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Introduction: Corn is one of the world's essential crops, and the presence of

corn diseases significantly affects both the yield and quality of corn. Accurate

identification of corn diseases in real time is crucial to increasing crop yield and

improving farmers' income. However, in real-world environments, the

complexity of the background, irregularity of the disease region, large

intraclass variation, and small interclass variation make it difficult for most

convolutional neural network models to achieve disease recognition under

such conditions. Additionally, the low accuracy of existing lightweight models

forces farmers to compromise between accuracy and real-time.

Methods: To address these challenges, we propose FCA-EfficientNet. Building

upon EfficientNet, the fully-convolution-based coordinate attention module

allows the network to acquire spatial information through convolutional

structures. This enhances the network's ability to focus on disease regions

while mitigating interference from complex backgrounds. Furthermore, the

adaptive fusion module is employed to fuse image information from different

scales, reducing interference from the background in disease recognition.

Finally, through multiple experiments, we have determined the network

structure that achieves optimal performance.

Results: Compared to other widely used deep learning models, this proposed

model exhibits outstanding performance in terms of accuracy, precision, recall,

and F1 score. Furthermore, the model has a parameter count of 3.44M and Flops

of 339.74M, which is lower than most lightweight network models. We designed

and implemented a corn disease recognition application and deployed the

model on an Android device with an average recognition speed of 92.88ms,

which meets the user's needs.

Discussion: Overall, our model can accurately identify corn diseases in realistic

environments, contributing to timely and effective disease prevention and

control.

KEYWORDS

Convolutional Neural Network, corn leaf disease, real scene, lightweight model, fully-
convolution-based coordinate attention
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1 Introduction

Corn is a globally important crop with high nutritional value

and significant economic importance for farmers (Rosas-Castor

et al., 2014). Corn is affected by a variety of unfavorable factors

during the planting process, among which disease is the main

disaster that affects corn yield, leading to a significant reduction

in the yield of diseased corn and causing economic losses to farmers.

Therefore, timely detection of corn diseases is crucial. However,

traditional methods of diagnosing corn diseases, which require

diagnosticians to physically enter the field and rely on

preliminary diagnosis or quantitative analysis to determine the

type of disease, are both time-consuming and labor-intensive.

Agricultural experts and technicians cannot reach the field in

time, while most farmers lack the necessary knowledge to

accurately diagnose diseases, resulting in time, cost, and

inefficiency in problem solving. In the field of plant disease

recognition, existing research suggests two main approaches:

traditional machine learning and deep learning (DL).

Traditional image processing methods has improved the

efficiency of corn disease prevention and control to some extent

(Guruprasad, 2020; O’Mahony et al., 2020). Kai et al. (2011)

segmented the lesions based on the texture characteristics of corn

diseases using the YCbCr color space technique, extracted the lesion

texture features using the co-occurrence matrix spatial gray-level

layer, and classified corn diseases using a BP neural network,

achieving an accuracy rate of 98%. Aravind et al. (2018)

processed the image to obtain a feature bag and texture features

based on statistical histograms, and used a multi-class support

vector machine to classify the diseases based on the obtained

features, achieving an average best accuracy rate of 83.7%.

Recognizing crop diseases using machine learning algorithms

requires features to be designed manually, which is time-consuming

and laborious. In contrast, DL models are able to autonomously

learn information about image target features, and are therefore

widely used in the field of image recognition. Praveen et al. (2022)

using the FastAI technology with ResNet-32 to diagnose ductal

carcinoma, The experimental results show that 93.60% recognition

accuracy was achieved on IDC dataset. Srinivasu et al. (2022)

proposed an RNN model integrating GRU and LSTM with

auxiliary memory components and designed one, for predicting

type 2 diabetes, and the experimental results showed that the model

achieved a correct recognition rate of 81.8%. For plant disease

recognition, Nigam et al. (2023) used fine-tuned EfficientNet-B4

model for recognizing wheat disease and the experimental results

showed that 99.35% recognition accuracy was obtained on their

collected dataset. Al-Gaashani et al. (2023) based on the ResNet50

architecture, combined with kernel attention mechanism proposed

SANET for recognizing rice disease, and the experimental results

showed that 98.71% recognition accuracy was obtained on the

publicly available rice disease dataset.

In the above study, the images of crop disease datasets usually

have a simple background collected in the laboratory, while in the

real environment, it is difficult to distinguish the differences

between disease features with complex backgrounds to achieve

the accuracy of specific disease identification in the previous
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model. The use of max pooling can highlight the most significant

features, help filter some noise, and reduce the interference from

complex backgrounds. Sun et al. (2020) proposed a novel max

pooling method for CNN trained by noisy samples, and the

classification accuracy of CNN with this method for noisy images

is much higher than that of traditional pooling methods. Lin et al.

(2022b) proposed CAMFFNet for tobacco disease identification

using multiple feature fusion module, which introduced additional

max pooling branches for feature extraction at different locations of

the structure. The results showed that the recognition accuracy of

the test set was 89.71%.At the same time, for complex background

images, the attention mechanism can make the model focus on the

disease region in a targeted manner, improve the ability of

the model to learn disease features, and reduce the influence of

the model by noise to improve the accuracy of the model. Hu et al.

