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Phosphorus (P) availability in soil is paradoxical, with a significant portion of

applied P accumulating in the soil, potentially affecting plant production. The

impact of biochar (BR) and fishpond sediments (FPS) as fertilizers on P fixation

remains unclear. This study aimed to determine the optimal ratio of BR, modified

biochar (MBR), and FPS as fertilizer replacements. A pot experiment with maize

evaluated the transformation of P into inorganic (Pi) and organic (Po) fractions

and their contribution to P uptake. Different percentages of FPS, BR, and MBR

were applied as treatments (T1–T7), T1 [(0.0)], T2 [FPS (25.0%)], T3 [FPS (25.0%) +

BR (1%)], T [FPS (25%) +MBR (3%)], T5 [FPS (35%)], T6 [FPS (35%) +BR (1%)], and T7

[FPS (35%) + MBR (1%)]. Using the modified Hedley method and the Tiessen and

Moir fractionation scheme, P fractions were determined. Results showed that

various rates of MBR, BR, and FPS significantly increased labile and moderately

labile P fractions (NaHCO3-Pi, NaHCO3-Po, HClD-Pi, and HClC-Pi) and residual P

fractions compared with the control (T1). Positive correlations were observed

between P uptake, phosphatase enzyme activity, and NaHCO3-Pi. Maximum P

uptake and phosphatase activity were observed in T6 and T7 treatments. The

addition of BR, MBR, and FPS increased Po fractions. Unlike the decline in NaOH-

Po fraction, NaHCO3-Po and HClc-Po fractions increased. All Pi fractions,

particularly apatite (HClD-Pi), increased across the T1–T7 treatments. HClD-Pi

was the largest contributor to total P (40.7%) and can convert into accessible P

over time. The T5 treatment showed a 0.88% rise in residual P. HClD-Pi and

residual P fractions positively correlated with P uptake, phosphatase activity,

NaOH-Pi, and NaOH-Po moderately available fractions. Regression analysis

revealed that higher concentrations of metals such as Ca, Zn, and Cr

significantly decreased labile organic and inorganic P fractions (NaHCO3-Pi,

R2 = 0.13, 0.36, 0.09) and their availability (NaHCO3-Po, R
2 = 0.01, 0.03, 0.25).

Excessive solo BR amendments did not consistently increase P availability, but

optimal simple and MBR increased residual P contents in moderately labile and
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labile forms (including NaOH-Pi, NaHCO3-Pi, and HClD-Pi). Overall, our findings

suggest that the co-addition of BR and FPS can enhance soil P availability via

increasing the activity of phosphatase enzyme, thereby enhancing plant P uptake

and use efficiency, which eventually maintains the provision of ecosystem

functions and services.
KEYWORDS

fishpond sediments, metal contents, biochar, P uptake, phosphorus fractions, Tiessen
and Moir fractionation scheme
1 Introduction

Phosphorus (P) is a viable mineral resource for crop growth

development in agriculture (Rubæk et al., 2013; Wei et al., 2017).

About 50–70% of the total P in soils is non-labile and cannot be

taken by plants (Mahmood et al., 2020). According to Wang et al.

(2023), soil presence of different metal ions and nutrients cause the

loss of applied P by fixation. Therefore, incorporating efficient

adsorbents in soil can maintain the level of P availability by

plants, and simultaneously reduce its fixation.

There are various forms of P in soil, including organic (Po) and

inorganic (Pi), which may be divided into labile, non-labile,

and moderately labile P fractions (Redel et al., 2008; Gatiboni and

Condron, 2021). By various soil processes (biological, physiological,

and chemical), applying various absorbents in soil may change both

P fractions’ distribution in the soil (Damian et al., 2020). For

instance, using biochar (BR) might influence microbial activities,

which in turn leads to the mineralization of the Po and Pi fractions

(Li et al., 2020). While the utilization of soil fishpond sediments

(FPS) as fertilizer can potentially increase the content of Po by

influencing primary production and stimulating the demand for

(Pi) in plants (Choi et al., 2015).

In recent years, soil P has been extensively explored using

diverse adsorbents, including fly ash (Zhao et al., 2019), crop

residue (Noack et al., 2012), and other materials. However, these

adsorbents have drawbacks, such as a weak adsorption capacity and

a decrease in P availability (Mehmood et al., 2020; Yu et al., 2021). A

type of persistent, refractory, strongly aromatic, and carbon-rich

solid material known as “biochar” is created by the gradual,

relatively low-temperature pyrolysis of biological leftovers in a

low-oxygen environment (Wang and Wang, 2019; Qiu et al.,

2022). Based on the studies that have been reported, various

mechanisms have been identified to account for the adsorption of

Po by BR. One mechanism involves complexation, where metal ions

inside the solution are more easily bound to the phosphate groups

when metal oxides or hydroxides, such as Ca (OH)2, MgO, and

Fe2O3, are present on the surface of the BR (Zhang et al., 2018; Wu

et al., 2020; Peng et al., 2021).

