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The rapid extraction of farmland boundaries is key to implementing autonomous

operation of agricultural machinery. This study addresses the issue of incomplete

farmland boundary segmentation in existing methods, proposing a method for

obtaining farmland boundaries based on unmanned aerial vehicle (UAV) remote

sensing images. The method is divided into two steps: boundary image acquisition

and boundary line fitting. To acquire the boundary image, an improved semantic

segmentation network, AttMobile-DeeplabV3+, is designed. Subsequently, a

boundary tracing function is used to track the boundaries of the binary image.

Lastly, the least squares method is used to obtain the fitted boundary line. The

paper validates the method through experiments on both crop-covered and non-

crop-covered farmland. Experimental results show that on crop-covered and

non-crop-covered farmland, the network’s intersection over union (IoU) is 93.25%

and 93.14%, respectively; the pixel accuracy (PA) for crop-covered farmland is

96.62%. The average vertical error and average angular error of the extracted

boundary line are 0.039 and 1.473°, respectively. This research provides substantial

and accurate data support, offering technical assistance for the positioning and

path planning of autonomous agricultural machinery.

KEYWORDS

UAV remote sensing, farmland boundary extraction, semantic segmentation,
DeeplabV3+, linear fitting
1 Introduction

Autonomous unmanned operation technology for agricultural machinery is one of the

vital technologies for realizing precision agriculture (Wang and Noguchi, 2016; Shafi et al.,

2019). This technology has been widely used in tasks such as ploughing, sowing, harvesting,

and fertilizing, significantly reducing the consumption of human labor and resources
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(Wang et al., 2021b; Yang et al., 2022; Bai et al., 2023). Many

researchers have found that the accurate acquisition of farmland

boundaries is the basis for autonomous and safe operation of farm

machinery in the field (Li et al., 2020; Kim et al., 2021; Wang et al.,

2021c; Li et al., 2023a; Yu et al., 2023). However, relying on field staff

to go deep into the fields to collect data has low work efficiency and

is time-consuming (Ingram, 2018). With the development of

equipment such as vehicle-mounted LiDAR, the technology for

ground vehicles to obtain farmland boundaries in real time has

become relatively mature (Xu et al., 2019; Nehme et al., 2021).

However, such methods are difficult to apply in complex farmland

scenarios. For example, there are many irregular obstacles in the

field, areas that cannot be travelled by farm machinery, and in some

cases, “farmland with crops” and “farmland without crops” are

similar in color and cannot be clearly distinguished. In recent years,

rapid segmentation technology based on remote sensing images has

provided a low-cost and efficient method to obtain boundaries.

Remote sensing image acquisition work is mainly based on satellite

remote sensing (Marshall et al., 2019; Segarra et al., 2020; Waldner

and Diakogiannis, 2020). However, satellite images encounter

problems such as unclear distinction in fine structure areas and

delayed imaging. Meanwhile, unmanned aerial vehicle (UAV)

remote sensing is rapidly developing and gradually being

incorporated into various agricultural applications (Xu et al.,

2020; Wang et al., 2021a). The resolution of UAV remote sensing

can reach decimeter levels, not only accurately identifying regional

boundaries but also creating favorable conditions for identifying

farm lanes, ditches, and ridges. Therefore, this paper adopts UAV

remote sensing technology to acquire farmland images.

High-resolution farmland remote sensing images bring

abundant geospatial information, which consequently increases

the difficulty of extracting farmland boundaries (Xia et al., 2019).

Wang et al. (2021c) developed a Grabcut-based farmland

segmentation system and detected centimeter-level accuracy field

boundary from the UAV imagery. Traditional image processing

methods have limited effectiveness when it comes to identifying

high-resolution UAV remote sensing images (Jeon et al., 2021). To

obtain more reliable and accurate information on farmland plot

distribution, researchers have used fully convolutional neural

networks (FCNs) to extract deep semantic features, achieving

end-to-end learning (Masoud et al., 2019). Wang et al. (2019)

demonstrated that the performance of FCNs in processing spatial

features of images significantly surpassed traditional image

processing methods.

While existing semantic segmentation networks have made

certain advancements in recognizing UAV farmland images,

obtaining a complete boundary segmentation image remains a

challenge. DeeplabV3+ was proposed by Google researchers in

2018; this network, based on spatial pyramid pooling technology

and integrating the advantages of multiple networks, has achieved

excellent results in semantic segmentation tasks (Chen et al., 2018).

