv7-
based algorithm for tea bud
grading detection

Siyang Wang1,2,3, Dasheng Wu1,2,3* and Xinyu Zheng1,2,3

1College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, China,
2Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and
Intelligent Equipment, Hangzhou, China, 3Key Laboratory of Forestry Intelligent Monitoring and
Information Technology of Zhejiang, Hangzhou, China
Introduction: Accurate grading identification of tea buds is a prerequisite for

automated tea-picking based onmachine vision system. However, current target

detection algorithms face challenges in detecting tea bud grades in complex

backgrounds. In this paper, an improved YOLOv7 tea bud grading detection

algorithm TBC-YOLOv7 is proposed.

Methods: The TBC-YOLOv7 algorithm incorporates the transformer architecture

design in the natural language processing field, integrating the transformer

module based on the contextual information in the feature map into the

YOLOv7 algorithm, thereby facilitating self-attention learning and enhancing

the connection of global feature information. To fuse feature information at

different scales, the TBC-YOLOv7 algorithm employs a bidirectional feature

pyramid network. In addition, coordinate attention is embedded into the

critical positions of the network to suppress useless background details while

paying more attention to the prominent features of tea buds. The SIOU loss

function is applied as the bounding box loss function to improve the

convergence speed of the network.

Result: The results of the experiments indicate that the TBC-YOLOv7 is effective

in all grades of samples in the test set. Specifically, the model achieves a precision

of 88.2% and 86.9%, with corresponding recall of 81% and 75.9%. The mean

average precision of the model reaches 87.5%, 3.4% higher than the original

YOLOv7, with average precision values of up to 90% for one bud with one leaf.

Furthermore, the F1 score reaches 0.83. The model’s performance outperforms

the YOLOv7 model in terms of the number of parameters. Finally, the results of

the model detection exhibit a high degree of correlation with the actual manual

annotation results ( R2 =0.89), with the root mean square error of 1.54.

Discussion: The TBC-YOLOv7 model proposed in this paper exhibits superior

performance in vision recognition, indicating that the improved YOLOv7 model

fused with transformer-style module can achieve higher grading accuracy on

densely growing tea buds, thereby enables the grade detection of tea buds in

practical scenarios, providing solution and technical support for automated

collection of tea buds and the judging of grades.
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1 Introduction

In 2022, China's tea plantations covered an area of 49,954,000

square meters, with a 2.03% increase compared to the previous year,

and tea production reached a total of 3.810 million tons (Mei and

Zhang, 2022). The total global tea production has maintained

growing trend. With the growing tea cultivation scale and

increasing tea varieties, consumers have put forward higher

requirements for tea harvesting as well as processing techniques.

Meanwhile, it is noteworthy to efficiently detect tea product quality

should be further improved to meet the demand for larger-scale

premium tea products. The grade of tea buds is an essential factor in

determining the economic value of the product. During the

processing of tea sprouts picking, different picking points can lead

to different tea quality (Yang et al., 2021). Typically, the number of

leaves is one of the important factors in determining the quality level

of tea, such as having one bud with one leaf, and one bud with two

leaves. Precise grading of tea buds is essential before implementing

selective picking strategies (Xu et al., 2022). Tea bud target detection

in complex backgrounds poses challenges due to small size of tea

buds, similarity between tea buds and tea leaves, and blending

between tea buds and their environment. Moreover, occlusion of

tea leaves and tea buds complicate the detection. Variations in

lighting and environment increase noise and interference, which

also adds additional challenges. Despite previous efforts, persistent

challenges require further advancements for effective detection.

Yang et al. (2019) have proposed a residual network block

structure in the down-sampling section of the YOLOv3 algorithm

and replaced the fully connected layer with a 1×1 convolution

operation, resulting in an accuracy rate exceeding 90% for

identifying high-quality tea buds with various poses and types in

the case where the image background is relatively simple and the

dataset contains only one tea bud target. In a similar vein, Li S, et al.

(2022) used the YOLOv3 algorithm and spatial pyramid module to

compress the model scale by channel pruning and hierarchical

pruning algorithms, significantly improving detection speed in the

practical environment. However, the task only distinguished the

angle of tea buds. Therefore, improving the accuracy of detection

and grading of tea buds based on complex background becomes the

main purpose of this paper. The contributions of this study are

as follows:
Fron
(1) A tea bud detection model called TBC-YOLOv7 is

proposed to achieve accurate identification and quality

grading of tea buds.

(2) A transformer-based architectural design was employed in

the YOLOv7 network to enhance visual representations

using the rich contextual information of adjacent keys to

facilitate self-attentive learning mechanisms.

(3) The bidirectional feature pyramid network (BiFPN) is used

to fuse features in both directions, integrating local and

global tea buds’ features.

(4) The network combines the coordinate attention (CA)

module to reinforce the ability to extract feature

information.
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(5) The SIOU loss function is preferred as the bounding box

loss function of the network to obtain higher detection

performance and prediction results.
The rest of this study is organized as follows: section 2 presents

an overview of relevant methods in the field of tea bud

identification. Next, section 3 describes the experimental methods

and principles in detail, mainly including the principles of YOLOv7

and the proposed method of TBC-YOLOv7. Subsequently, section 4

presents and analyzes the experimental results and shows the

comparison and discussion of the proposed method with related

popular methods. In addition, section 5 discusses the difficulties

encountered in the related work in this study as well as the

limitations. Finally, section 6 concludes the work of this study

and provides an outlook for future research work.
2 Related work

Numerous scholars have analyzed and compared various

methods for image processing technology in tea bud identification

and positioning (Motokura et al., 2020), tea pest and disease

detection (Han et al., 2019), tea variety identification and quality

detection (Yan et al., 2022). For the problem of tea bud recognition

and detection, scholars around the world have proposed

corresponding various methods, mainly including traditional

machine vision and deep learning methods that have emerged in

recent years. The conventional machine vision methods extract the

feature information of the target based on the differences in posture,

color, and texture features among tea buds, tender leaves, and old

leaves, to achieve the discrimination of tea targets. Zhang et al.