FPS are abundant in nutrients and trace elements and can

potentially serve as beneficial fertilizers for promoting crop growth

(Al-Solaimani et al., 2022). Although it has been widely researched

how nutrients may build up in sediments (Schmadel et al., 2019;
02
Becker and Silbiger, 2020; Huang et al., 2022), the collected

sediments are unsuitable for direct application due to the

preservation of metal contents on their particle surfaces (Gao

et al., 2021). To ensure the safe usage of FPS as fertilizers in

agricultural soils, sediments must be converted into environment

friendly source of fertilizer (Yan et al., 2018).

Despite the abundance of P in the soil, a significant portion

becomes bound to mineral surfaces or transformed into recalcitrant

forms, leading to limited bioavailability for plants (Ikhajiagbe et al.,

2020). This phenomenon is particularly common due to different

metals contents like Ca, Fe, Cd, Mg, and Zn, which can precipitate

and interact with P (Ogut et al., 2010; Yami et al., 2016; Sylvia et al.,

2021). Nonetheless, P is a crucial constituent of numerous essential

biochemical compounds, including nucleic acids, phospholipids,

amino acids, and ATP, and it plays a critical role in promoting plant

growth (Campos et al., 2018; Srivastava et al., 2018). Providing a

well-balanced P supply not only supports the development and

growth of crops but also motivates plants to enhance their strategies

for effective P uptake and utilization, ensuring their survival (Yan

et al., 2023).

Phosphatase plays a critical role in facilitating the conversion of

(Po) into bioavailable (Pi), specifically phosphate, in soil (Mahmood

et al., 2022). It catalyzes the hydrolysis of esters and anhydrides of

phosphoric acid, thereby enhancing the P bioavailability (Qin et al.,

2022). It is important to recognize that phosphatase activity plays a

crucial role in plant nutrient acquisition and is also exceptionally

responsive to metal concentrations. In fact, its activity has been

utilized as an effective measure for assessing soil P availability

(Foster et al., 2018; Pokharel et al., 2020). Hence, it is imperative

to examine the P acquisition strategies employed by plants in

response to the lower-P conditions resulting from the usage of BR

for remediating excessive metal content in soil. Moreover, it is

crucial to identify BR types that can prevent the occurrence of P

deficiency in the soil.

Recent investigations have demonstrated that modified biochar

(MBR) can serve as an innovative and efficient solution to improve

soil P use efficiency and plant uptake by lowering the bioavailability

of specific elements, such as cadmium (Cd) and calcium (Ca), in the

soil (Ahmed et al., 2023). According to Gonzaga et al. (2022) and

Ahmed et al. (2023), utilizing MBR holds the potential to serve as a

valuable resource for both energy and nutrient provision, increasing

the amount of accessible P in the soil and giving plants nutrients.
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Although considerable study has been done on P-MBR, it is still

unknown if this BR can be incorporated with sediments can prevent

relative P shortages in soils.

Therefore, this study is to investigate the impact of BR and

fishpond sediments on P distribution and availability status in soil.

We hypothesized that (1) the addition of BR and FPS would

increase P availability and reduce its fixation, which can hinder

soil P supply; (2) solo BR application would stimulate soil P uptake

by plants, potentially triggering an increase in phosphatase release

to ensure an adequate P supply; (3) MBR with FPS could promote

uptake by increasing soil P availability from legacy present in soils.
2 Materials and methods

2.1 Preparation of biochar-amended
fishpond sediments

The soil under investigation was supplemented with sediment

samples collected from a fishpond located in Tan Niu, China. The

FPS were mixed with 3.0% (w/w) BR obtained from Taraxacum

mongolicin, a Chinese herb. The BR was produced in a tube furnace

heated at 7°C per min until it reached 500°C and was maintained at

that temperature for 1h. Subsequently, the mixture was incubated

under constant temperature conditions in the absence of light for a

duration of 90 days, as described in the study by Mehmood et al.

(2023). In this study, FPS will be referred as FPS, while BR-treated

FPS will be referred as MBR.
2.2 Soil sampling and experimental setup

This study was carried out during 2021–2022 under greenhouse

conditions in the Department of Ecology and Environment, Hainan

University, Hainan, China. Topsoil (0–15 cm) was collected from

farmland near Haikou, China (20° 03′ 22.80′′N and 110° 19′ 10.20′′
E). The soil was air-dried in a ventilated dry and in-shadow place
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for a week. Then, plant debris were removed, and the soil was

ground, 2-mm sieved and properly stored for subsequent analysis

and experiments. The basic properties of soil, FPS, BC, and MBR

are presented in Table 1.