In the realm of agricultural domain, many improved DeeplabV3+

algorithms have made considerable progress, as showcased in the

research of Lu et al. (2022) and Li et al. (2023b). Therefore, this

paper considers improving the DeeplabV3+ network to address the

aforementioned issues.
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After segmentation, it is necessary to extract the boundary lines

from the farmland images. Common line extraction methods

include the Hough Transform (HT) (Koc-San et al., 2018; Chen

et al., 2021), the Random Sample Consensus (RANSAC) algorithm

(Ji et al., 2021; Kok et al., 2023), and the Least Squares (LS) method

(Acharya et al., 2022; Ma et al., 2022). The HT can detect all lines in

the image in one go, boasting high computational efficiency.

However, the detection results are constrained by factors such as

time, space, and image noise. The RANSAC algorithm is not

affected by noise or outliers in the dataset, but the complexity of

setting parameters such as iteration and thresholds results in lower

computational efficiency. The advantage of the LS method is its

simplicity and intuitiveness. Compared to the other two methods, it

does not require manual parameter setting and it offers higher

computational efficiency. Therefore, this study chooses the LS

method for farmland boundary line extraction.

This paper proposes a method for segmenting farmland regions

and extracting boundary lines based on drone remote sensing. The

main contributions of this work are as follows:
1. To address the issue of incomplete farmland boundary

segmentation, this paper proposes an improved

DeeplabV3+ network, which uses MobileNetV2 as the

backbone network to reduce computational load. With

the inclusion of the Convolutional Block Attention

Module (CBAM) attention mechanism module into the

backbone network, the use of shallow network detail

information can be fully exploited, enhancing the

network’s precision in recognizing farmland details.

Adjustments to the Atrous Spatial Pyramid Pooling

(ASPP) module have also been made by adding a Strip

Pooling Layer (SPL), which improves the network’s

accuracy and efficiency in recognizing long-range

dependency features. This further enhances the

precision of farmland edge segmentation in UAV images.

2. Based on the output results of the aforementioned semantic

segmentation network, a farmland boundary line extraction

algorithm has been designed. This algorithm segments the

two types of farmland areas and non-farmland areas in the

image, then tracks the binary image boundary using

MATLAB’s bwboundaries boundary tracking function to

obtain a boundary coordinate dataset. Finally, the method

of least squares is used to fit the boundary line, providing

boundary information for autonomous unmanned

agricultural machinery, and laying the data foundation

for subsequent boundary coordinate extraction.
2 Materials and methods

2.1 Field test and image acquisition

2.1.1 Data acquisition
Data collection was conducted fromMarch to April 2022, at the

National Precision Agriculture Demonstration Base (Beijing,
frontiersin.org
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China), which covers an area of 2,500 mu. As shown in Figure 1A,

we selected three high-standard farmland plots from the base for

data collection. For drone image collection, it should be done during

clear weather, with an average wind speed of less than 5 m/s, and

abundant daylight. To ensure the quality of the aerial photography,

shooting times were selected between 10:00–12:00 and 13:00–16:00.

The data collection platform is the consumer-grade drone DJI

Phantom 4 PTK, which is equipped with a RedGreenBlue (RGB)

camera and a built-in Real Time Kinematic-Global Navigation

Satellite System (RTK-GNSS). The effective pixel count of the

camera is 20 million, with a maximum image resolution of

5,472×3,078 pixels. The RTK-GNSS can provide a horizontal

positioning accuracy of 1 cm + 1 ppm (Recipe Manager System,

RMS) and a vertical positioning accuracy of 1.5 cm + 1 ppm (RMS).

The drone autonomously operates along the flight path specified in

Figure 1B, with a flight speed set at 2 m/s and a flight altitude of

25 m. Owing to the wide-angle lens used by the drone, the generated

images have very obvious radial distortion (Kang et al., 2021), which

can affect the accuracy of image edge segmentation. To address

image distortion as much as possible, the flight path and

longitudinal overlap rates were set to 70% in reference to related

technical specifications (Ma and Zhang, 2022) to alleviate distortion

after image stitching. The DJI Terra software was then used to stitch

together the obtained farmland images.

2.1.2 Preparation of the dataset
First, data processing is carried out to obtain accurate and

reliable base image data. The stitched images are in the Tagged
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Image File Format (TIFF). TIFF is divided into the “coordinate tag”

module and the “RGB channel data” module, which offer high

clarity, high resolution, and an abundance of information. These

features are advantageous for subsequent random cropping and

dataset division. In order to preserve the geographic coordinate

information of the images and meet the accuracy requirements for

extracting farmland boundaries, the original image data are

randomly cropped into PNG images with a pixel size of

1024×1024. Each image is named after the pixel coordinates of

the first pixel in the image. To further refine the data samples,

experimental images with low resolution are eliminated, yielding a

total of 7,977 images.