(2021) combined the blue component with the green component to

obtain a new combined component grey-scale image by adaptive

processing. The segmentation of tea bud targets was achieved by a

segmentation linear transform and an improved watershed

algorithm. However, the above-mentioned traditional machine

vision methods still cannot be applied in complex natural

environment scenarios, making it difficult to meet more practical

requirements (Kamilaris and Prenafeta-Boldú, 2018). With the

widespread use of deep convolutional neural networks (Picon

et al., 2019), R-CNN (Girshick et al., 2013), Fast R-CNN

(Girshick, 2015), Faster R-CNN (Ren et al., 2015), SSD (Liu et al.,

2015), and YOLO series algorithms (Chen et al., 2022; Wu et al.,

2022; Subedi et al., 2023) have been proposed for target detection

tasks. Due to the fact that deep learning algorithms can not only

accurately identify target categories but also quickly label their

locations, they can more effectively solve the recognition tasks

related to tea leaves in complex environments (Barbedo, 2018). Li

Y. et al. (2023) combined the improved YOLOv5 algorithm with the

Hungarian matching algorithm and the Kalman filter algorithm for

tracking and monitoring of tea bud targets as well as yield

estimation. A multi-objective continuous sorting model for

machine-picked tea leaves was developed by (Zhang et al., 2023).

Xue et al. (2023) solved the tea pest task by improving the YOLOv5

network and introducing the Global Context Network. While the

YOLOv7 algorithm (Wang et al., 2022) proposed in 2022 has
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outperformed various target detectors such as YOLOX (Ge et al.,

2021), YOLOv4 (Bochkovskiy et al., 2020), YOLOv5 (Qiao et al.,

2023) in terms of speed and accuracy, however, research on the

application for detecting tea buds is still limited (Jiang et al., 2022).

Currently, Transformer-based target detection algorithms have

garnered significant attention in the realm of deep learning

frameworks. Transformer can exhibit formidable modeling

capabilities and parallel computing prowess. Li et al. (2023)

conducted a comprehensive review of Transformer-based target

detection algorithms, categorizing them into four aspects: feature

learning, target estimation, label matching strategy and algorithm

application. A comparative analysis was performed between

Transformer-based algorithms and convolutional neural network

(CNN) algorithms in target detection tasks. Compared to CNNs,

Transformers possess a larger perceptual field, a more flexible

weight-setting mechanism, and the ability to model global

features. The global interaction capability of Transformers can be

combined with the localized features of CNNs to enrich feature

diversity. In 2020, Carion et al (2020) introduced a novel

Transformer-based target detection framework called DETR

(Detection Transformer). DETR employed a set prediction

approach, enabling end-to-end training without reliance on prior

design choices. However, challenges such as slow convergence and

subpar results in small target detection were observed.

Consequently, a multitude of improved algorithms based on

DETR have emerged (Li M. et al., 2023). The remarkable

performance of Transformer-based target detection algorithms on

standard datasets has prompted researchers to explore their

application in various real-world scenarios, offering novel

solutions across diverse domains (Li Y, et al., 2022). This fusion

has demonstrated applicability to a wide range of vision tasks and

exhibits great potential.
3 Materials and methods

3.1 YOLOv7 baseline network structure

In the algorithms of YOLO series, Wang et al. (2022) proposed

the YOLOv7 algorithm in 2022 with the structure of 4 parts (as

shown in Figure 1): Input, Backbone, Neck, and Head prediction.

The improving strategies of YOLOv7 is as follows: (1) The extended

efficient layer aggregation network (ELAN) serves as its network

architecture, using group convolution to increase the cardinality of

the added features and enhance the features learned by various

feature maps. (2) Model scaling for concatenation-based models,

which generates different model sizes by adjusting the properties of

the model. (3) The network architecture is augmented with model

re-parameterization convolution to provide more gradient diversity

(Ding et al., 2021). (4) Dynamic label allocation strategy integrating

cross-grid search of YOLOV5 and matching strategy of YOLOX.

The most suitable prior bounding box is adaptively and precisely

selected by increasing the number of positive samples. (5) An

auxiliary head training method is used to improve accuracy by

increasing training costs without affecting the inference time.
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The backbone feature extraction network of YOLOv7 consists

of several CBS modules, ELAN structures, and MP convolutional

layers (Praveen et al., 2022). The CBS module consists of a

convolutional layer, a batch normalization layer, and a SiLU

activation function. The ELAN structure continuously enhances

the network’s learning ability by controlling the shortest and longest

gradient path, thereby effectively extracting features. The down-

sampling structure is designed as an MP convolutional layer

consisting of a maximum pooling layer and a convolutional layer

for parallel feature extraction and compression. The SPPCSP

structure is utilized in the last layer of the backbone network to

introduce a sizeable residual branch to help optimize feature

extraction, reduce computation and expand the receptive field.

The enhanced feature extraction network in the Neck still follows

PANet structure in the YOLOv5 network, which performs up-

sampling and down-sampling operations on the features at different

scales obtained from the backbone to achieve feature fusion (Liu

et al., 2018). The Head adjusts the number of image channels for

three different scales of features output from PANet using the re-

parameterization convolution structure, and then passes through 1

× 1 convolution to predict confidence, categories, and anchor boxes.
3.2 Improved YOLOv7 structural design
(TBC-YOLOv7)

To improve the tea grading and picking efficiency, we propose the

TBC-YOLOv7model (shown as in Figure 2) in this paper. The details

of improvements are described as follows: (1) Our approach employs

a transformer-based architecture design in network, which integrated

the contextual transformer (CoT) module into the YOLOv7 network

to replace the ELAN-M structure of the Neck part. Specifically, the

CoT module fully utilizes the contextual information between the

input keys to guide the learning of the dynamic attention matrix. By

simultaneously capturing two kinds of spatial contexts, it efficiently

promotes self-attention learning, strengthens the representative

ability of the output feature map, and optimizes the relationship

between the global information of the network. (2) To efficiently fuse

multi-scale features, the BiFPN structure replaces the original

approach of fusing features in YOLOv7. This structure optimizes

channel relationships and long-term dependencies by using precise

location information for encoding, producing better-perceived

location information than the original structure. (3) To address the

issue of direction mismatch between the real box and prediction box,

the original CIOU (complete IOU) loss function is improved to the

SIOU loss function which focuses on the change of the angle vector

between the ground truth box and the prediction box, and fusing

direction information to improve the convergence speed of the

network. (4) To replace the three convolutional blocks on the

output feature layer of the backbone network with the CA

mechanism module, it can utilize more shallow features to enrich

the expressiveness of the feature map. By avoiding extracting

redundant features and reducing the weight of non-significant

features, making the model more accurate and sensitive in

identifying the positions of interested targets.
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3.3 Contextual transformer networks

