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Sugarcane is a major industrial crop around the world. Lodging due to weak

mechanical strength is one of the main problems leading to huge yield losses in

sugarcane. However, due to the lack of high efficiency phenotyping methods for

stalk mechanical strength characterization, genetic approaches for lodging-

resistant improvement are severely restricted. This study attempted to apply

near-infrared spectroscopy high-throughput assays for the first time to estimate

the crushing strength of sugarcane stalks. A total of 335 sugarcane samples with

huge variation in stalk crushing strength were collected for online NIRS

modeling. A comprehensive analysis demonstrated that the calibration and

validation sets were comparable. By applying a modified partial least squares

method, we obtained high-performance equations that had large coefficients of

determination (R2 > 0.80) and high ratio performance deviations (RPD > 2.4).

Particularly, when the calibration and external validation sets combined for an

integrative modeling, we obtained the final equation with a coefficient of

determination (R2) and ratio performance deviation (RPD) above 0.9 and 3.0,

respectively, demonstrating excellent prediction capacity. Additionally, the

obtained model was applied for characterization of stalk crushing strength in

large-scale sugarcane germplasm. In a three-year study, the genetic

characteristics of stalk crushing strength were found to remain stable, and the

optimal sugarcane genotypes were screened out consistently. In conclusion, this

study offers a feasible option for a high-throughput analysis of sugarcane

mechanical strength, which can be used for the breeding of lodging resistant

sugarcane and beyond.
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Introduction

In crops, lodging is one of the major problems that affect growth

and potential yield (Guo et al., 2021). Generally, stalk lodging and

root lodging constitute the two most common forms of lodging

(Zhang et al., 2016). The term root lodging refers to the entire plant

falling to the ground without being bent by the stalk, whereas stalk

lodging refers to the stalk inclines and bends at different angles

(Berry et al., 2003).

As one of the most commonly grown C4-type industrial crops,

sugarcane (Saccharum spp.) is known for its high photosynthesis

efficiency and high yield (Swapna and Kumar, 2017). However, due

to its stalk-harvesting nature, sugarcane faces a much higher risk of

lodging, which results in a huge decrease in yield, as well as

difficulties with mechanical harvesting, increasing the cost of

production (van Heerden et al., 2015). It has been documented

that sugarcane lodging is influenced by the environment and

phenotype, as well as number of canopy leaves, planting depth,

center of gravity height, and stalk hardness (Park et al., 2005; Babu

et al., 2010; van Heerden et al., 2010). Specifically, from the

perspective of genetic bias, mechanical strength appears to be the

most important factor affecting stalk lodging resistance (Xie et al.,

2022). It has been shown that stalk mechanical strength can be used

as an important index to predict lodging risk, and that bending

strength and rind penetrometer resistance (RPR) can reflect stalk

mechanical strength (Zhang et al., 2019). A combination of

crushing strength, rind penetrometer resistance (RPR), and

bending strength has been used to determine the relationship

between stalk mechanical strength and lodging (Stubbs et al.,

2020; Wang et al., 2020; Shao et al., 2021). In a recent study, we

have demonstrated that rind penetrometer resistance (RPR) and

breaking force can be used to determine the mechanical strength of

sugarcane stalks (Shen et al., 2021). However, it is important to

realize that rind penetrometer resistance (RPR) alone cannot

properly reflect stalk lodging resistance because it ignores the

contributions from the stalk’s cross-sectional area and vascular

bundles (Robertson et al., 2016). Particularly, laboratory-based

mechanical phenotyping requires a significant amount of time

and therefore cannot be used for large-scale genetic screening

projects. Hence, it is essential to develop high-throughput assays

for measuring the stalk mechanical strength of sugarcane onto a

global scale.

The near infrared spectroscopy (NIRS) is a very efficient

method that has been widely used for high-throughput determine

various chemical and biochemical structures of agricultural crop

(Washburn et al., 2013). For instances, NIRS has been used for

high-throughput predicting fiber and nutrient content of dryland

cereal cultivars (Brenna and Berardo, 2004; Stubbs et al., 2010),

phenotyping of moisture and amylose content in maize (Wang

et al., 2019; Dong et al., 2021), evaluating the composition of

carbohydrates in soybean (Leite et al., 2020; Singh et al., 2021),

detecting biomass of plant root mixtures (Roumet et al., 2006),

analyzing available P contents in soils to aid fertilization (Patzold

et al., 2020), as well as determining the internal quality and

physiological maturity in the fruit (Cunha et al., 2016; de

Carvalho et al., 2019; Minas et al., 2021). In our previous studies,
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the NIRS has been successfully applied for stalk quality

determination (Wang et al., 2021), cell wall features and

lignocellulose digestibility characterization in sugarcane (Li et al.,

2021; Adnan et al., 2022). Notably, in a recent study, we have also

successfully implemented the NIRS for assessing the mechanical

strength of sugarcane stalks by measuring the rind penetrometer

resistance (RPR) and breaking force (Shen et al., 2022).