(2023) proposed a Class-Attention-based Lesion Proposal

Convolutional Neural Network to locate disease objects of

complex backgrounds, and the experimental results showed that

the recognition accuracy was 92.56% on a self-constructed field

strawberry disease dataset. Stephen et al. (2023) designed a self-

attention-based ResNet architecture for rice disease classification,

and the experimental results showed that the accuracy of

recognition of four types of rice diseases was 98.54%.

The above studies have well demonstrated the superiority of

CNN for plant disease identification. However, the above models

are heavy-weight and require large computational resources, which

are not suitable for efficient deployment on mobile devices for

timely disease identification. Therefore, there is a need to design

lightweight networks that can be deployed on mobile devices.

Vishnoi et al. (2022) proposed a new CNN model using only

fewer convolutional layers to reduce the computational burden,

and the experimental results showed a 98% classification accuracy

for four classes of apple diseases. Lin et al. (2022a) proposed a

lightweight CNN model called GrapeNet for recognizing specific

grape diseases at different symptom stages, and the experimental

results showed that the recognition accuracy for seven classes of

grape diseases was 97.85%. Chen et al. (2022) proposed a

lightweight CNN model, DFCANet, for recognizing corn diseases

in real environments, and the experimental results showed that the

classification accuracy for six classes of corn diseases

reached 98.47%.

Identification of corn leaf diseases in field environments faces

several difficulties, such as complex background disturbances,

variability and irregularity of lesion areas. In addition, traditional

CNN models with a large number of parameters in crop

identification tasks require more computational resources, cannot

be deployed on mobile devices and are difficult to scale widely.

To solve the above problems, we focus on corn diseases and

propose a lightweight CNN model with high recognition accuracy,

FCA-EfficientNet. on top of EfficientNet, we use adaptive fusion

(AF) module for shallow feature extraction, fully-convolution-based

coordinate attention (FCA) module to focus on disease areas in

complex backgrounds, better normalization methods and activation

functions to enhance the recognition of the network speed, and

removing the network redundant structure of the corn disease

dataset to make the network easier to deploy. This study explores
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the accurate recognition of corn disease images and provides new

insights for plant disease recognition research. The main

contributions of this study are as follows:
Fron
• Since the field environment often has complex background

noise, in order to reduce the interference of background on

the network recognition results, we use pooling layer to

reduce the background interference, and through the AF

module, fuse the features of pooling layer and convolutional

layer, so that the network can better extract shallow

information and improve the recognition accuracy.

• To better focus the network on the lesion area while

reducing the interference of background noise, we

propose the FCA module, which uses a convolutional

structure to extract spatial information, allowing the

network to better extract disease areas and reduce the

recognition difficulty.

• In order to make the network have better generalization

ability, we use more advanced normalization method with

activation function to improve the robustness of the

network.

• To make the model easy to deploy due to performance

limitations of mobile devices, we removed the redundant

structure of the model to make the model have faster

inference speed and smaller number of parameters.
The paper generally consists of several sections. The

“Introduction” section provides a brief overview of the research

field, motivation, and objectives. The “Materials and Methods”

section describes the source of the dataset and the methods used

for data processing. The “Proposed method” section provides an
tiers in Plant Science 03
explanation of the technical details adopted in this paper. The next

section presents the “Experimental results and analysis”. The

“Conclusions” section provides conclusions and outlines future

research directions. Finally, the last section includes the references

cited in this paper.
2 Materials and methods

2.1 Image acquisition

The corn disease data for this paper comes from four different

sources. We obtained images of three types of corn diseases images

from the CD&S (Ahmad et al., 2021) dataset, namely northern leaf

blight (NLB), gray leaf spot (GLS), and northern leaf spot (NLS)

respectively. We obtained images of corn rust leaf (RL) under real

conditions from the PlantDoc (Singh et al., 2020) dataset. Added to

that, we got images of corn leaf infected by fall armyworm on a

public website (https://github.com/FXD96/Corn-Diseases). Finally,

we collected images of healthy corn leaves (LH) and a few images of

other diseases through web crawler technology. Figure 1 shows a

sample corn disease dataset in a real environment.
2.2 Image preprocessing

In this paper, we collected 3258 images, including 432 images of

Fall Armyworm, 613 images of Gray Leaf Spot, 688 images of Leaf

Blight, 537 images of Leaf Healthy, 551 images of Northern Leaf

Spot, 437 images of Rust Leaf. After that, the image data of each

category are assigned to the training set, validation set and test set in
B C

D E F

A

FIGURE 1

Example of corn leaves: (A) Fall Armyworm. (B) Gray Leaf Spot. (C) Leaf Blight. (D) Leaf Healthy. (E) Northern Leaf Spot. (F) Rust Leaf.
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the ratio of 8:1:1 respectively. Table 1 shows the data distribution of

corn leaf disease images.