Transformer has shown remarkable ability for capturing long-

distance features in natural language processing. We attempt to

migrate the transformer module to computer vision to more

efficiently handle long-distance inputs and enable training

parallelization through self-attention learning of feature vectors at

different spatial locations in images (Yin et al., 2020). By conducting

self-attention learning in transformer, the dependence on external

information is reduced, resulting in a greater focus on the internal

correlation of data or features (Vaswani et al., 2017). The attention
Frontiers in Plant Science 04
matrix is calculated using the independent query-key pairs in the

self-attention module, which combines the strong modeling

capability of the transformer module and the critical visual

feature signals to achieve better detection results (Carion

et al., 2020).

However, the traditional self-attention mechanism only

considers the local relationship matrix by using location

information, while ignoring the contextual information among

the nearest neighbors, which severely limits the expressiveness of

two-dimensional feature maps (Linsley et al., 2018). Therefore, the

CoT module (as shown in Figure 3) makes full use of the contextual
FIGURE 1

YOLOv7 network structure diagram. The basic CBS module has three colors, representing different convolutional kernels size and strides represented
by k and s.
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information between neighbor keys to capture global information to

obtain a larger receptive field, which is superior to the classical local

self-attention (Li et al., 2021). In the CoT module, as shown in

equations (1) and (2), all neighbor keys in the 2-D feature input

graph are first contextually encoded by group convolution to

generate the key feature K1 of the context among local neighbors,

after that K1 is used as the static contextual representation of the

input X. Furthermore, conditioned on the concatenation of the K1

and the queries Q, and then the dynamic multi-head attention

matrix A is obtained by two consecutive 1×1 convolutions (Wq with

ReLU activation function and Wd without activation function),

which is multiplied by the input value V for further aggregation. In

equation (2), the ⊛ denotes local matrix multiplication, in which a

weighted feature map K2   is obtained to represent the dynamic

interaction features between the inputs.

A = ½K1,Q�WqWd (1)

K2 = V⊛A (2)

and K2 are linearly fused as the final output. This module

substitutes the convolutional blocks of the same size in the

network backbone of the vision scenario to produce a network
Frontiers in Plant Science 05
backbone with transformer characteristics style. The CoT module is

capable of integrating contextual information mining between

neighbor keys and self-attentive learning of 2-D feature maps into

a unified architecture, avoiding introducing additional branching

structures for context mining with a reasonable parameter budget

and enhanced visual representation capabilities.
3.4 The bidirectional feature pyramid
network
Currently, the PANet used in YOLOv7 is a one-way fusion

feature approach. However, the environment for tea bud detection

often makes it difficult to extract significant features, and the PANet

structure (as shown in Figure 4A lacks original feature information

in the extracted information, which easily lead to deviations in

training and learning. Therefore, we use a cascading method to

integrate the BiFPN structure (as shown in Figure 4B) into the

enhanced feature extraction network of YOLOv7. The BiFPN

increases cross-scaled connections based on the PANet structure

and simplifies nodes with only one input edge and one output edge.

Specifically, the BiFPN designs a top-down path from p7 to p3 to

transfer semantic information of high-level features to the lower
FIGURE 3

CoT module structure diagram.
FIGURE 2

Neck components of the TBC-YOLOv7 network.
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levels and a bottom-up path from p3 to p7 to transfer location

information of bottom-level features to the higher levels.

Additionally, the BiFPN adds a connection from p4 to p6 that

directly connects input and output nodes of the same layer striding

over intermediate layers to achieve deeper fusion (Zhong

et al., 2021).

Resolutions from different feature layers may result in different

contributions to output. The high-resolution shallow feature maps

have richer detail information, but less semantic feature

information. The network retains more shallow semantic

information in the tea bud images without losing too much deep

location information while integrating local and global features of

tea buds, thus achieving accurate detection of tea buds of different

sizes and occlusion.
3.5 Loss function

The loss function consists of three components: localization

loss, confidence loss, and classification loss. Since tea bud detection

is a dense detection task, the loss function is needed to consider the

aggregation of metrics of bounding box regression, such as the

distance, overlap area, and aspect ratio of the prediction and ground

truth boxes when the model locates the target. CIOU loss function

used by the YOLOv7 network relies heavily on aggregating

bounding box regression metrics without considering the desired

mismatch direction between the ground truth boxes and prediction

boxes (Zheng et al., 2020). SIOU loss function redefines the penalty

metric so that the prediction box to move to the nearest axis quite

quickly, effectively reducing the total number of degrees of freedom.

It also considers the vector angle between the desired regressions to

make the prediction bounding box more stable during the training

process, this consideration can greatly speed up the training

convergence process (Gevorgyan, 2022).

The SIOU contains four components: Angle cost, Distance

cost, Shape cost, and IOU cost. The SIOU loss function is illustrated

(as shown in Figure 5) as follows:
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The component of Angle cost [as shown in equation (3)]

enables the prediction bounding box to preferentially reach the x or

y axis depending on the minimum distance from the x axis or y axis,

and then continue to approach the ground truth box along the

preferable axis, which can speed up the distance calculation between

the two boxes.

L = 1 − 2*sin
2 arcsin ch

s

� �
− p

4

� �
(3)

Where,

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgtcx − bcx
� �2

+ bgtcy − bcy

� �2r
(4)

ch = max bgtcy , bcy

� �
−min bgtcy , bcy

� �
(5)

(bcx , bcy ) , (bgtcx , b
gt
cy ) indicate the coordinate positions of the

prediction box and the ground truth box, respectively.