The treatments were added to the soil on w/w basis with the dose

of T1 [(0.0)], T2 [FPS (25.0%)], T3 [FPS (25.0%) + BR (1%)], T4 [FPS

(25%) +MBR (3%)], T5 [FPS (35%)], T6 [FPS (35%) + BR (1%)], and

T7 [FPS (35%) + MBR (1%)]; each soil treatment was placed into

plastic pots (containing 5 kg of air-dry soil). Maize (sweet glutinous

3000) seeds were acquired from Chun Xia Qiu Dong Zhong Ye

(Hengyang, Hunan, China). Healthy seeds were disinfected for 5 min

with 5% (w/v) NaOCl solution, and then 10 seeds were sown in each

plastic pot containing a mixture of soil, FPS, and MBR. After

germination, maize seedlings were thinned to five healthy seedlings

per pot. Plants were irrigated according to the plants’ needs (typically

three times per week). Seedlings without FPS and MBR were used as

the control plants. The experimental pots were organized in a

randomized complete block (RCB) design, with three replicates.

The average day/night temperatures during the experiment were

21/27°C ( ± 3°C), and relative humidity was 65 ± 5%.
2.3 Soil and plant analysis

Maize plant samples were collected after 40 days of sowing. The

plants were carefully harvested by gently detaching them from each

pot by hand, and the roots were promptly separated from the stem–

root junction. The aboveground portions from each pot were

combined to measure P uptake. Subsequently, the plants were air-

dried initially and then subjected to 30 min of oven drying at 90°C

to halt all metabolic activities. This was followed by further drying

at 65°C for 48h to determine the extent of total plant P content. P

uptake was calculated from the measured concentration and

plant biomass.

To measure the phosphatase activity, the method proposed by

Eivazi and Tabatabai (1977) was used. One gram of soil was treated

with 0.25 mL of toluene. Subsequently, a solution of 4 mL of a
TABLE 1 Basic attributes of the soil and fishpond sediments (FPS), Taraxacum mongolicum Hand-Mazz derived biochar (BR), and biochar-treated
sediments (MBR).

Parameters Unit Soil FPS BR MBR

pH 5.07 6.06 8.91 6.19

EC mS m–1 6.70 14.50 60.00 15.35

Total N g kg–1 0.63 1.59 1.98 1.73

Available P mg kg–1 1.00 103.00 147.40 163.55

Exchangeable K g kg–1 0.60 1.28 1.97 1.32

Total Ca g kg–1 1.00 1.60 2.51 1.81

Total Mg g kg–1 1.40 2.10 0.41 2.23

Total Cr mg kg–1 57.00 38 n.d. 27.98

Total Zn mg kg–1 64 28 n.d n.d

Total Cd mg kg–1 0.043 0.064 n.d n.d
not detected denoted by n.d.
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universally modified buffer and 1 mL of a p-nitrophenyl phosphate

solution were introduced to this buffer and incubated for 1h at 37°C.

The universally modified buffer was prepared by combining 14 g of

citric acid, 12 g of Tris, 11.6 g of maleic acid, 6.3 g of boric acid,

500 ml of NaOH, and 1000 ml of dH2O were combined. After the

incubation period, 4 mL of (NaOH, 0.5 M) and 1 mL of (CaCl2, 0.5

M) have been added. The absorbance at 400 nm was determined

after combining and filtering all the components with (Whatman

no . 42 ) , and the ab so rbance was mea su r ed u s ing

spectrophotometer. The potential phosphatase activity is

expressed as µg pNP g−1 h−1.

The concentrations of (Ca), (Mg), (Cd), (Zn), and chromium

(Cr) were determined using standard analytical techniques “NY/T

296-1995.” For Ca and Mg analysis, samples were typically

extracted using acid digestion methods, using of dilute

hydrochloric acid (HCl). The extracted solutions were then

analyzed using atomic absorption spectrometry (AAS). Similarly,

Zn, Cd, and Cr concentrations were measured using ICP-AES after

appropriate extraction methods, such as acid digestion or

sequential extraction.