Next, a dataset is built to meet the requirements of the

experiment. The process is as follows: we use the open-source

annotation tool LabelMe to semantically annotate UAV remote

sensing images following the style of the Pascal VOC2007 dataset,

thus creating a standard semantic dataset. Each image is ensured

to have a corresponding label file. During the annotation process,

we noticed that some image elements have a large span in color

space, which could lead to misidentification by the network during

image segmentation, thereby decreasing the overall recognition

accuracy. As such, this study analyzed the definition of boundary

positions, taking into account that an excess of label elements

might interfere with the precision of farmland boundary

recognition. The remaining interfering elements were

consolidated into a category labeled “Background”. To ensure

the completeness, reliability, and practicality of the dataset, it was

further refined. Now, the label elements are divided into three
B

CD

A

FIGURE 1

Workflow of the data acquisition phase. (A) Experimental area (B) UAV route setting; (C) UAV capture of original image set; (D) Label element,Label
information for each area is marked in white.
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categories: “Crop”, “Soil”, and “Background”. Here, “Crop” refers

to farmland with crops, while “Soil” denotes farmland without

crops. The processed dataset contains a total of 6,386 images, with

3,285 “Crop” labels and 3,356 “Soil” labels. The images are

randomly divided into training and validation sets at a 9:1 ratio.

Figure 1C displays the process of dataset creation, while Figure 1D

presents the various labeled elements in the dataset, which

contains several environmental scenarios: the case where only

one label type exists in the image bordering the background and

the case where multiple label types exist in the image bordering

the background.
2.2 Construction of the farmland
extraction model based on the AttMobile-
DeeplabV3+ model

2.2.1 AttMobile-DeeplabV3+ model
Before detecting the farmland boundary lines, it is necessary to

first obtain images containing farmland boundary information and

separate the farmland areas from the non-farmland areas. In

outdoor real farmland environments, the demarcation line of

farmland is not clear and difficult to distinguish. Moreover, most

of the boundaries in farmland images have a long straight line-type

distribution with long-range dependence, as shown in Figure 1D.

For certain visually similar classes to be identified, it is somewhat

challenging to use classical semantic segmentation networks. To

address these issues, we make improvements to the existing

DeeplabV3+ network and propose an enhanced DeeplabV3+

network using MoblieNetV2 as the backbone network, with the

addition of CBAM. This enhanced network is referred to as
Frontiers in Plant Science 04
AttMobile-DeeplabV3+. The network structure is shown

in Figure 2.

The AttMobile-DeeplabV3+ maintains the same encoder–

decoder structure as DeeplabV3+, with improvements made to

the backbone network. The traditional DeeplabV3+ network uses

the Xception network as its backbone, which employs Depth-wise

Separable Convolution (Howard et al., 2017), enhancing the

network performance. However, because of the complex

computation process, the network convergence speed is relatively

slow. Hence, AttMobile-DeeplabV3+ adopts MobileNetV2 as the

backbone network, introducing the Convolutional Block Attention

Module to select beneficial features and suppress irrelevant ones,

thereby improving the overall segmentation precision. Additionally,

it makes improvements to the ASPP module, incorporating a

pooling operation (SPL) to enhance the extraction accuracy of

long-range dependencies.

The workflow of AttMobile-DeeplabV3+ is approximately as

follows: the image under test is input into the network, where

feature extraction and attention enhancement are performed

through operations such as convolution and pooling. Then, the

features extracted from the encoder and decoder are fused, the

channel numbers of the feature layer are adjusted, and the sizes of

the input and output images are matched through upsampling

operations, eventually yielding the prediction result.

(1) Design of Attention-MobileNetV2 Network

Attention-MobileNetV2 is a crucial improvement part in this

study, with its primary structure illustrated in Figure 2A.

MobileNetV2 splits depthwise separable convolution into

depthwise convolution (Depth-wise, DW) and pointwise

convolution (Point-wise, PW), which enhances the convolutional

efficiency and reduces the computational time of the network.
B

A

FIGURE 2

(A, B) AttMobile-DeeplabV3+ model structure diagram.
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Additionally, the core of this network utilizes Inverted Residuals for

feature extraction. Compared to traditional convolutional

structures, depthwise separable convolution requires fewer

adjustable parameters and less computation, thus mitigating the

risk of network overfitting.

The Inverted Residuals structure of MobileNetV2, an

improvement over the residual structure of MobileNetV1

(Sandler et al . , 2018), optimizes the latter ’s inherent

characteristics. Traditional residual structures initially decrease

the channel count of feature maps through a 1 × 1 convolution

layer, perform a 3 × 3 convolution, then expand the channel count

using another 1 × 1 convolution layer, finally adding it to the input

feature map as depicted in Figure 3A. Conversely, the Inverted

Residuals structure of MobileNetV2 first expands the channel count

of input feature maps using a 1 × 1 convolution layer, then applies

depthwise separable convolution as shown in Figure 3B. In the end,

to prevent excessive information loss, Linear Bottleneck is utilized

to decrease channel count, replacing the original non-linear

activation transformation. This structural improvement

significantly boosts the network’s computational efficiency and

accuracy, proving to be more suitable for segmentation tasks

under limited GPU power.