In order to obtain better generalization and robustness and

avoid overfitting problems, DL models usually need a lot of data as

support (Lin et al., 2023). Therefore, three different online data

augmentation methods are used in this paper, namely Cutout

(DeVries and Taylor, 2017). Grid Mask (Chen et al., 2020) and

Random Erasing (Zhong et al., 2020). Figure 2 illustrates the online

data enhancement method used in this paper.
3 Proposed method

EfficientNet (Tan and Le, 2019) is a network series published by

Google in May 2019, designed to improve model accuracy while

keeping the model parameter count relatively low. Taking into

account the deployment of the network on mobile devices, we chose

the EfficientNet-B0 architecture and improved on it. It consists of

nine stages, which comprise convolutional layers, MBConv1 layers,

MBConv6 layers, pooling layers, and a fully connected layer. The

overall architecture of EfficientNet-B0 is shown in Figure 3.

To identify corn disease images more accurately, we propose a

new model based on the EfficientNet-B0 architecture, named FCA-

EfficientNet. Table 2 provides a detailed layer-by-layer description

of FCA-EfficientNet. The overall architecture of FCA-EfficientNet is

shown in Figure 4.
3.1 Fully-convolution-based
coordinate attention

In order to avoid the interference of complex background, we

replace the SE module in the MBConv structure with the FCA

module, which enables the network to better focus on the lesion

area. Figure 5 shows the overall structure of the FCA-

MBConv module.

FCA module based on Coordinate Attention (CA) (Hou et al.,

2021). While CA employs global average pooling to aggregate

horizontal and spatial features, this approach fails to capture

critical disease information in the feature map for fine-grained

recognition tasks, such as corn disease recognition, leading to

recognition accuracy bottlenecks. To overcome this limitation, we
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remove the global average pooling layer and employ a convolutional

kernel with a size of horizontally, and a convolutional kernel with a

size of vertically, as shown in Figure 6. This modification enables the

attention module to automatically capture salient disease

information in different spatial directions and aggregate it,

thereby strengthening the ability to capture dependencies between

remote disease feature information while preserving precise

location information of disease features. The structure of the FCA

module is shown in Figure 7.

Assuming the input feature map is xc, where c denotes the

number of feature map channel. a new feature map x̂ c can be

obtained by two convolution operations for feature extraction.

x̂ tc = DWConvk�k
tc (Conv1�1

tc (xc)) (1)

Convolution of x̂ in the horizontal and vertical directions

separately. This results in two output feature maps.

Zh
tc(h) = Conv1�W(x̂ tc) (2)

Zw
tc(w) = ConvH�1(x̂ tc) (3)

The two output feature maps are concatenated along the

channel dimension and passed through a 1x1 convolutional layer

Conv1�1 followed by a non-linear activation function d to obtain the

output feature map f.

f = d (Conv1�1(concatzh; )(zw)) (4)

f is decomposed into two outputs along the spatial dimension

and transformed into tensors with the same number of channels as

the input by two 1×1 convolutions (g and h). The two outputs can

be represented by gh and gw:

gh = Sigmoid(Conv1�1
h (f h)) (5)

gw = Sigmoid(Conv1�1
w (f w)) (6)

the output expression of the FCA module is:

yFCA(i, j) = x̂ tc(i, j)� ghtc(i)� gwtc (j) (7)

Finally, the feature dimensions are reduced and residual joins

are performed through the Conv layer, and the output of the FCA-

MBConv module is:
TABLE 1 Distribution of image data by category.

Disease classes Train Valid Test

Fall Armyworm (FA) 346 43 43

Gray Leaf Spot (GLS) 491 61 61

Leaf Blight (LB) 550 69 69

Leaf Healthy (LH) 429 54 54

Northern Leaf Spot (NLS) 441 55 55

Rust Leaf (RL) 351 43 43

Total 2608 325 325
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MBConvFCA(xc) = xc + Dropout(Conv1�1
c yFCA(x̂ tc)) (8)
3.2 Adaptive fusion

In real-world crop disease images, the presence of complex

background noise often makes it challenging to extract shallow

features using convolutional layers alone, which can significantly

affect the recognition accuracy of the model. To address this issue,
Frontiers in Plant Science 05
we introduced a max-pooling layer to assist in shallow feature

extraction. Unlike the conventional feature fusion approaches that

involve simple addition or concatenation, we adopted two learnable

weighting coefficients to evaluate the feature maps derived from the

two methods. This approach enables the model to dynamically

allocate weights to the pooled and convolved feature maps based on

the complexity of the background information, resulting in effective

extraction of shallow convolutional layer features while avoiding

interference from complex background noise. As a result, the

effectiveness and robustness of the model is significantly

improved. The structure of the AF module is shown in Figure 8.
FIGURE 2

Classical online data augmentation. The Cutout method randomly cuts out part of the sample and fills it with 0 pixel values. Grid Mask generates a
mask with the same resolution as the original image, and then multiplies that mask with the original image. Random Erasing randomly selects a
region and then overwrites it with a random value.
B CA

FIGURE 3

The individual structures included in EfficientNet-B0. (A) The structure of the EfficientNet-B0. ×n indicates that the layer is repeated n times, and
kn×n indicates that the size of the convolution kernel is n. (B) The structure of the MBConv_t. k denotes the size of the convolution kernel of the
DWConv layer. t indicates that the input channel is expanded by a factor of t. (C) The structure of the SE. SE can perform channel feature
enhancement on the input feature map to improve the performance of the model by learning the relationship between different channels.
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Assuming the input image is x, Two output ym,yf can be

obtained by max pooling and backbone. We use the learnable

weight parameters w1,w2 to weight the two and obtain the final

output feature map yAF:

ym = Conv1�1(Maxpool2�2(x)) (9)

yf = MBConvFCA(Conv3�3(x)) (10)

yAF = w1 � ym + w2 � yf (11)
3.3 Layer normalization and gaussian error
linear unit

In CNN models, normalization techniques are used to adjust

the distribution of the input data to better fit the training process of

the neural network. The formula for normalization is as follows.

f (x) =
x − E½x�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½x� + ò

p *g + b (12)

where x denotes the input feature map and f(x) the output

feature map after normalization.