In addition, the distance cost describes the distance between the

two centroids of prediction box and the ground truth box. The

SIOU adjust the minimum outer rectangle of the ground truth box

and the prediction box according to the Angle cost when calculating

the Distance cost [as shown in equation (6)].

D = St=x,y(1 − e−rtg ) (6)

Where,
rx =

bgtcx −bcx
cw

� �2
(7)

ry =
bgtcy − bcy

ch

 !2

(8)

g = 2 − L (9)

ch, cw represent the width and height of the minimum outer

rectangle between the center of the ground truth box and the

prediction box, respectively.

The shape cost is defined as the equation (10). The shape cost

considers the aspect ratio between the target box and the prediction
BA

FIGURE 4

PANet structure diagram (A) and BiFPN structure diagram (B).
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box to make their shapes more similar. Where, q indicates the

extent of concern for controlling shape loss. By selecting the

suggested aspect ratio between the ground truth box and the

prediction box to avoid reducing the movement of the prediction

box due to excessive focus on shape loss in the calculation.

W = o
t=w,h

(1 − e−wt )q (10)

Where,

ww = w−wgtj j
max (w,wgt )

(11)

wh =
h−hgtj j

max (h,hgt )
(12)

w, h indicate the width and height of the prediction box, wgt , hgt

indicate the width and height of the ground truth box.

The IOU cost is calculated by equation (13).

IOU(A,  B) = A∩B
A∪B (13)

Where, A is the prediction box, B is the ground truth box, and

IOU indicates the overlap rate of the prediction box with the ground

truth box.

Therefore, the SIOU loss function is calculated by equation

(14):

LossSIOU = 1 − IOU + D+W
2 (14)
3.6 Coordinate attention

The main purpose of the attention mechanism is to enable the

model to acquire adaptive attention to focus on the more critical

parts of the image. The usual attention mechanism is implemented

by converting feature tensors into individual feature vectors

through global pooling, but it is prone to ignore spatial location
Frontiers in Plant Science 07
information. CA not only can capture inter-channel information

but also capture information about direction-perception and

position-perception, which achieves effective separation of the

target area and background in the image (Hou et al., 2021).

CA module utilizes accurate location information for learning

the relationship between channels, performing global average

pooling in the x and y directions, resulting in two one-

dimensional feature encoding vectors in the horizontal and

vertical directions. Afterwards a pair of orientation-aware feature

maps were generated by embedding of coordinate information to

obtain accurate location information (as shown in Figure 6). The

two generated feature maps are cascaded in the spatial dimension,

and a 1×1 convolutional transformation function is used to reduce

the number of channels of the feature vectors, thereby reducing the

complexity of the model. After batch normalization and nonlinear

activation function processing, the intermediate feature map for

spatial information encoding is obtained. Meanwhile, the

intermediate feature map is decomposed into independent feature

tensors in horizontal and vertical directions along the spatial

dimension. Furthermore, the number of feature channels is

adjusted to the same number as the initial input features by the

1×1 convolutional transformation and nonlinear activation

functions, respectively. Finally, the spatial information of the two

directions is fused in a weighted manner, and the sigmoid activation

function is applied to obtain the attention weights in two different

directions, and then multiplied by the input feature map for the

final output.

The feature maps obtained by the CAmodule can capture long-

range dependencies along one spatial direction while preserving

accurate spatial information along another direction. Consequently,

the model exhibits improved robustness even in the complex

environment. By complementarily applying the feature maps at

different levels, the representation of tea buds' important feature

location information is enhanced, enabling the network to better

focus on crucial locations from a larger area.
FIGURE 5

SIOU: schematic diagram of loss function calculation cost.
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4 Experiments and results analysis

4.1 Data acquisition and pre-processing

Experimental data were collected at the China Tea Museum

campus in west lake District, Hangzhou, Zhejiang Province. A

single-micro camera Canon M50 was utilized for image

acquisition of tea buds. To increase the richness of the

background in the images and improve the model’s generalization

ability, various poses of tea buds were captured under diverse

natural environmental conditions. The natural growth

environment is simulated by photographing the different

conditions of the germination environment. We carried out

image acquisition in mid-July and mid-September 2022. The
Frontiers in Plant Science 08
experimental data included summer and autumn teas, choosing

two time periods with different light intensities: 7:00-9:00 and

13:00-15:00, with a shooting angle range of 30° and random

shooting distance, and an image resolution of 6000*4000 pixels.

Ultimately, a total of 557 original images were eventually collected,

and four samples of the dataset are shown in Figure 7.

Different background environments can cause disturbing

factors in recognizing tea bud features. To address this issue,

online data augmentation methods such as random image scaling

and mosaic data augmentation were employed to the research

during the training process (as shown in Figure 8). The mosaic

data augmentation method first stitches the four images to be

detected into one image by random scaling as training data.

Subsequently, the entire image is input into the neural network
FIGURE 6

Coordinate attention mechanism structure diagram.
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for detection. Additionally, the hue is randomly adjusted by 1.5%,

the saturation by 70% and the value by 40% of the image. Moreover,

the image is set to flip up and down with a 50% probability, and the

degree of random is set to 20%. Meanwhile, the image is randomly

scaled to 90%, and 15% of the images are randomly selected for

copying and pasting. Therefore, this data augmentation method

could enrich the background of the detection target, and effectively

enhance the model’s detection accuracy under interference
Frontiers in Plant Science 09
conditions. The tea buds are graded into two categories, in which

one bud with one leaf is denoted by “BOL” and one bud with two

leaves is denoted by “BTL”, as shown in Figure 9. The annotation

tool is utilized to manually annotate the dataset and mark the

location of the two categories of tea buds with rectangular boxes.