2.3.2 Measurement of soil P fractions
A modified P fractionation scheme, initially established by

Hedley et al. (1982) and later modulated by Tiessen and Moir,

was employed to sequentially extract different soil P fractions

(Mahmood et al., 2021). For the extraction of NaHCO3-Pi, HClD-

Pi extractable P fractions, NaOH-Pi, and 1 g of soil was subjected to

extraction with 0.1 MNaOH, 30 ml of 0.5 MNaHCO3 (pH 8.5), and

1 M dilution HCl (HClD-Pi), respectively, for a duration of 16h

each. Additionally, the remaining soil was further extracted with 15

mL of 1 M concentrated HCl (HClC-Pi) at (80°C) for 20 min using a

hot water bath. Residual P was determined using 5 mL H2SO4 and

H2O2 at 360°C. Inorganic P (Pi) were determined from the filtrates

of NaOH−, HClc-extractable P, and NaHCO3 by dividing them into

two groups of samples. For NaOH-Pi and NaHCO3-Pi, 0.9 M

H2SO4 was introduced to the filtrate, followed by centrifugation
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at 4000 rpm at 0°C for 10 min prior to analysis. HClC-Pi, on the

other hand, was directly assessed without any pretreatment. For The

Pi, the determination of HClD-Pi filtrates and residual P was carried

out directly. UV spectrophotometer was used for all P analyses (Pi).

The (Po) fraction was determined by calculating the discrepancy

between the concentrations of the total P (Pt) and (Pi). The total P

was computed as the aggregate of organic and inorganic P fractions

(Mirabello et al., 2013).
2.5 Statistical analysis

Data analysis was conducted using the one-way (ANOVA)

analysis to determine significant differences among treatments.

Treatment means were compared using the Least Significant

Differences (LSD) test at a significance level of p = 0.05, utilizing

SPSS 21. by the test of least significant differences (LSD) at p = 0.05

using SPSS 21. Pearson correlation analysis was performed to assess

the relationship between different P fractions, metal contents, P

uptake and phosphatase enzyme activity using R software. We used

regression analysis to determine changes in P fractions, by the

distribution of different metal contents.
3 Results

3.1 P uptake and phosphatase
enzyme activity

The application of FPS, BR, and/or MBR changed the soil

phosphatase activities to varying degrees (Figure 1). The

phosphatase enzyme activity was significantly lower in T4 and T5

treatments (6.6 and 8.4 µg pNP g−1 h−1), respectively, than in other

applied treatments of BR and FPS (P < 0.05). A higher but non-

significant difference was found in phosphatase activity among the

treatments T2, T3, T6, and T7, respectively.
FIGURE 1

Response of phosphatase enzyme activity and P uptake to fishpond sediments (FPS), biochar (BR), and modified biochar (MBR) treatments. T1
[(control)], T2 [FPS (25.0%)], T3 [FPS (25.0%) + BR (1%)], T [FPS (25%) +MBR (3%)], T5 [FPS (35%)], T6 [FPS (35%) + BR (1%)], and T7 [FPS (35%) + MBR
(1%)] applications. Bars over the marker show standard error (n = 3). Different letters above the columns indicate significant differences at p < 0.05.
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The mean value of P uptake ranged from 1.3 to 6.03 mg P kg−1

dry matter. A higher P uptake (6.03 mg P kg−1 dry matter) was

found in the T6 treatment, which increased by 5.79% compared

with T1 treatment. However, P uptake showed no significant

difference among T3, T5, T6, and T7, while it was significantly

lower T4 and T2 as compared with the T1 treatment (3.7, 4.4, and

1.2 mg P kg−1 dry matter) (Figure 1).
3.2 Residual P fraction and Total P

Residual P concentration was significantly affected by the

combined and solo application of BR and FPS (Figure 2);

compared with the control treatment (T1) (33.5 mg kg-1),

residual P was 0.88% and 0.68% higher in T5 and T7 treatment

(63.00 mg kg-1 and 56.50), respectively, while stagnated among the

other treatments.

Similarly, the response of total P showed an increasing trend

and ranged from 171.90 to 465.34 mg kg−1. The highest total P was

recorded in T7 treatment (465.34 mg kg−1). Compared with the

control treatment (T1), it was recorded 1.40 and 1.70% higher in T6

and T7 treatments (Figure 2).
3.3 Organic P fractions

The organic P fractions (NaHCO3-Po and HClc-Po) were

significantly influenced by the BR and FPS amendments (Figure 3),

while NaOH-Po showed lower concentration among the treatments.

The mean value of NaHCO3-Po was 11.82 mg kg−1 and 14.57 mg kg−1

in T6 and T7 treatments, while HCl-Po value was recorded significantly

higher in T7 (12.17 mg kg−1) while lower in other treatments.