The use of batch normalization (BN) (Ioffe and Szegedy, 2015)

in EfficientNet allows the model to accelerate convergence during

training, but the inconsistency of BN between training and testing

may adversely affect the model performance. Therefore, we adopt

layer normalization (LN) (Ba et al., 2016) instead of BN, which has

the same performance during training and testing and is easier to

implement. LN normalizes the output of each convolutional layer to

a normalized value equal to the mean and variance of the inputs,

which reduces the memory consumption during the training of the

model and improves the generalization ability of the model. As

shown in Figure 9. Unlike BNs that are normalized in the batch

direction, LN pairs are normalized in the channel direction. This

makes LN independent of batch size.

Also to speed up the convergence of the model, we used

gaussian error linear unit (GELU) (Hendrycks and Gimpel, 2016)
Frontiers in Plant Science 06
to replace Swish (Ramachandran et al., 2017). Their formulas are as

follows.

Swish(x) = x · sigmoid(x) =
x

1 − e−x
(13)

GELU(x) = x � P(X <= x) = x � f(x), x eN(0, 1) (14)

The plots of Swish and GELU functions and their derivatives are

shown in Figure 10. Compared to Swish, GELU tends to converge

faster, which makes it more suitable for model training.
3.4 Optimal architecture

Multiple MBConv layers are included in EfficientNet, and by

simply repeating the MBConv layers, the model can be made to

learn complex features and achieve better performance. However,

EfficientNet was trained by a large dataset like ImageNet with a

large number of samples and categories, compared to the corn

disease dataset we used with fewer samples and categories. As a

result, there are some redundant structures in the original network,

and although the effect of these redundant structures on the

accuracy can be reduced by the residual structures, these

structures cause the model ’s to perform unnecessary

computations, which affects the recognition speed of the model.

Therefore, we remove these redundant structures to reduce the

number of parameters of the model and increase the speed of

computation without affecting the accuracy of model recognition,

which helps in deployment on mobile devices.
4 Experimental results and analysis

4.1 Evaluation indexes

Accuracy (Acc), Precision (P), Recall (R), F1 score (F1) are

utilized as the evaluation metrics in this study, they are defined as

follows:
TABLE 2 Detailed configuration information for each layer of FCA-EfficientNet.

Stage
i Operator F̂i Resolution Ĥi � Ŵi #Channels Ĉi #Layers L̂i

Dropout factor

1 Conv3×3 224×224 32 1 0

2 AF & FCA-MBConv1, k3×3 112×112 16 1 0.0125

3 FCA-MBConv6, k3×3 112×112 24 2 0.025

4 FCA-MBConv6, k5×5 56×56 40 2 0.05

5 FCA-MBConv6, k3×3 28×28 80 2 0.075

6 FCA-MBConv6, k5×5 14×14 112 3 0.1

7 FCA-MBConv6, k5×5 14×14 192 2 0.1375

8 FCA-MBConv6, k3×3 7×7 320 1 0.1625

9 Conv1×1 & Pooling & FC 7×7 1280 1 0
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Acc =
TP + TN

TP + TN + FP + FN
(15)

P =
TP

TP + FP
(16)
Frontiers in Plant Science 07
R =
TP

TP + FN
(17)

F1 =
P � R
P + R

� 2 (18)
B

C

D

A

FIGURE 4

Layered architecture diagram of the FCA-EfficientNet. (A) The structure of the FCA-EfficientNet. ×n indicates that the layer is repeated n times, and
kn×n indicates that the size of the convolution kernel is n. (B) The structure of the FCA module. Attentional information about spatial orientation is
extracted through a convolutional model, allowing the network to better focus on the disease region and reduce interference from complex
backgrounds. (C) The structure of the AF module. The AF module uses maximum pooling and 1×1 convolution, which reduces the interference of
complex backgrounds and allows the model to better extract shallow features. (D) The structure of the FCA-MBConv_t. k denotes the size of the
convolution kernel of the DWConv layer. t indicates that the input channel is expanded by a factor of t.
FIGURE 5

The structure of the FCA-MBConv. k denotes the size of the convolution kernel of the DWConv layer. t indicates that the input channel is expanded
by a factor of t.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1224385
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cai et al. 10.3389/fpls.2023.1224385
Where TP, TN, FP, and FN are the abbreviations used to

represent the count of true positive, true negative, false positive,

and false negative samples, respectively. Furthermore, the

parameter count of the model is also considered to evaluate

its performance.
4.2 Experimental configuration and
hyperparameter setting

This study utilized the language of python-3.7.13 and pytorch-

1.12.1 deep learning frameworks for experimentation. All

experiments were conducted on a Windows 10 operating system,

with an Intel(R) Xeon(R) W-1390 CPU and an NVIDIA RTX3090

GPU. The hyperparameters for model training were set to the

configurations listed in Table 3 for all models.
Frontiers in Plant Science 08
4.3 Performance of FCA-EfficientNet