As a coupled complementary exploration, this study aimed to

establish a set of methods for high-throughput phenotyping of

sugarcane crushing strength. Due to the large number of diverse

sugarcane germplasms collected, a precise online NIRS assay was

developed using chemometric analysis. After three years of testing

in large-scale sugarcane germplasm, the NIRS model exhibited

stable and reliable performance, enabling the optimal germplasm

to be selected. Therefore, this study provided a reliable strategy for

crushing strength determination, which could be integrated with

our previous studies for lodging resistant aimed precision breeding

in sugarcane.
Materials and methods

Experimental site and sugarcane planting

This experiment was conducted at the Fusui experimental field

located at Guangxi University (107° 47′17.66′′ E, 22° 31′ 5.85′′ N),
and the soil type is loam. As a subtropical monsoon climate, there

are 1050 - 1300 mm of precipitation annually, a mean annual

temperature of 21.3 - 22.80°C, and a mean annual sunshine of 1693

hours (data source: http://www.gxcounty.com/pindao/112287/).

We utilized a randomized block design to plant the sugarcane

genotypes at three identical experimental field plots of 5 m row

length, 2 m row spacing, and 0.6 m depth. A total of 860 sugarcane

germplasm collected from all over China were planted in each

planting plot, of which 416 core germplasm samples were selected

for crushing strength characterization in this study. All sugarcane

germplasm were planted in May 2019 with basal fertilizer (organic-

inorganic fertilizer 12-6-7, 750 kg ha-1), tillering fertilizer (NPK 20-

10-10, 300 kg ha-1) and jointing fertilizer (NPK 20-10-10, 1500 kg

ha-1). For the fertilization of ratoon sugarcane, urea (150 kg ha-1)

and KCl (150 kg ha-1) were applied in April and August, and

compound fertilizer (NPK 15-15-15, 1875kg ha-1) was applied in

May. Pest control was not applied throughout the growing period,

but irrigation and weeding were performed as necessary.
Assay of stalk crushing strength in
sugarcane population

An electronic universal testing machine, DNS-20 (Sinotest

Equipment Co., Ltd, China), was used to measure the stalk

crushing strength. For each sugarcane genotype, the 15th

internode was selected to measure stalk crushing strength (kN)

(Shen et al., 2021). In summary, the sugarcane stalk was arranged

horizontally on the stage to permit direct compression of the

internodes by a circular probe of 90 mm diameter. The
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movement of probe consisted of four processes (descent, gap

elimination, compression, lifting). In order to maximize test

efficiency and data accuracy, we set the speed of the four

processes at 500 mm/min, 150 mm/min, 150 mm/min, 500 mm/

min, respectively. The load cell collected force data every 100 ms.

Three biological replicates were performed for each genotype

planted in each experimental field plot. The mechanical data were

recorded and analyzed using the TestExpert software (version 3.2).
Online NIRS data collection