Subsequently, the dataset is randomly divided into the train set and

the test set by the ratio of 9:1. Specifically, the number of images, the

number of BOL, and the number of BTL are shown in Table 1.
B CA

FIGURE 8

Tea image’s data enhancement effect: (A–C) represent the data enhancement effect after different methods. Use the numbers 0 and 1 to label the
different grades of tea buds.
B

C D

A

FIGURE 7

Tea bud samples under different environmental conditions: intense light environment (A); weak light environment (B); with a single-target sample
(C); with multiple intensive target samples (D).
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4.2 Model experimental environment
and methods

The configuration of environment parameters for the

experimental models is shown in Table 2, which can help to

transfer knowledge of common features using convolutional

layers and support fine-tuning strategies to enhance the learning

stability and generalization ability of the network.

The hyperparameter settings of the models are as follows: the

input image size of the network is 640×640×3, the optimizer is

Adam, the initial learning rate is set to 0.01, and the learning rate is

dynamically adjusted by utilizing the cosine function (Srinivasu

et al., 2022). During training, the learning rate is saturated near the

290th epoch with a learning rate of approximately 0.001. In

addition, the momentum factor is set to 0.937, the weight decay is

set to 0.0005, the number of epochs is 300. Moreover, the training

phase is divided into frozen and unfrozen phases, in which the

feature extraction network does not change during the frozen phase,

thereby reducing the occupation of memory and improving

training efficiency.
4.3 Model evaluation metrics

This study employs a series of performance indicators to

evaluate the efficacy of the proposed approach. These indicators

include precision, recall, and mean average precision (mAP).

Precision refers to the ratio of correctly identified positive

samples to the total number of predicted positive samples. Recall
Frontiers in Plant Science 10
corresponds to the ratio of correctly identified true positive samples

to the overall number of measured positive samples. Where True

Positive (TP) denotes the number of correctly predicted buds, False

Positive (FP) denotes the number of incorrectly predicted buds, and

False Negative (FN) represents the number of undetected buds. The

average precision (AP) is the average of the precision values over

the area under the Precision-Recall curve and the coordinate axes.

The mAP is the average of the AP values for each detected category.

In addition, frames per second (FPS), and floating point of

operations (FLOPs) are used to evaluate the size of the model, the

speed of detection of the model and the computational cost. The

definitions of formulas are as follows:

precision = TP
TP+FP (15)

Recall = TP
TP+FN (16)

F1 = 2 precision�Recall
precision+Recall (17)

AP =
Z 1

0
P(r)dr (18)

mAP = oS
i=1

APi
S

(19)

In Equation (19), S is the number of detected categories, APi
represents the accuracy rate of the ith category. Moreover, root

mean squared error (RMSE) and coefficient of determination (R2)

are also introduced to evaluate the metrics of regression effect

between predicted values and measured values. RMSE is the

mean value of the square root of the error between the predicted

and actual values; a higher RMSE indicates superior model

performance; R2 is the square of the correlation coefficient

between the actual result and the predicted values constructed by

the model, indicating the degree of similarity between the predicted

and actual values. The definitions are as follows:

R2 = 1 − oi
(ŷ i−yi)

2

oi
(�yi−yi)

2 20
FIGURE 9

Tea bud classification criteria. One bud with one leaf is denoted by “BOL” and one bud with two leaves is denoted by “BTL”.
TABLE 1 Tea bud data set.

Dataset Number of
images

Number
of BOL

Number
of BTL

Total number
of targets

Train set 502 1635 1324 2959

Test set 55 194 166 360

Total 557 1829 1490 3319
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RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nom

i=1wi(yi − ŷ i)
2

q
(21)
4.4 Analysis of experimental results

As shown in Figure10, the proposed model TBC-YOLOv7 has

been converged after only 10 iterations for the training dataset and

the validation dataset, and it exhibits considerable stability. The

training loss value varies between 0.02 and 0.1, and the validation

loss value varies between 0.1 and 0.16.

Furthermore, the performance comparison between the TBC-

YOLOv7 and original YOLOv7 (as shown in Table 3) also conclude

that TBC-YOLOv7 model clearly superior to YOLOv7 model in

terms of tea bud grading recognition. The TBC-YOLOv7 has

improved the BOL detection accuracy to 88.2% with an

increasement of 6.1%, and the BTL detection accuracy has

improved to 86.9%. Meanwhile, both recall rates have also

improved. Hence the TBC-YOLOv7 model achieved an AP value

of 85% for detecting BTL grades and of 90% for detecting the

BOL grades.

To verify the viability of our proposed improvement method

TBC-YOLOv7 in terms of model performance, reflecting the impact

of different improvement strategies in the algorithm on the model

detection performance, we conducted ablation experiments based
Frontiers in Plant Science 11
on YOLOv7 by incorporating different modules to validate model

performance, where '√' indicates that the corresponding model

optimization strategy has been added and '-' indicates that it has

not been added. In addition, all other training parameters were

configured consistently. The results of the ablation experiments are

shown in Table 4.

As shown in Table 4, strategy 1 is to incorporate the CoT

module into the feature extraction network, the model increases

2.1% mAP value over the original model, facilitating feature

interactions at different spatial locations and effectively enhancing

the recognition of the bud region. Strategy 2 is to incorporate the

BiFPN structure of TBC-YOLOv7, which further enhances model

accuracy and recall by 1.2% and 4.1%, respectively. This strategy

fully fusing different grades of bud features and improving the

model’s performance in detecting buds at different scales. Strategy 3

is to integrate the loss function of SIOU into the bounding box

regression, the detection accuracy and mAP are up to 88% and

86.9% respectively. It's being attributed to the fact that SIOU can

gradually converge prediction box based on the boundary of ground

truth box to achieve the effect of overall shape convergence, which

can more effectively solve the problem of inconsistent movement

direction of the prediction box when the prediction box and target

box do not overlap, thereby improving the positioning accuracy of

the model bounding box. Strategy 4 is based on strategy 3 by using

the CA attention mechanism before feature fusion, the value of

mAP has been increased by 3.4%. After feature extraction, the

model could focus more on the location information for the

intensive detection task, enhancing the saliency of the valuable

features of the buds for different scales. From Table 4, it can be seen

that from strategy 1 to strategy 4, along with the addition of

components of CoT, BiFPN, SIOU, CA, the performance

indicators have been improved to varying degrees. The accuracy

of the TBC-YOLOv7 model has increased by 5.5% compared to the

original model, the recall has also increased compared to the

original model, and the mAP has improved from 84.1% to 87.5%.