The performance of the model on the training and validation

sets is shown in Figure 11. To assess the recognition performance of

the model, we conducted a separate analysis of its recognition

capabilities on various categories of disease images in the test set. By

employing a comprehensive set of evaluation metrics, we performed

a quantitative analysis and the experimental results are presented in

Table 4. As shown in the table, our model achieved an accuracy of

up to 100% in identifying various types of corn diseases, with none

falling below 95%. This demonstrates the model’s precise

recognition of corn diseases. Notably, the model’s performance in

identifying Northern Leaf Spot images was exceptional, with all

evaluation metrics reaching the highest levels. Conversely, the

model’s recognition performance on Rust Leaf images was

comparatively lower, possibly due to the similarity to images of

other categories. Additionally, the average precision, recall, and F1

scores of 98.63%, 98.76%, and 98.68%, respectively, demonstrate the

model’s superior overall performance, making it highly effective in

accomplishing the corn disease classification task.

In Figure 12, a confusion matrix is presented to visualize the

recognition performance of the designed model on corn disease

images. The matrix displays the true and predicted classes of the

data along its horizontal and vertical axes, respectively, with the

diagonal entries indicating the number of correct predictions. The

confusion matrix suggests that the proposed model is capable of

effectively identifying multiple classes of corn disease images, as the

majority of images in the provided dataset are classified correctly.

The misclassifications observed may be attributed to small inter-

class differences between certain categories and background

interference. Notably, it achieves a high degree of accuracy in

correctly classifying all disease images of the GLF, LH, and NLS

categories, while maintaining a low rate of false positives for images

of other categories. These results underscore the model’s high

precision and reliability for identifying corn diseases.
4.4 Comparison of different nodes for
adaptive fusion

In order to determine the optimal fusion location, we conducted

experiments on three different nodes in the shallow network: after

the first convolutional layer, after the first FCA-MBConv module,

and after the second FCA-MBConv module. Figure 13 shows

different fusion nodes. The fusion nodes were selected based on
FIGURE 6

The computational procedure of DWConv2d, using a DW convolution of 1 × W, can obtain attention in the width direction of size H × 1 by focusing
on the feature information in the width direction of the picture. Similarly, using DW convolution of H × 1, attention in the height direction of size 1 ×
W can be obtained.
FIGURE 7

The structure of the FCA module. We use DWConv 2d to replace
the average pooling layer in CA, which is able to capture critical
disease information through convolutional operations while being
less susceptible to interference from complex backgrounds.
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their potential to improve the model’s performance. The results, as

presented in Table 5, indicate that the addition of AF at Node1,

Node2, and Node3 led to improvements in various evaluation

metrics, while maintaining a similar parameter count. Notably,

applying AF to the shallow layers of the network resulted in better

recognition results compared to the deep layers. Specifically, the

performance improvement was most significant when applying AF

to Node2, resulting in a 0.92% increase in recognition accuracy and

a 0.91% increase in F1-score. These findings suggest that

incorporating AF into specific locations of the network can

effectively enhance its performance.
4.5 Comparison of different
attention mechanisms

Different attention mechanisms have a significant impact on the

performance of CNN models, and adding suitable attention

mechanisms can optimize recognition results. This study

compared and analyzed the effects of three attention mechanism

modules, namely SE, CA, and our proposed FCA on model

performance. As shown in the Table 6, adding the CA module

did not significantly improve the overall recognition performance of

the model, and the F1 score even decreased. However, after adding

the FCA module, the model’s performance was significantly
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improved, with an increase in recognition accuracy of 0.93%. This

result verifies that adding the FCA module can effectively promote

the model’s focus on disease information, leading to better

recognition results.

To analyze the learning ability of models with different

attention mechanisms on disease information, we used Grad-Cam

(Selvaraju et al., 2017) to generate class activation maps for

visualization, as shown in Figure 14. The first column shows the

original disease image, and the other columns show the

visualization results of different models. The results in the first

row of the figure demonstrate that the use of the FCA module

enables the model to more comprehensively focus on the primary

diseased regions. Moreover, the comparative results presented in

the second row of the figure reveal significant disparities between

the models. Specifically, the model utilizing the SE module

inadequately attends to the entire diseased area, while the model

leveraging the CA module primarily focuses on background

information. Conversely, the FCA module precisely localizes the

distinctive diseased feature region, underscoring its ability to

promote the model’s attention to disease information. The results

indicate that the FCA module can promote the model’s attention to

disease information and is more suitable for identifying

corn diseases.
4.6 Comparison of different normalization
methods and activation function

In order to investigate the impact of different normalization

methods and activation functions on the model, we conducted

comparative analysis experiments by combining BN, LN, SiLU, and

GELU. As shown in Table 7, replacing the BN with the LN reduces

the complexity of the model, as evidenced by the reduction in Flops,

while the parameter counts remain relatively unchanged. In

addition, the combination of LN and GELU yields the highest

recognition accuracy and precision, and sub-optimal recall and F1-

score. The consistency of LN’s performance in training and testing,
FIGURE 8

The structure of the AF module. The noise is filtered out using the
maximum pooling layer and then dynamically introduced into the
backbone network by adaptive parameters to reduce the effect of
background noise on the model. w1, w2 are learnable weight
coefficients.
FIGURE 9