During the maturity period, 383, 368, and 376 genotypes of

sugarcane germplasm were collected from three planting plots in

November 2021 for online NIRS modeling. The online NIRS data

were collected by a well-established method previously described by

Li et al. (2021) with minor modification. Briefly, for each genotype,

three plants were randomly selected, and leaves and young tips were

removed and immediately shredded using DM540 (IRBI Machines

and Equipment Ltd, Brazil). The shredded sugarcane sample was

blended and transmitted via CPS (Cane presentation system,

Bruker Optik GmbH, Germany). The spectral was collected

through MATRIX-F (Bruker Optik GmbH, Germany) online

system. A full scanning mode was used to scan the shredded

samples, with a wavelength range of 4000 to 10000 cm-1 in 4 cm-

1 steps. The absorbance values of the spectra were recorded in log(1/

R), where R is the reflectance of sample. To provide a more

comprehensive analysis, the OPUS software automatically

averaged the online reflectance values obtained. A standard

equipped in Q413 sensor of MATRIX-F was scanned every one

hour for instrument correction.
NIRS pretreatments and modeling

The spectral data were collected and analyzed using the OPUS

software. Before modeling, the samples were randomly divided into

calibration and validation sets in a roughly 4:1 ratio, which was used

for modeling and external validation, respectively. Pretreatment of

spectral data was performed in order to minimize the risk of

physical disturbance. To obtain the optimal spectral region for

modeling, OPUS software used ten spectral pretreatment methods

in combination to divide the NIRS spectrum into multiple sections

(Wang et al., 2021), including constant offset elimination (COE),

straight-line subtraction (SSL), standard normal variate (SNV),

Min-Max normalization (MMN), multivariate scattering

correction (MSC), first derivative (FD), second derivative (SED),

combination of the first derivative and straight-line subtraction (FD

+SSL), standard normal variate (FD+SNV), and multiplicative

scattering correction (FD+MSC). A principal component analysis

(PCA) of the raw spectral data was conducted to determine the

distribution of spectral groups, and outlier samples were excluded

based on GH values (> 3.0). Based on the partial least squares (PLS)

method, the calibration equations were generated by combining the

selected samples with the optimal parameters. A default setting in

OPUS software was used to select the wavelength range. A
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combination in terms of wavelength range selection and spectrum

pretreatment was made to obtain calibration models in PLS analysis

(Li et al., 2021; Adnan et al., 2022). Internal cross-validation and

external validation of the equations were used to evaluate the

performance of the model (Williams and Sobering, 1996). Finally,

the optimal equation was selected based on high coefficient of

determination (R2
c/R

2
cv/R

2
ev), ratio of prediction to deviation

(RPD), and low root mean square error (RMSEC/RMSECV/

RMSEP) f rom ca l ibra t ion/ in terna l c ross -va l ida t ion/

external validation.
Application of the model in sugarcane
population

A total of 336 samples of sugarcane were harvested at

maturation in three years (2019, 2020, and 2021), the NIR spectra

were online collected as described above. Based on our established

model in the year of 2021, the acquired spectral data was analyzed

with the help of the OPUS software to obtain the predicted stalk

crushing strength across these three years. Samples with GH > 3.0

were considered outlier based on principal component analysis.

After excluding all outliers, sugarcane germplasm with high and low

stalk crushing strength was screened out.
Results

Accurate determination of stalk crushing
strength in sugarcane

For a precise and reliable determination of stalk mechanical

strength, the 15th internode of the sugarcane stalk was selected to

determine crushing strength at maturity. In detail, the selected

internode was placed horizontally in the middle of the stage and

compressed by a probe with a threshold force of 4 kN (Figure 1A).

As illustrated in Figure 1B, when a certain amount of pressure is

applied to the cane stem, cracks begin to appear along its axis. The

internodes ruptured when a continuous compressive force was

applied to the internodes up to the threshold, causing irreversible

morphological changes (Figure 1C). In the course of this process,

TestExpert software generated a compression force curve with

multiple peaks (Figure 1D). Remarkably, the curve showed three

compressive states (elasticity, yield, compaction strengthening)

(Sun et al., 2022). For the purpose of verifying the reliability of

each peak, ten randomly selected sugarcane samples were tested for

compressive force. A similar fluctuating change in the compressive

force between the same samples was observed (Figure S1),

consistent with the results observed in maize (Kovacs and

Kerenyi, 2019; Zhang et al., 2020). Noteworthy, the relative

standard deviation (RSD) value of the first peak was significantly

less than that of the other peaks (Figure 1E; Table S1).

Further tests were conducted on two representative groups of

ten representative sugarcane genotypes, and the differences in

compressive force was clearly observed between them (Figure S2).

Particularly, a comparison of the first peak of compressive force in
frontiersin.org
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the two groups revealed that there was a significant difference

between them (Figure 1F), indicating that the first peak was

sufficient to identify the high and low samples. Therefore, it was

appropriate to assess the crushing strength of sugarcane stalks based

on the first peak.
Diversity of stalk crushing strength in
sugarcane population

Sugarcane germplasm planted in three experimental field plots

were applied for the stalk crushing strength determination by DNS-

20 electronic universal testing machine. In detail, 383, 368, and 376

sugarcane samples were harvested at maturity in each of the three

planting plots and the first peak from the compressive force curves

was recorded (Figure 2A). Among these samples, 306 were common

to all three plots and they displayed a wide range of agronomic trait

variability (Table S2). Specifically, their crushing strength exhibited

considerable variation, although some genotypes varied across three

planting plots (Figures 2B, C; Table S3). An analysis of correlations

revealed that stalk crushing strength was negatively correlated with

internode length, but positively correlated with stalk diameter and

internode number (Table S4), suggesting that the stalk crushing

strength should be affected by the physiological morphology of

sugarcane stalks. Besides, the frequency distribution statistics

showed that stalk crushing strength exhibited a normal
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distribution in all three planting plots (Figure 2D), implying that

stalk crushing strength of sugarcane should be a quantitative trait.