Overall, the F1 values of the combined evaluation metrics suggest
FIGURE 10

Convergence curve for training dataset and validation dataset.
TABLE 2 Experimental environment.

Configuration Parameter

CPU Inter(R) Core (TM) i5-12490F

GPU NVIDIA GTX3060

OS Windows10

Framework PyTorch

CUDA cuda11.6
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that the model's overall performance has been optimized to 0.83.

The model also has a detection speed of 7.46 FPS. It can be seen that

the proposed method in this paper has a particular optimization

effect on the detection ability of the YOLOv7 model and can satisfy

the practical application requirements.

We calculated the precision and recall at different thresholds

based on the experimental results, and connected the points to form

a PR curve which is shown in Figure 11A. The closer the curve is to

the top-right corner, the less noticeable the decrease in precision

as recall increases, indicating better overall performance of the

model. Figure 11B presents the confusion matrix summarizing

the prediction results for the classification. It can be observed that

the TP for the BOL and BTL are 87% and 78%, respectively. The

proportion of FP is very small, being 2% and 5%, respectively.

The cases of FN in the BTL are more than that of BOL, but the

difference between the two is insignificant. The potential reasons for

occasional instances of FNmay be attributed to a high proportion of

occlusions and the influence of complex environmental factors,

which can impact the performance of the model. Overall, the

classification of tea leaf grades is accurate and comprehensive.

In order to visualize the region of interest in the tea bud images,

a heat map is generated using the Grad-CAM method (as shown in

Figure 12). The sub-figures of (B1), (B2), and (B3) from Figure 12

show that the proposed model is capable of precisely identifying

small-scale and masked targets, with more precise localization

accuracy. It can be seen that the improved mechanism can

effectively suppress background noise, further demonstrating that

the model has a more robust attention learning capability.
4.5 Predicted performance

The prediction results of the TBC-YOLOv7 model for tea bud

grading detection are shown in Figure 13. For the case of less target
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detection in Figure 13A, the specific locations of tea grades can be

accurately labeled with high-confidence results. It can be seen that

in the case of strong light intensity in Figures 13D, F, even if the

surface of the leaves is illuminated by bright light with reflective

areas, resulting in a highly similar color of the buds to that of the

aged leaves, the TBC-YOLOv7 model can still identify the bud

targets and perform the bud grading. What is more, in the case of a

large number of bud targets and dense occlusion in Figures 13C, E,

while the tea buds in the images are affected by the shooting

angles and weaken the significance of the features, the model can

still accurately identify and grade the smaller bud targets at the

edges of the image. These results demonstrate that the optimized

TBC-YOLOv7 model significantly improves performance and

anti-interference ability in recognizing small targets among

multiple targets.

Based on the proposed model, we compared predicted number

and actual number for the two tea bud grades of BOL and BTL (as

shown in Figure 14). From the sub-figure14 (A) and (B), both the

blue and green curves closely approximate the gray curve, where the

grey curve represents the actual number of tea buds, the blue curve

represents the predicted number of BTL, and the green curve

represents the predicted number of BOL. The overall predicted

number of tea buds exceeds the actual number of markings,

indicating that the model can detect and identify some tea buds

that are overly obscured and not marked. However, the difference

between the two is insignificant, and the predicted number is very

close to the actual number of manual markings. Moreover, we

perform a linear regression analysis to assess the correlation

between the actual number of manually labeled tea buds and the

predicted number of tea buds by the model (as shown in

Figure 14C, in which the value of R2  is up to 0.89037, and the

value of RMSE is 1.54. These findings indicate that the model's

predictions of the number of tea buds are highly correlated with

those of the number of artificial tea buds.
TABLE 3 Comparison of experimental results of TBC-YOLOv7 and original YOLOv7.

Precision (%) Recall (%) AP (%)

Grade BOL BTL BOL BTL BOL BTL

YOLOv7 0.821 0.82 0.804 0.747 0.866 0.817

TBC-YOLOv7 0.882 0.869 0.81 0.759 0.9 0.85
TABLE 4 Results of ablation experiments.

Model CoT BiFPN SIOU CA Precision (%) Recall (%) mAP (%) F1 FPS

YOLOv7 – – – – 82% 77.6% 84.1% 0.80 8.21

Strategy 1 √ – – – 79.9% 79.9% 86.2% 0.80 8.58

Strategy 2 √ √ – – 83.2% 81.7% 86.7% 0.82 8.32

Strategy 3 √ √ √ – 88% 75.3% 86.9% 0.81 7.96

Strategy 4 √ √ √ √ 87.5% 78.4% 87.5% 0.83 7.46
fro
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4.6 Comparison with classical
detection algorithms

To further verify whether the proposed model is superior to

classical algorithms in the tea bud detection scenario, TBC-

YOLOv7 compared with the mainstream target detection models

SSD, Faster RCNN, YOLOv5s, and YOLOv7, and the comparison

experiments were all based on the same dataset (as shown in

Figure 15). The TBC-YOLOv7 model converges faster than the

YOLOv7 model as the number of training epochs increases. The

mAP value of the TBC-YOLOv7 model after the 80th epoch is

higher overall than that of the original YOLOv7, YOLOv5s, SSD,

and Faster RCNN.
Frontiers in Plant Science 13
As shown in Table 5, we assess and compare the performance

of precision, recall, F1 score, mAP, FPS, FLOPs and parameters. The

two-stage detection algorithm, Faster RCNN, achieved an F1 score

of 0.7, a mAP of 83.38%, and a 137 MB of parameters. On the other

hand, the one-stage detection algorithm, SSD, exhibited improved

detection speed compared to Faster RCNN, but its performance

suffered when detecting small targets, with mAP and F1 score being

20.65% and 10% respectively, which is significantly lower than

TBC-YOLOv7. Comparatively, TBC-YOLOv7 demonstrated a 1.9%

and 3.4% increasement of mAP compared to YOLOv5s and

YOLOv7, respectively. While ensuring higher accuracy, the FPS

of the TBC-YOLOv7 model does not decrease dramatically, and the

number of parameters and computation requirements are slightly
B2

A1

B1

A2

B3

A3

FIGURE 12

Heat map visualization: (A1–A3) with fewer bud targets; (B1–B3) with more bud targets. The different color areas of the image represent the level of
contribution to the detection.
BA

FIGURE 11

Precision–Recall curve (A): The horizontal axis represents recall, and the vertical axis represents precision. Confusion matrix (B): "BOL" represents the
BOL grade, "BTL" represents the BTL grade, and "background" represents the background class. The rows represent the true labels, and the columns
represent the predicted classes.
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better than the YOLOv7 model. Considering the superiority of

comprehensive performance, compared to other algorithms of SSD,

Faster RCNN, YOLOv5s, and YOLOv7, the TBC-YOLOv7 model is

more suitable for achieving graded detection of tea buds in

realistic scenarios.