Normalization directions for BN and LN. BN does normalization along the batch direction and calculates the mean of B×H×W. LN does
normalization along the channel direction and calculates the mean of C×H×W.
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and the approximately 3% reduction in Flops, make it more suitable

for model deployment.
4.7 Optimal architecture

We removing some redundant layers in Stages 5, 6, and 7, the

performance of all networks on the test set is shown in the following

Table 8. From the table, it can be observed that removing only one

redundant layer does not significantly decrease the performance of

the model (rows 6, 9, and 11 in the table). The model can still

maintain good performance even after removing all redundant
Frontiers in Plant Science 10
layers (row 1 in the table). However, removing all redundant

layers in shallow stages while keeping the same number of layers

in Stage 7 may lead to overfitting and a significant decrease in model

performance (row 3 in the table). With consideration of the

accuracy, parameter quantity, and computational complexity of

the models, we finally selected 2 layers in Stage 5, 3 layers in Stage 6,

and 2 layers in Stage 7 (row 4 in the table).
4.8 Ablation experiment

This study conducted ablation experiments to demonstrate the

efficacy of the proposed model in improving model performance.

Table 9 presents the results of the ablation experiments on the test

set. The introduction of the AF module, FCA module, LN and

GELU led to accuracy improvements of 0.9%, 0.9%, and 0.3%,

respectively. Moreover, we have identified the optimal neural

network architecture that achieves a 0.3% improvement in

accuracy on the test set while reducing the model’s parameter

count. The improved model reduced the parameters by 0.58M

compared to the original EfficientNet model and achieved a 2.4%

increase in accuracy. These findings highlight the ability of the

designed model to effectively learn disease feature information in

corn disease images, thereby achieving superior recognition

performance with lower parameter consumption following

model optimization.
BA

FIGURE 10

(A) The activation functions of the Swish and the GELU. (B) The derivatives of Swish and GELU.
BA

FIGURE 11

Training details of the model. (A) Training loss and validation loss of the model. (B) Training accuracy and validation accuracy of the model.
TABLE 3 Hyperparameter configuration for model training.

Parameter Value

Optimizer Adam

Loss Function Cross-Entropy

Training Epochs 200

Warmup Epochs 20

Learning Rate 0.001

ExponentialLR Gamma 0.99

Batch Size 32
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4.9 Comparison with different models

CNN has shown superior performance in the field of image

classification, and CNN-based classification models have diversity

for different domains. To demonstrate the classification

performance of the designed model, this study conducted

experiments on corn disease recognition using existing classic

CNN models under the same training conditions. The

experiments used different models with varying parameter sizes,

including VGG16, ResNet50, Shufflenetv2, and MobileNetv2, and

the accuracy change curves of each model on the validation set

during 200 epochs of training are shown in Figure 15. It is not

difficult to observe from the validation curve graph that, compared

with existing classic models, the proposed model can achieve a

higher accuracy at a faster rate and with less oscillation,

demonstrating better accuracy and stability.

Table 10 shows the recognition performance of different models

on the test set, and compares and analyzes the advantages of the

proposed model using metrics such as accuracy, precision, recall,
TABLE 4 Evaluation results of FCA-EfficientNet on corn images of different categories.

Categories Precision Recall F1 TP FP TN FN

Fall Armyworm 0.9773 1.0 0.9885 43.0 1.0 0.0 281.0

Gray Leaf Spot 1.0 0.9672 0.9833 59.0 0.0 2.0 264.0

Leaf Blight 0.9857 1.0 0.9928 69.0 1.0 0.0 255.0

Leaf Healthy 1.0 0.9815 0.9907 53.0 0.0 1.0 271.0

Northern Leaf Spot 1.0 1.0 1.0 55.0 0.0 0.0 270.0

Rust Leaf 0.9545 0.9767 0.9655 42.0 2.0 1.0 280.0
FIGURE 12

The confusion matrix of classification results for corn diseases on
the test set.
FIGURE 13

Different nodes for adaptive feature fusion. Node 1 is fused after the convolution layer, node 2 is fused after the first FCA-MBConv extracted
features, and node 3 is fused after the second FCA-MBConv layer.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1224385
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cai et al. 10.3389/fpls.2023.1224385
F1-score, parameter count, Flops and inference time. Among the

existing classic CNN models, VGG16, ResNet50, and DenseNet169

all have an accuracy of around 95%, while lightweight models such

as MobileNet and ShuffleNet have lower accuracy at around 94%. In
Frontiers in Plant Science 12
contrast, our model achieves an accuracy of 98.77% with only

3.44M parameters. Moreover, our model has precision, recall, and

F1-score all greater than 98% with the lowest number of parameters,

indicating strong generalization ability and significant advantages
FIGURE 14

Visualization results of models with different attention mechanisms. The red regions indicate the areas where the model focuses on.
TABLE 7 The effects of different combinations.