Compared with the control treatments, NaHCO3-Po and HCl-Po
increased by 4.07 and 1.66% in T7 treatments. However, HCl-Po
increased by 1.68% in T7 treatment as compared with the control (T1).
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3.4 Inorganic P fractions

FPS and BR variables application significantly increased the

proportion of various Pi fractions (Figure 4) including NaHCO3-Pi,

NaOH-Pi, HClD-Pi, and HCl-Pi, respectively, and ranged from 7.46

mg kg−1 to 30.40, 14.76 to 89.42 mg kg−1, 76.09 to 189.21 mg kg−1,

and 24.92 to 66.93 among the treatments. However, higher

concentration of NaHCO3-Pi (30.40) and NaOH-Pi (89.42) were

found in T7 and T6 treatments, respectively, while HClD-Pi and

HClc-Pi fraction were significantly higher in T7 treatment. Among

all the inorganic fractions, HCD-Pi was the highest contributor

(37.2–46.9%) in the total P in all study treatments (Figure 4).
3.5 Response of P fractions to Ca, Mg, Cr,
Zn, and Na

We have computed regression analysis to measure the response

of organic P fractions (Po) to Ca, Mg, Cr, Zn, and Na (Figure 5).

Our linear regression showed the significant increasing response of

NaOH -Po (R2 = 0.60*; p < 0.05) and HClc-Po (R2 = 0.14, p > 0.05)

to the increase in Zn concentration in HClc-Po and, respectively,

while decreasing trend found in NaHCO3-Po with the increase in

Zn concentration (R2 = 0.032, p < 0.05; Figure 5). Likewise, higher

Cd concentrations increased the concentration of labile organic P

(NaHCO3-Po, R
2 = 0.081) while NaOH (R2 = 0.081) and HCl-Po

(R2 = 0.0003) fractions stagnated. Ca concentration non

significantly affected the distribution of labile organic P and

showed decreasing trend with the increase in Ca content

(R2 = 0.010). However, non-significant change was observed in

NaOH and HClc-Po with the increase in Ca concentration

(Figure 5). Cr concentration significantly decreased NaHCO3-Po

and (R2 = 0.25) and increased the NaOH-Po with increase in its

concentration (R2 = 0.059); however, HClc-Po showed non-

significant change in response to Cr (Figure 5). Mg concentration
FIGURE 2

Changes in residual P and total P in response to different fishpond sediments (FPS), biochar (BR), and modified biochar (MBR) treatments. Treatments
include T1 [(0.0)], T2 [FPS (25.0%)], T3 [FPS (25.0%) + BR (1%)], T [FPS (25%) + MBR (3%)], T5 [FPS (35%)], T6 [FPS (35%) + BR (1%)], and T7 [FPS (35%) +
MBR (1%)]. Error bars show the standard error. Different letters above the columns indicate significant differences at p < 0.05.
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increased the all-organic P fractions (NaHCO3-Po, NaOH-Po, and

HClc-Po) with increase in its concentration.

Similarly, linear regression showed the quantitative variation in

different Pi fractions response to Cd, Zn, Ca, Cr, and Mg

concentrations (Figure 6, p < 0.05). Proportion of inorganic

fractions in response to Cd concentration was found in the order

of HClD-Pi>Residual-Pi> NaOH-Pi> HClc-Pi> NaHCO3-Pi

(R2 = 0.16, 0.33, 0.022, 0.024, and 0.40, respectively (Figure 6).

Likewise, increase Zn concentration showed no change in inorganic

P fractions except HClD-Pi fraction (R
2 = 0.20) which was decreased

with increase in Zn concentration. In response to increase Ca

concentration HClD-Pi (R
2 = 0.10) showed maximum decrease as

compared with other inorganic P fractions. Similar trends were

observed in response to Cr and Mg Concentration in soils, HClD-Pi

(R2 = 0.11 and 0.45), respectively (Figure 6).
3.8 Pearson correlation

The relationship between various P fractions, P uptake, and metal

contents was evaluated using a Pearson correlation coefficient

(Figure 7). We observed a strong positive correlation between

NaHCO3-Pi, HClD-Pi, and Ca being linked with the P uptake and

phosphatase enzyme activity under different variables of BR-, MBR-,

and FPS-incorporated soils. NaOH-Pi showed a strong positive

correlation with total P and phosphatase activity and HCl-Po and
Frontiers in Plant Science 06
Mg and Zn. Fractions of P responses (NaHCO3-Po, NaOH-Pi, Po,

HClc-Pi, and total P) and different elements (Cd, Cr, and Zn) pose a

strong positive correlation between them. Residual-Pi were

significantly and positively correlated with phosphatase and total P

uptake. (Figure 7).
4 Discussion

4.1 Phosphorus fractions, P uptake, and
phosphatase enzyme affected by biochar
and fishpond amendments

FPS and BR application can alter the P distribution and its

availability by changing the soil properties (physiochemical) (Sui

et al., 2021; Yang et al., 2021).

In terms of the labile P fractions present in the soil, the

NaHCO3-Pi fraction denotes adsorbed inorganic P forms that are

relatively less labile, while the NaHCO3-Po fraction can be readily

mineralized in the soil solution (Bai et al., 2020; Liu et al., 2022).