In this study, we evaluated the detection performance of five

models under natural practical conditions (as shown in Figure 16).

As observed, due to the obvious characteristics of the buds and the

small number of targets in Figure 16 A1-E1, all algorithms can

detect correctly except the SSD algorithm with one false detection.

In Figure 16 A2-E2, the prediction boxes of the Faster RCNN

algorithm appear out of position, the SSD algorithm has multiple

missed detections, the YOLOv5s algorithm has one missed

detection in the image, and the YOLOv7 algorithm can accurately

detect the buds but has apparent errors in the discrimination of the

grade, and the TBC-YOLOv7 model can accurately identify the tea

grade even in the case of blurred images. Figure 16 A3-E3 shows the

dense target recognition under uniform illumination. The SSD
Frontiers in Plant Science 14
algorithm has a large number of false detections, the YOLOv5s

algorithm has false detections at the edges of the image and in the

blurred areas, and the YOLOv7 algorithm incorrectly classifies the

densely shaded bud target in the center of the image, resulting in

two prediction boxes on a BOL target, while the Faster RCNN

algorithm identifies the tea buds that only appear halfway at the

edges of the image as BTL. In contrast, The TBC-YOLOv7 model

solved the problem of false detection caused by inconspicuous

features and achieved a certain improvement in accuracy

compared with other models.
5 Discussion

Traditional manual tea picking methods currently produce the

disadvantages, including low picking efficiency, and excessive

reliance on manual working experience judgment. The density

growth if tender leaves, as well as the color similarity among
B CA

FIGURE 14

Comparison and evaluation of tea bud grade detection counts: (A) predicted number and actual number for BTL; (B) predicted number and actual
number for BOL; (C) linear regression diagram of model between prediction value and actual value.
B C

D E F

A

FIGURE 13

TBC-YOLOv7 detection results: (A) for single targets; (B) for multi-targets; (C) for lower light levels; (D) for brighter light levels; (E) for intensive
situation; (F) for targets vary in size.
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buds, tender leaves, and old leaves, are key factors affecting rapid

and high-precision grading. Therefore, there are challenges in

accurately identifying tea buds. In practical scenarios, due to

various factors such as dense tea leaves, a small proportion of tea

buds, weak feature saliency, and partial occlusion, the feature

information of small target objects is easily lost after a large

amount of convolution during the feature extraction process of

the detection network. In order to overcome the difficulties of this

detection, the present study introduces a model capable of

accurately identifying tea buds and achieving more precise

grading. The TBC-YOLOv7 model outperforms the other models

under various challenging conditions, such as multiple targets,

complex backgrounds, and multiple scales. Furthermore,

compared with mainstream algorithms, the TBC-YOLOv7

reduces the false detection rate caused by unclear features of

different tea bud grades and achieve a certain degree of

improvement in accuracy, laying a theoretical foundation for

intelligent tea picking machinery. By detecting the grade of tea

buds, it ensures that tea producers can precisely control the quality

of tea and ensure that different grades of tea are valued correctly in

the market. Currently, there is limited research on tea bud grading

detection. Wang et al. (2023) only considered using the YOLOv7
Frontiers in Plant Science 15
detection algorithm for tender bud detection, with a small image

field of view. Chen & Chen (2020) utilized the Faster RCNN

algorithm to extract tea buds and picking points, but their

recognition performance is not as good as the method proposed

in this paper.

In practical automated harvesting, it is not only necessary to

focus on the recognition accuracy of the picking robot but also

consider the success rate of harvesting. Additionally, in the real-

world environment, challenges such as pixel blurring may occur

during the movement process, leading to the shaking and

compression of tea bud targets. Moreover, there can be

interference caused by changes in tea bud poses, making the

scenario more complex than the original scenario. To address

these issues, future efforts should incorporate sensors for accurate

localization of picking points. This can help in handling tea bud

detection under severe shadow conditions and reducing

interference during motion recognition (Hong et al., 2023). There

is a scarcity of research that establishes the general adaptability of

different types of tea leaves in this research. It is crucial to obtain a

wider range of image data to consider subtle differences between

different varieties. This will enhance the universality of the

detection model.
TABLE 5 Comparison of performance indicators for the models of TBC-YOLOv7, SSD, Faster RCNN, YOLOv5s, and YOLOv7.

Model Precision (%) Recall (%) mAP F1 FPS FLOPs (G) Parameters
(M)

SSD 69.75% 58.66% 66.85% 0.63 41.72 62.75 26.285

Faster R-CNN 60.44% 84.83% 83.38% 0.70 10.53 370.21 137

YOLOv5s 82.8% 79.6% 85.8% 0.81 17.15 15.8 6.69

YOLOv7 82% 77.6% 84.1% 0.80 8.21 103.2 36.4

TBC-YOLOv7 87.5% 78.4% 87.5% 0.83 7.46 100.9 35
FIGURE 15

Variation curves of mAP for the models of TBC-YOLOv7, SSD, Faster RCNN, YOLOv5s, and YOLOv7 during training.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1223410
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1223410
6 Conclusion

With the development of agricultural informatization, the

identification of tea raw materials is changing from traditional

manual evaluation methods to automated intelligent grading

methods. This paper proposed the TBC-YOLOv7 model. In this

model, the CoT can provide higher quality feature extraction

capabilities. The BiFPN and the SIOU loss were used to enhance

the transfer of feature information between different network layers

to achieve a deeper level of integration by integrating the local and
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global features of the tea buds. The CA further utilizes more shallow

features to more accurately locate and recognize interested targets.