Notably, upon a correlation analysis of the stalk crushing strengths

between the three planting plots, a highly significant (P < 0.001)

correlation was observed (Figure 2D), indicating that stalk crushing

strength should be a genetically controlled characteristic that could

be stably applied for stalk mechanical strength characterization in

sugarcane. Therefore, the observed genetically stable large variation

of crushing strengths in the collected sugarcane germplasm

population allows for reliable NIR modeling and applications.
Characterization of sugarcane samples by
online near-infrared spectroscopy

A total of 335 sugarcane samples from three planting plots were

used for NIRS modeling. The NIR spectral data of collected

sugarcane samples showed continuous fluctuations with a normal

range (Figure 3A), indicating a high level of genetic diversity in the

germplasm for biochemical traits (Wang et al., 2021). The principal

component analysis (PCA) was employed to identify and classify

the samples based on their spectrum (Martin-Tornero et al., 2020).

To characterize 335 sugarcane samples, the first ten principal

components were extracted from the raw NIRS data. Notably, the

first three principal components showed a greater contribution rate

to the variable explanation (Figure 3B; Table S5), which explained
B C

D E F

A

FIGURE 1

Laboratory analytical method for stalk crushing strength determination in sugarcane. (A) Schematic diagram of sugarcane crushing strength
determination. (B, C) Morphological changes of internode at the moment of cracks appeared (B) and complete ruptured (C), bars = 3 cm.
(D) Compression force curve with multiple peaks for crushing strength determination. S1-S3: three compressive states (elasticity, yield, compaction
strengthening); Red dots represent the detected peaks; X1 and X2 represent the key steps as described in B and C, respectively; (E) Comparative
analysis of each detected peaks in the compressive force curves in ten representative sugarcane samples. RSD: relative standard deviation.
(F) Comparative analysis of the first peak between two groups of ten representative sugarcane genotypes. Different letters indicated statistically
significant differences among these genotypes via one-way ANOVA and LSD test at a ≤ 0.05 level; *** indicated statistically significant different
between the two groups at p < 0.001 level. H1-H5 and L1-L5 represented five sugarcane genotypes with high (H) and low (L) mechanical strength,
respectively. Each sample contained three biological replicates.
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B C D

A

FIGURE 3

Characterization of near-infrared spectral in 335 sugarcane samples. (A) Original spectra of sugarcane samples in three planting plots. (B-D) Principal
component analysis of NIRS data. (B) Contribution of each principal component to variable explanation. (C) Cumulative contribution of principal
components to variable explanation. (D) 3D score view of sugarcane samples by PCA. P1-P3: three planting plots.
B C

D

A

FIGURE 2

Diversity of stalk crushing strength (SCS) in collected sugarcane samples. (A) Venn diagram of sugarcane samples collected from three identical
experimental field plots. (B) Heatmap and (C) violin chart displaying the stalk crushing strengths in collected sugarcane genotypes. (D) Distribution
and correlation analysis of stalk crushing strength of 306 sugarcane genotypes in three planting plots. *** indicated significant correlations at p <
0.001 level. P1-P3: three planting plots.
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99.09% of the variance (Figure 3C; Table S5). As a means of better

observing the distribution of the samples, the first three principal

components were selected in order to generate the 3D scores plot of

all samples. Consequently, we observed a relatively symmetrical

distribution of sugarcane samples from different planting plots in

the 3D plot (Figure 3D), with no obvious differences between the

planting plots. According to the results, a quantitative analysis

model for stalk crushing strength of sugarcane can be developed

using online NIRS.
Online NIRS modeling for stalk crushing
strength in sugarcane

In order to ensure accurate and stable NIRS modeling,

sugarcane samples were allocated into critical calibration and

validation sets (Payne and Wolfrum, 2015). In detail, a total of

262 sugarcane samples were used for calibration, whereas 73

samples were used for external validation. A wide variation range

and continuous normal distribution were observed in all samples

used for calibration and external validation (Figure 4A). Meanwhile,

calibration set contained the range of the external validation set

(Table S6), preventing the predicted value from exceeding the

prediction range of model. Since the calibration and external

validation sets were comparable, the NIRS model could be

calibrated as well as externally validated.