These two fractions are considered the most accessible P pools for

supporting plant growth (Gächter and Meyer, 1993; Ahmed et al.,

2020). The significant increase in NaHCO3-Pi and NaHCO3-Po

fractions in higher application of simple biochar, modified biochar

along with fishpond treatment [(Soil+FPS (35%) + BR (1%, T6) and

(soil + FPS (35%) + MBR (1%, T7)], respectively. The results from
FIGURE 3

Changes in organic P fractions (NaHCO3-Po, NaOH-Po, and HClC-Po) in response to different fishpond sediments (FPS), biochar (BR), and modified
biochar (MBR) treatments. Treatments include T1 [(0.0)], T2 [FPS (25.0%)], T3 [FPS (25.0%) + BR (1%)], T [FPS (25%) + MBR (3%)], T5 [FPS (35%)], T6
[FPS (35%) + BR (1%)], and T7 [FPS (35%) + MBR (1%)]. Bars over the marker show standard error (n = 3). Different letters above the columns indicate
significant differences at p < 0.05.
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Figures 3, 4 demonstrate an increase in soil P availability, primarily

attributed to the direct input of high-available P content from rich

nutrient sources such as FPS BR, thus indicating the influence of P

legacy (Dietrich et al., 2017; Melia et al., 2019). Another possible

reason of higher labile P fraction in T6 is that the FPS amendments

are also particularly rich in P due to the large amounts of fish feed,

feces, and excretion products that accumulate in the ponds over

time (Mehmood et al., 2022). As a result, FPS are often

characterized by high levels of total P content (Tammeorg et al.,

2022). Furthermore, the increased application of BR in soil has been

shown to enhance soil pH, which can contribute to improved P

status and availability by reducing the likelihood of P sorption in

acidic soil (Ahmed et al., 2021a). Additionally, BR has the potential

to enhance the soil microbial environment, leading to enhanced P-

related enzyme activities such as phosphatase, which plays a crucial

role in the transformation of organic P into inorganic P in soils

(Foster et al., 2018; Cao et al., 2023).

The intermediate labile P (NaOH-Pi and NaOH-Po) fractions

are absorbed on the surface of Fe/Al oxides and humic substances

(Mehmood et al., 2018). The observed increase in NaOH-Po due to

the treatment involving FPS and MBR (T7) can be attributed to the

mineralization process, wherein it transforms from a moderately
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labile form into the more labile NaHCO3-Pi, as indicated by

Figure 3 and supported by the findings of Mnthambala et al. (2022).

HClD-Pi fraction (Apatite P), which is considered as the source

of P availability, was higher in higher fishpond (T5 and T7)

treatment (Figure 4). This could indicate that the fishponds were

contributing to higher levels of available P in the soil. Fishponds can

be a potential source of P for crop production as fish excreta

contains high levels of P. Several studies have reported that

fishponds incorporation can increase the availability of P in soils.

For example, a study conducted by Potužák et al. (2016); Saviolo

Osti et al. (2020) found that fishpond effluent application increased

soil apatite P availability, resulting in increased crop yields utilizing

the legacy. Similarly, a study by Hepher (1958) reported that the

application of fishpond effluent to soils improved soil fertility and

increased crop yields. In summary, the statement suggests that the

HClD-Pi fraction, an indicator of plant-available P in soils, was

higher in treatments T5 and T7, which were associated with higher

fishponds. This could indicate that fishponds are a potential source

of P for crop production and be used as fertilizer.

Furthermore, the formation of phosphate complexes after

modified biochar interaction contributed to the increase of HClc-

Pi and HClc-Po. According to Rafique et al. (2020), the increase in
FIGURE 4

Changes in inorganic P fractions (NaHCO3-Pi, NaOH-Pi, HClD-Pi, and HClC-Pi) in response to different fishpond sediments (FPS), biochar (BR), and
modified biochar (MBR) treatments. Treatments include T1 [(0.0)], T2 [FPS (25.0%)], T3 [FPS (25.0%) + BR (1%)], T [FPS (25%) + MBR (3%)], T5 [FPS
(35%)], T6 [FPS (35%) + BR (1%)], and T7 [FPS (35%) + MBR (1%)]. Bars over the marker show standard error (n = 3). Different letters above the
columns indicate significant differences at p < 0.05.
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both residual and labile P pools can be attributed to the

precipitation or sorption of P onto recalcitrant organic composites.