Overall, the proposed model improves the results on tea bud

detection and grading in natural environment, meanwhile it can

improve the positioning accuracy. The TBC-YOLOv7 achieves a

mAP value of 87.5% with an increasement accuracy of 5.5%.

Moreover, the F1 score is up to 0.83. The regression analysis of

the model also reflects a high degree of correlation ( R2  = 0.89) and

a low RMSE of 1.54. The study confirms that integrating the

transformer-based self-attentive module into the target detection
C2

D1

E2

B2

A1

B1

A2

B3

A3

C3

D2

E3

C1

D3

E1

FIGURE 16

Visualization results predicted by the five models: (A) Faster RCNN; (B) SSD; (C) YOLOv5s; (D) YOLOv7; (E) TBC-YOLOv7. (A1–E1) shows the
detection of multiple tea buds under low light conditions. (A2–E2) illustrate the detection of tea buds with multiple targets under weak light
conditions. (A3–E3) show the dense target recognition under uniform illumination conditions. Differences in detection results for each algorithm are
marked with bold yellow boxes.
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model can improve the detection accuracy of tea bud targets and

outperform other classical models. Consequently, the proposed

model provides a technical support for the accurate detection of

tea buds in the actual natural environment. Subsequent research

will focus on deploying the model for real-time detection on mobile

devices. Moreover, integrating application interfaces with existing

tea production processes and systems, as well as providing remote

access and management capabilities for large-scale production

scenarios. In the future, the application scenarios can be

expanded to provide references for other detection solutions, such

as flower detection and fruit detection, thereby offering new

research pathways for core technologies in smart agriculture.
Data availability statement
The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

Conceptualization, DW. Formal analysis, DW. Funding

acquisition, DW. Methodology, XZ. Resources, SW. Writing—

original draft, SW All authors have read and agreed to the

published version of the manuscript. All authors contributed to

the article and approved the submitted version.
Funding
This work was financially supported by the Zhejiang Forestry

Science and Technology Project (Grant No.2023SY08), the National
Frontiers in Plant Science 17
Natural Science Foundation of China (Grant No. 42001354), the

Natural Science Foundation of Zhejiang Province (Grant No.

LQ19D010011) and the research development fund project of

Zhejiang A&F University (Grant No. 2018FR060)
Acknowledgments

We are appreciative of the reviewers’ valuable suggestions on

this manuscript and the editor ’s efforts in processing

the manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Mei, Y., and Zhang, S. (2022). China tea production and sales situation report.
Available at: https://www.ctma.com.cn/index/index/zybg/id/17/.

Barbedo, J. G. A. (2018). Factors influencing the use of deep learning for plant
disease recognition. Biosyst. Eng. 172, 84–91. doi: 10.1016/J.BIOSYSTEMSENG.
2018.05.013

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020) YOLOv4: optimal speed and
accuracy of object detection. Available at: http://arxiv.org/abs/2004.10934.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S.
(2020) End-to-end object detection with transformers. Available at: http://arxiv.org/abs/
2005.12872.

Chen, Y. T., and Chen, S. F. (2020). Localizing plucking points of tea leaves using
deep convolutional neural networks. Comput. Electron. Agric. 171, 105298.
doi: 10.1016/J.COMPAG.2020.105298

Chen, J., Liu, H., Zhang, Y., Zhang, D., Ouyang, H., and Chen, X. (2022). A
multiscale lightweight and efficient model based on YOLOv7: applied to citrus orchard.
Plants 11 (23). doi: 10.3390/plants11233260

Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., and Sun, J. (2021) RepVGG: making
VGG-style convNets great again. Available at: http://arxiv.org/abs/2101.03697.

Ge, Z., Liu, S., Wang, F., Li, Z., and Sun, J. YOLOX: Exceeding YOLO Series in 2021
V100 batch 1 Latency (ms) YOLOX-L YOLOv5-L YOLOX-DarkNet53 YOLOv5-
Darknet53 EfficientDet5 COCO AP (%) Number of parameters (M) Figure 1: Speed-
accuracy trade-off of accurate models (top) and Size-accuracy curve of lite models on
mobile devices (bottom) for YOLOX and other state-of-the-art object detectors. Available
at: https://github.com/ultralytics/yolov3.

Gevorgyan, Z. (2022). SIoU loss: More powerful learning for bounding box
regression. ArXiv, abs/2205.12740.

Girshick, R. (2015) Fast R-CNN. Available at: http://arxiv.org/abs/1504.08083.
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2013) Rich feature hierarchies for
accurate object detection and semantic segmentation. Available at: http://arxiv.org/abs/
1311.2524.

Han, Y., Xiao, H. R., Song, Z. Y., Ding, and W., Q. (2019). Design and evaluation of
tea-plucking machine for improving quality of tea. Appl. Eng. Agric. 35 (6), 979–986.
doi: 10.13031/aea.13116

Hong, W., Ma, Z., Ye, B., Yu, G., Tang, T., and Zheng, M. (2023). Detection of green
asparagus in complex environments based on the improved YOLOv5 algorithm.
Sensors 23 (3). doi: 10.3390/s23031562

Hou, Q., Zhou, D., and Feng, J. (2021) Coordinate attention for efficient mobile
network design. Available at: http://arxiv.org/abs/2103.02907.

Li, J., Du, J. Q., Zhu, Y. C., and Guo, Y. K. (2023) Survey of transformer-based object
detection algorithms. Computer Engineering Applications 59 (10), 48–64. doi: 10.3778/
j.issn.1002-8331.2211-0133

Jian, L.A review of Transformer-based target detection algorithms.

Jiang, K., Xie, T., Yan, R., Wen, X., Li, D., Jiang, H., et al. (2022). An attention
mechanism-improved YOLOv7 object detection algorithm for hemp duck count
estimation. Agric. (Switzerland) 12 (10). doi: 10.3390/agriculture12101659
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