With the assistance of OPUS software, the prediction equation of

NIRS model was established through a partial least squares analysis

(PLS) (Li et al., 2021). A pretreatment of raw spectral data was carried

out before calibration in order to minimize the detrimental effect of
Frontiers in Plant Science 06
the baseline (Devos et al., 2014). A series of complex eliminating

modeling processes were applied by the OPUS software to optimize

the prediction capability of the obtained equation. Performance of

equations were measured by the coefficient of determination (R2), the

root mean square error (RMSE) and the ratio performance deviation

(RPD) (Yang et al., 2016). As the calibration result, the coefficient of

determination (R2c) and RPD values were obtained as high as 0.92

and 3.58, respectively (Figure 4B; Table S7). Besides, cross-validation

and external validation of the model were applied for model

evaluation, resulting in constant high R2cv/R2ev values of over 0.8,

RPD values of over 2.4, as well as low root mean square errors of 0.09

and 0.11 kN (Figure 4B; Table S7).

For the purpose of improving the prediction performance of the

equation, external validation and calibration sets were combined to

generate the final calibration equation (Windley and Foley, 2015).

Although the R2c value of the equation did not increased significantly

during the calibration process (Figure 4C; Table S8), a higher

correlation was observed between the measured value and the

predicted value during the internal cross-validation. Accordingly,

the R2cv value increased from 0.89 to 0.90, and the RPD value

increased from 3.06 to 3.16 (Figure 4C; Table S8), indicating that the

new equation was capable of making even better predictions.
Model-based evaluation of stalk crushing
strength in sugarcane germplasm

In an effort to evaluate the performance of our model developed

for predicting stalk crushing strength in large-scale sugarcane

germplasm, the model was applied to 336 sugarcane genotypes
B

C

A

FIGURE 4

Online NIRS modeling for stalk crushing strength. (A) Distribution characteristics of calibration and validation sets. (B) Online NIRS calibration and
external validation. (C) Performance of the integrative final NIRS equation.
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planted in three planting plots over a period of three years (2019,

2020, 2021). As can be seen from the sample data, a limited number

of outliers were observed, providing evidence that the model is

robust and may be applied widely (Table S9). In either of all three

planting plots for the same planting year or across different planting

years, stalk crushing strength exhibited a similar range of variation

(Figure 5A). In 2019, the sugarcane population appeared to have a

slight lower in mean value and a substantial variation in crushing

strength, which may be a result of the rainy climate in that year.
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Specifically, in 2020 and 2021, stalk crushing strengths were

observed ranging from 0.69-2.13 kN and 0.69-2.10 kN,

respectively, whereas in 2019 they ranged between 0.69-1.85

kN (Figure 5A).

Moreover, we conducted a correlation analysis of the predicted

crushing strength of sugarcane samples across different years. It was

observed that stalk crushing strength was highly correlated across

all three years at a p < 0.001 significant level (Figure 5B), confirming

the findings in NIRS calibration sets (Figure 2D), demonstrating
B

C

A

FIGURE 5

Model-based evaluation of stalk crushing strength in sugarcane germplasm. (A) Distribution of stalk crushing strength in sugarcane population.
(B) Correlation analysis of stalk crushing strength between three years. *** indicated significant correlations at p < 0.001 level. (C) Comparative
analysis of stalk crushing strength in the screened sugarcane germplasm. LC/HC: representing the sugarcane samples with low and high crushing
strength, respectively. Different letters indicated statistically significant differences between the groups using one-way ANOVA and LSD test at a ≤

0.05; *** indicated statistically significant different at p < 0.001 levels, respectively.
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that sugarcane stalk crushing strength should have a steady