Residual P and Total–P represent relatively different trends among

the study treatments (Figure 2). Residual P is considered as non-labile P

and readily available for plant uptake (Sulemana et al., 2021). Higher

concentrations for residual P in the higher fishpond, simple and MBR

amended treatments might be attributed to the exogenous introduction

of BR-carried non-available P (Winkler and Zotz, 2009; Figueiredo

et al., 2020). Moreover, FPS contain sources of feed applied, which can

be the reason for P accumulation and increases residual P (Mehmood

et al., 2022). Some evidence supports the suggestion that simple and

MBR can increase soil P levels, including residual P. For example, a

study by Ahmed et al. (2021a) found that BR application increased total

P and residual P levels in soil, compared with untreated control soils by
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increasing soil pH and Ca ion concentrations. Similarly, a study by Lyu

et al. (2021) reported that BR application increased residual P levels in

soil, but the effect depended on the type of biochar used.

The total P concentrations in the higher sediment with MBR

incorporation (T7) were higher (Figure 2), showing a high level of

total P content. Similar results were reported in highly eutrophic

sediments incorporated in soils in China (Li and Huang, 2013).

Likewise, the highest P concentration in soils is incorporated with

the sediments of Dianchi Lake sediment (Li et al., 2007; Zheng et al.,

2019). The P in soil and sediment resulted mostly from

anthropogenic inputs from fertilizer applications in agriculture

soils and later their follow towards lakes and ponds, sewage

discharges, and industrial inputs (Ringeval et al., 2014; Meng

et al., 2018; Demay et al., 2023). The fact that total P was higher
FIGURE 5

Regression analysis showing the significant changes in organic P fractions (NaHCO3-Po, NaOH-Po, and HClC-Po) response to different metal
contents distribution (Zn, Cd, Ca, Cr, and Mg).
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in those treatments with higher FPS amendments may suggest that

P resulted from heavy sediments source and MBR with its capability

in increasing the pH of the soil and enhancing total P

concentrations. It might be also due to the higher Ca-associated P

(Apatite) in the soil which comes as alluvial source (Mehmood et al.,

2018). The data suggested that total P probably migrated from

parent material soil, resulting in higher total P accumulation in

response to sediments incorporation (Lu et al., 2020; Mahmood

et al., 2022).

The phosphatase enzyme is considered as the indicator of P

availability and plays a crucial role in catalyzing the hydrolysis of
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organic phosphates into inorganic phosphates, which can be taken

up by plants (Ahmed et al., 2020).

Our study found that low FPS application and higher MBR

application treatment significantly reduced phosphatase enzyme

activity and P uptake compared with other treatments while higher

FPS lower simple and MBR increased the P uptake and phosphatase

activity (Figure 1). Our study is in line with the study of Huang et al.

(2017), who investigated the effect of BR and sediment amendments

on phosphatase enzyme activity and P uptake in the soil and found

a decrease in them with higher BR applications. This may also be

due to the potential for BR to adsorb and immobilize P, thereby
FIGURE 6

Regression analysis showing the significant changes in inorganic P fractions (NaHCO3-Pi, NaOH-Pi, HClD-Pi, HClC-Pi, and residual P) response to
different metal contents distribution (Zn, Cd, Ca, Cr, and Mg).
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reducing its availability for hydrolysis by phosphatase enzymes and

P uptake.

In contrast, the study found that higher FPS and simple and

MBR treatments had higher phosphatase enzyme activity, although

the difference was not statistically significant (Figure 1). This may

be due to the fact that FPS are a rich source of organic matter and

nutrients, which can stimulate microbial activity and phosphatase

enzyme production (Mehmood et al., 2023). These results are

consistent with the fact that FPS and BR amendments can

improve soil fertility and nutrient availability, thereby enhancing

plant growth and P uptake.

Overall, these results suggest that the application of BR and FPS

amendments can have a significant impact on phosphatase enzyme

activity and P availability in soil and likewise plant uptake, which in

turn can affect the availability of P for plant uptake.
4.2 Relations between P fractions, P
uptake, phosphatase, and metals contents
(Ca, Cd, Cr, Zn, and Mg)

Metal contents significantly influence P distribution in soils by

binding (Xia et al., 2020). Our results suggest a significant positive

relationship between the increase in Zn concentration, organic and

inorganic P fractions (NaOH-Pi, NaOH-Po, HClC-Pi, HClc-Po, and

residual P), while there was a significant negative relationship

between the increase in Zn concentration and available P

fractions (NaHCO3-Pi and NaHCO3-Po) (Figure 5). However,

moderate labile fractions (HClD-Pi and residual P) were positively
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correlated with Zn concentration, indicating that the alkaline

environment can promote the removal of Zn reduce the P

availability (Ahmad et al., 2018). These findings are in line with

the previous research of Nkrumah et al. (2021) that has shown that

NaOH-Po fraction can be accumulated and less labile for the plant

uptake can effectively decreased by the heavy metal contamination

in soils. The reduction in NaHCO3-Po with increased concentration

of Zn might also be the higher accumulation of moderate labile P

fractions (NaOH-Po and HClC-Po) (Golestanifard et al., 2021).