Method Accuracy Precision Recall F1 Param Flops

BN & Swish 0.9816 0.9848 0.9837 0.9841 5.00 M 420.23M

BN & GELU 0.9815 0.9822 0.9802 0.9806 5.00M 420.23M

LN & Swish 0.9785 0.9782 0.9771 0.9775 5.05M 407.68M

LN & GELU 0.9846 0.9857 0.9818 0.9831 5.05M 407.68M
front
TABLE 5 The AF for the different nodes.

Model Accuracy Precision Recall F1 Param

EfficientNet (FCA) 0.9631 0.9650 0.9603 0.9619 4.02 M

AF on Node1 0.9692 0.9709 0.9670 0.9682 4.02 M

AF on Node2 0.9723 0.9726 0.9698 0.9710 4.02 M

AF on Node3 0.9631 0.9611 0.9593 0.9592 4.02 M
TABLE 6 The effects of different attention mechanisms.

Attention Mechanism Accuracy Precision Recall F1 Param

AF-EfficientNetB0 (SE) 0.9723 0.9726 0.9698 0.9710 4.02 M

AF-EfficientNetB0 (CA) 0.9723 0.9728 0.9701 0.9711 4.79 M

AF-EfficientNetB0 (FCA) 0.9816 0.9848 0.9837 0.9841 5.00 M
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over other models, making it more suitable for the recognition task

of corn disease images.
1Model's inference time tested on NVIDIA RTX3090

Meanwhile, in order to further verified the robustness of the

model, we changed the contrast and brightness of the test set, images

to test the recognition accuracy of the model under different lighting
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conditions. We used four different magnifications (0.5, 0.67, 1.5, 2)

to change the contrast or brightness of the image, respectively. The

images before and after enhancement are shown in Figure 16.

Table 11 lists the recognition accuracies of the different

networks on the augmented test set, and it can be seen that the

recognition accuracies of the networks all produce a large drop due

to the substantial changes made to the images, but the recognition

accuracies of our proposed network drop to a lesser extent

compared to the other networks, which suggests that the model’s

is more robust under different lighting conditions.
4.10 Comparison with relevant studies

To further evaluated the performance of the model, we

compared it with some related studies that have been conducted.

Table 12 lists some of the studies on corn disease recognition,

including the techniques used, data sources, disease categories and

numbers, and the recognition accuracy of corn images.

In these studies, CNNs showed significant performance

strength, while conventional image processing techniques

performed poorly in terms of recognition accuracy for multiple
FIGURE 15

Validation accuracy curves of different models during training.
TABLE 8 The performance of different layers on the test set.

Row Layers (Stage 5, 6, 7) Accuracy Precision Recall F1 Param Flops

1 2, 2, 2 0.9815 0.9826 0.9796 0.9806 3.17M 305.1M

2 2, 2, 3 0.9846 0.9854 0.9842 0.9846 3.90M 330.62M

3 2, 2, 4 0.9754 0.9763 0.9738 0.9748 4.64M 356.15M

4 2, 3, 2 0.9877 0.9863 0.9876 0.9868 3.44M 339.74M

5 2, 3, 3 0.9846 0.9840 0.9853 0.9844 4.18M 365.26M

6 2, 3, 4 0.9815 0.9808 0.9818 0.9811 4.91M 390.79M

7 3, 2, 2 0.9846 0.9846 0.9845 0.9845 3.31M 321.99M

8 3, 2, 3 0.9785 0.9808 0.9776 0.9790 4.04M 347.52M

9 3, 2, 4 0.9846 0.9870 0.9849 0.9857 4.78M 373.04M

10 3, 3, 2 0.9846 0.9833 0.9844 0.9838 3.58M 356.64M

11 3, 3, 3 0.9815 0.9805 0.9806 0.9801 4.31M 382.16M

12 Origin (3,3,4) 0.9846 0.9857 0.9818 0.9831 5.05M 407.68M
fron
Bold indicates the optimal structure used in this paper.
TABLE 9 Ablation experiments on the test set.

Method Accuracy Precision Recall F1 Param Flops

EfficientNetB0 0.9631 0.9650 0.9603 0.9619 4.02M 398.03M

+AF 0.9723 0.9726 0.9698 0.9710 4.02M 399.38M

+ FCA 0.9816 0.9848 0.9837 0.9841 5.00M 420.23M

+LN & GELU 0.9846 0.9857 0.9818 0.9831 5.05M 407.68M

Architecture Search 0.9877 0.9863 0.9876 0.9868 3.44M 339.74M
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FIGURE 16

Sample image after enhancement of the test set. Where f denotes the enhancement factor.
TABLE 11 Comparison of the performance of different models under different light conditions.

Model Accuracy Precision Recall F1

ConvNeXt-Base 0.6614 0.7005 0.6769 0.6724

DenseNet 0.6275 0.6958 0.6484 0.6345

EfficientNet-B0 0.6704 0.6866 0.6709 0.6662

MobileNetV2 0.5673 0.5888 0.5945 0.5739

MobileNetV3 0.6451 0.6823 0.6560 0.6498

ResNet50 0.9538 0.9581 0.9501 0.9531

ShuffleNetV2 0.5215 0.6043 0.5320 0.5296

SwinTransformer-Base 0.6924 0.7229 0.6936 0.6868

VGG16 0.6519 0.6847 0.6580 0.6444

Ours 0.7389 0.7397 0.7489 0.7393
F
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Bold indicates the final performance of the network.
TABLE 10 Performance and parameter comparison of different models on the test set.