inheritance pattern. It also proved that the model-based

characterization of sugarcane crushing strength by means of NIRS

is both accurate and stable. Accordingly, sugarcane germplasm with

high and low stalk crushing strengths were successfully screened out

according to the results predicted by the model. Notably, these

screened sugarcane genotypes maintained significant differences in

stalk crushing strengths over three years, consistent with the

correlation results, further demonstrating that the NIRS model-

based method of sugarcane crushing strength analysis is accurate

and repeatable (Figure 5C). Overall, these findings suggest that the

model is practical and can be used to rapidly identify ideal

sugarcane germplasm from large-scale populations of sugarcane.
Discussion

Lodging is one of the major problems that affect the growth and

potential yield of agricultural crops (Guo et al., 2021). However, it is

challenging to accurately identify the lodging resistance of crops as

it is a complex trait affected by a variety of factors (Khobra et al.,

2019; Shah et al., 2019). Stem mechanical properties indicate the

load-bearing capacity of plants, and therefore can be used as an

indirect criterion for selecting lodging-resistant varieties (Yang

et al., 2020). Studies have evaluated lodging resistance of stems by

measuring their mechanical strength, and it has been found that

improving the mechanical strength of stems can reduce lodging

risks (Xue et al., 2016; Zhan et al., 2022). In spite of this, it remains a

serious problem that there is currently no method of measuring

mechanical strength in crops that is both accurate and high-

throughput. In our latest study, a precise and high-throughput

mechanical strength characterization assay was developed in terms

of measuring rind penetrometer resistance (RPR) and breaking

force by NIRS modeling in sugarcane (Shen et al., 2022), providing a

framework for high-throughput phenotyping of crop stalk

mechanical properties. Through a combination of complementary

explorations, this study aimed to establish high-throughput

phenotyping methods for sugarcane crushing strength.

As a first step toward an effective NIRS calibration, a laboratory

analytical method was performed in an effort to ensure accuracy.

Owing to an electronic universal testing machine packed with

TestExpert software, we were able to obtain the curves of the

changes in mechanical properties of sugarcane during crushing

(Figure S1; Figure 1D). A comparative analysis revealed that the first

peak of the sugarcane crushing mechanics curve provides a stable

assessment of the sugarcane crushing strength (Figures 1E, F; Figure

S2), which was consistent with the findings in maize (Xu et al.,

2017). According to our established laboratory analysis method for

sugarcane stalk crushing strength determination, a collection of 306

sugarcane germplasms revealed considerable genetic variability

(Figure 2), which provides a significant basis for NIRS modeling.

It should be noted that a total of 416 sugarcane genotypes planted in

three test plots (with some samples missing in each plot) were tested

for crushing strength characterization (Figure 2). However, only
Frontiers in Plant Science 08
335 of those that showed the best biological replicates across three

test plots were selected for NIRS modelling to ensure an accurate

calibration (Figure 3). As we expected, a high-performance NIRS

model for sugarcane crushing strength characterization was

obtained based on our established NIRS modeling method. In

particular, the model exhibits stable and reliable prediction

parameters in both internal cross-validation and external tests

(Figure 4), indicating excellent performance in practice. In spite

of this, it may be possible to improve the model further by adding

more reliable data.

Besides, the model was applied to a large-scale phenotypic analysis

of sugarcane crushing strength over a period of three consecutive years.

Accordingly, the model demonstrated good robustness in its

application, with only a few samples being detected as out of range

(Table S9). In particular, we found that model-based predictions of

sugarcane crushing strength showed significant correlations between

years (Figure 5B). Material with high and low crushing strengths were

consistently screened out from sugarcane population for three

consecutive years (Figure 5C). It was further confirmed that the

developed model has excellent predictive performance and can be

applied to high-throughput phenotyping of sugarcane crushing

strength in sugarcane population.

Notably, in our study, significant correlations were found between

sugarcane crushing strength and internode length, stem diameter, and

internode number (Table S4). This suggests that sugarcane crushing

strength is a complex trait that is closely related to the biological

properties of sugarcane stalks. This is different from the pattern of rind

penetrometer resistance (RPR) and breaking force that characterized in

our previous study (Shen et al., 2022). It implies that the application of

a single indicator in assessing the mechanical strength of sugarcane

stalks to determine the lodging resistant is not desirable. Therefore, the

high-throughput phenotypic analysis assay for sugarcane crushing

strength determination established in this study, combined with our

previously established rapid assays for sugarcane rind penetrometer

resistance (RPR) and breaking force characterization (Shen et al., 2021;

Shen et al., 2022), can provide a more comprehensive and systematic

technical support for lodging resistance targeted sugarcane breeding

and beyond.
Conclusions

Using the established accurate laboratory method for crushing

strength characterization as well as effective NIR modeling, this

study developed a precise and high-throughput phenotyping assay

for the determination of mechanical strength in sugarcane. The

obtained final equation via integrative modeling exhibited a

coefficient of determination (R2) and ratio performance deviation

(RPD) as high as over 0.9 and 3.0, respectively, reflecting excellent

prediction capacity. Model-based application provided a stable and

effective approach for crushing strength trait evaluation in large-

scale sugarcane germplasm screening tasks. This study suggests that

the NIRS assay could be applied as a highly reliable tool for lodging-

resistant targeted phenotyping jobs.
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