Similarly, Ca concentration did significantly decrease the

distribution of labile inorganic and organic P (NaHCO3-Pi and

NaHCO3-Po), increasing the moderate and recalcitrant or nonlabile

organic P fractions. This indicates that Ca may not have a

significant effect on the removal of P from soil to make it labile;

however, it promotes the fixation (Mahmood et al., 2022). Pearson

correlation analysis (Figure 7) gives positive relationship between

moderate labile P fractions (HClD-Pi and HClc-Pi) and confirms

soils a large amount of Ca-associated P (Apatite) (organic and

inorganic) that is presented, which is not readily available for the

plant uptake (Ahmed et al., 2020). Likewise, cadmium (Cd) and P

are shown to have a complex and negative relation (Figure 7). On

the one hand, Cd in higher amount can have negative impacts on

availability of P and its cycling in soil system, while on the other

hand, Cd can affect P uptake and toxicity in plants and other

organisms (Kovačević et al., 2021; Maqbool et al., 2022). For

example, a study by Cullen and Sherrell (2005) found that Cd

contamination decreased soil P availability and inhibited the

activities of enzymes involved in P cycling. Similarly, a study by

Yang et al. (2015) found that Cd exposure reduced the abundance of
FIGURE 7

Pearson’s correlation matrix between P fractions (inorganic and organic), metal contents (Zn, Cd, Ca, Cr, and Mg), phosphatase enzyme activity and
P uptake under FPS, biochar (BR) and modified biochar (MBR) applications. Correlations are displayed in blue (positive) and red (negative).
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microbial groups involved in organic P mineralization and

decreased soil P availability.

Overall, these findings suggest that Cd and P have complex

interactions in the environment and that the effects of Cd on P

availability and cycling, as well as the effects of P uptake, should be

taken into account in environmental management and

risk assessment.

Cr and Mg concentration had a significant effect on the

distribution of organic P fractions. Labile P fractions (NaHCO3-

Pi, NaHCO3-Po, and NaOH-Po) showed a significant decrease with

an increase in Cr concentration, while NaOH-Po showed a

significant increase (Figure 6). However, previous research has

suggested that Mg may enhance the formation of metal

hydroxides, which can adsorb and remove P from soil but

stimulating its pH and environmental conditions on the binding

sites (Ahmed et al., 2020). In contrast, Cr may interact with the

surface charges of metal hydroxides and affect their adsorption

capacity for P (Shaheen and Iqbal, 2018).

Overall, the results suggest that balance application of BR and

FPS is necessary to maintain initial concentrations of Cr and Mg, so

that P availability can be maximized for plant uptake.

The study found that higher rates of applied BR and FPS

resulted in significant differences in P uptake and phosphatase

enzyme activity compared with lower rates (Figure 1). There was a

positive correlation (Figure 7) between phosphatase enzyme activity

and P uptake, suggesting that higher BR levels increased P

availability. FPS were also found to be a rich source of nutrients

that enhance P availability and uptake (Mehmood et al., 2021).

Past studies have also shown that the application of BR and

sediments increases total P and leads to more P fixation (Tesfaye

et al., 2021). The study found that the higher BR and sediment

application levels resulted in higher levels of total recalcitrant or

non-labile P compared with lower levels and showed a positive

correlation with (Ca) calcium-associated fractions with P uptake

and Olsen P (Figure 7). The study also found BR and sediments

application increased total and accessible P contents compared with

other lower applied rates, indicating that BR and sediments

application at different levels caused interactive effects on soil

available P concentration. This may be due to increased microbial

activities that increased the amount of accessible Pi and reduced the

number of distinct P forms fixed in soils (Ahmed et al., 2021b;

Mahmood et al., 2022).
5 Conclusion

This study aimed to assess the impact of BR and/or FPS on soil

P fractions and availability, their consequences for P uptake by

maize plants. The results indicate that the addition of BR and FPS

significantly increased P availability. Both solo and combined

applications of BR and FPS significantly improved soil P fractions

and had a profound influence on plant P uptake. Specifically, the

application of 1% BR in combination with 35% FPS showed notable
Frontiers in Plant Science 11
effects on the moderate labile P fraction and phosphatase enzyme

activity. Soil available P content was consistently lower under higher

BR treatments combined with FPS, highlighting the importance of

applying optimal rates of BR and FPS to enhance P availability while

minimizing P fixation and residual P loss, which ultimately

maintains plant P uptake. Our study provides valuable insights

into the possibility of applying BR along with FPS as an effective

strategy to improve P use efficiency, which ultimately would

maintain sustainable food production.
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