Model Accuracy Precision Recall F1 Param Flops Inference Time1

ConvNeXt-Base 0.9446 0.9467 0.9433 0.9446 87.52M 15.35G 12.096ms

DenseNet 0.9508 0.9539 0.9456 0.9475 6.96M 2.90G 14.316ms

EfficientNet-B0 0.9631 0.9650 0.9603 0.9619 4.02M 398.03M 9.490ms

MobileNetV2 0.9477 0.9545 0.9441 0.9467 2.23M 318.96M 6.847ms

MobileNetV3 0.9262 0.9235 0.9227 0.9213 1.52M 58.79M 4.672ms

ResNet50 0.9538 0.9581 0.9501 0.9531 23.52M 4.12G 6.422ms

ShuffleNetV2 0.9200 0.9191 0.9185 0.9178 1.26M 149.58M 5.675ms

SwinTransformer-Base 0.9569 0.9553 0.9550 0.9545 86.69M 15.17G 16.2103ms

VGG16 0.9508 0.9498 0.9487 0.9489 134.29M 15.5G 11.9590ms

Ours 0.9877 0.9863 0.9876 0.9868 3.44M 339.74M 7.218ms
Bold indicates the final performance of the network.
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types of diseases (Aravind et al., 2018; Kusumo et al., 2018).

Meanwhile, CNNs have shown better recognition performance in

datasets with simple backgrounds (Ahila Priyadharshini et al., 2019;

Lv et al., 2020; Yin et al., 2022), but the robustness of CNNs

decreases when they are applied to corn disease identification in real

environments (Zeng et al., 2022a). Moreover, our image dataset is

similar to the studies of Chen et al. (2022) and Zeng et al. (2022b),

but our accuracy is higher and the Flops is smaller. This indicates

that FCA-EfficientNet has excellent computational efficiency and

potential for practical implementation. Therefore, FCA-

EfficientNet has certain performance advantages in the field of

corn disease image recognition.
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4.11 Deployed on Android

We deploy the model on a mobile device to verify its

performance. The mobile device used MediaTek Dimensity 1100,

8GB RAM, and Android 12. We conducted 5 consecutive

experiments on this device, each experiment recognizing 1000

images. The average recognition speed for each image on the

current device was: 88.34ms, 87.99ms, 91.87ms, 93.16ms,

93.02ms. The average recognition time for the 5 experiments was

92.88ms. Based on these current experimental results, the model

can meet daily recognition needs. Figure 17 shows the detailed

operation of the system.
TABLE 12 Performance comparison of relevant studies.

Techniques Data sources Categories and quantities Acc (%)

SVM (Aravind et al., 2018) PlantVillage 4 categories and 2000 images 83.7

SVM (Kusumo et al., 2018) PlantVillage 4 categories and 3852 images 87.2

Improved LeNet
(Ahila Priyadharshini et al., 2019)

PlantVillage 4 categories and 3852 images 97.89

DISE-NET (Yin et al., 2022) Self-collected 5 categories and 1268 images 97.12

DMS-Robust Alexnet (Lv et al., 2020) Self-collected 7 categories and 12227 images 98.62

CNN (Mishra et al., 2020) Self-collected 3 categories and 4382 images 88.46

SKPSNet-50 (Zeng et al., 2022a) Self-collected 6 categories and 1,452 images 92.9

LDSNet (Zeng et al., 2022b) Self-collected 6 categories and 3363 images 95.4

DFCANet (Chen et al., 2022) Self-collected 6 categories and 3271 images 98.47

Ours Self-collected 6 categories and 3258 images 98.76
fro
B CA

FIGURE 17

Application interface. (A) Open the application and select either “Camera” or “Album” to upload an image. (B) Open the photo gallery and select
multiple disease images. (C) Obtain the disease image recognition results and their corresponding confidence levels.
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5 Conclusions

In this study, we propose an improved EfficientNet model,

FCA-EfficientNet, to achieve accurate identification of multiple

corn diseases. To recognize corn diseases in the field

environment, we designed the AF module for filtering

background noise and the FCA module that enables the network

to be able to focus on diseased areas. In addition, we used LN and

GELU to improve the generalization ability of the network. Finally,

we removed redundant network structures to make the model more

lightweight. In the corn disease dataset, the classification accuracy

of FCA-EfficientNet for six corn images is 98.78%, and all the

evaluation metrics in the comparison experiments are better than

the classical CNN model with good generalization ability. The

number of parameters of FCA-EfficientNet is 3.44M, which meets

the conditions for deployment on mobile devices. The average

recognition speed of each image on the test device is 92.88ms,

which has good recognition speed and meets the recognition needs

of growers. However, at the present time, the model can only

quickly identify a small number of common corn diseases and

cannot cover the full range of corn diseases. In the future, we plan to

use transfer learning on large-scale plant disease datasets to enhance

the model performance, as well as autonomously collect images of

more types of corn diseases to further optimize the utility of the

model and provide technical support to relevant growers.
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