While enhancing the speed of network segmentation tasks and

alleviating the GPU’s workload, improving the network structure

inevitably impacts segmentation accuracy to a certain extent.

Furthermore, given the complexity of agricultural scenes, parcel

edges often encounter issues of misclassification or omissions. As

the research shows (Woo et al., 2018), the ability of a network to

focus on crucial information improves when a CBAM is added, with

more features of the object to be recognized being covered, thereby

enhancing the final object identification accuracy. This paper
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introduces the convolutional block attention module into

MobileNetV2, the structure of which is shown in Figure 1B. This

module, including a channel attention mechanism (CAM) module

and a spatial attention mechanism (SAM) module, effectively

addresses the aforementioned issues.

The process of generating attention through the CBAMmodule

is shown in Equations (1) and (2).

F0 = Mc(F)⊗ F (1)

F00 = MS(F
0)⊗ F0 (2)

In equations, F ∈ RC�H�W represents the output weight data from

the backbone network, the expression for the CAM module is MC

∈ RC�1�1, and the expression for the SAM module is MS ∈
R1�H�W. At this point, the output weight data for CAM is 1×1×C

and that for SAM is 2×H×W. F’ is the result of the channel attention

output. After merging F’ with the spatial attention weights, the final

output result F” of the CBAM module is obtained.

(2) Improved Atrous Spatial Pyramid Pooling

The ASPP samples the input feature map in parallel with the

convolution of voids at different sampling rates; The resulting

outputs are then concat together and a 1×1 convolution is applied

to reduce the channel number to the desired value. However, both

atrous convolution and pooling operate within a square window on

the input feature map, which limits their flexibility in capturing

anisotropy and context in real-world scenarios. In the farmland

scenes studied in this research, target objects often have long-range

rectangular structures, such as the farm paths shown in Figure 4A,

the farm edges in Figure 4B, and the irrigation ditches in Figure 4C.

The use of square pooling windows inevitably includes interfering

information from unrelated areas.
FIGURE 3

Inversion residual: (A) Residual structure; (B) Inverse residual structure (with shortcut); (C) Inverse residual structure (no shortcut).
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Research suggests (Hou et al., 2020) that strip pooling layers can

utilize global pooling to optimize the recognition of target features

and overcome long-range dependencies. This layer consists of two

paths that capture long-range context feature information along the

horizontal and vertical spatial dimensions, respectively. For each

spatial position in the pooling box, it encodes the global horizontal

and vertical information and uses this encoding to balance its own

weight for feature refinement, effectively expanding the receptive
Frontiers in Plant Science 06
field of the current module. Using strip pooling can handle more

complex scenarios and improve segmentation results, as illustrated

in Figure 4.

Figure 5 illustrates the operation process of the strip pooling

layers. Its working principle is as follows: firstly, a feature map F of

dimensions C×H×W is inputted. After horizontal and vertical strip

pooling, this feature map transforms into dimensions of H×1 and

1×W, respectively. The output values of the pooling operation are
FIGURE 4

(A–C) An illustration of how strip pooling and traditional spatial pooling work differently in scene resolution. From top to bottom: traditional spatial
pooling; strip pooling. As shown in the top row, strip pooling has a strip kernel (red grid) compared to traditional spatial pooling (green grid), and
therefore captures remote dependencies between discrete distributions of regions (yellow bounding boxes).
FIGURE 5

Strip pooling Model.
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the mean values of the elements within the pooling kernel. Then,

two feature maps are expanded along the left–right and up–down

dimensions, respectively, using a 1×D convolution until they are the

same size. The summation of the corresponding positions in the

expanded feature maps yields a new feature map of H×W.

Following this, the feature map is processed through a 1×1

convolution and a sigmoid function. The resultant feature map is

then element-wise multiplied with the original input map to yield

the final result.

In this study, the incorporation of Strip Pooling for network

optimization can improve the accuracy of farmland plot boundary

recognition. By integrating Strip Pooling as an additional pooling

layer within the ASPP, the deep features outputted by Attention-

MobileNetV2 can be effectively extracted. Figure 2B illustrates the

overall operating structure of the enhanced ASPP module.

2.2.2 Experimental parameters
and network training

The experiment was conducted on a server at the Beijing

Supercomputing Cloud Center. The hardware environment

comprises a Windows server-grade CPU, the Intel(R) Platinum

8260, with 128 GB of running memory, and two Tesla T4-16 GB

computational cards. CUDA version 11.2 was employed. The

programming was compiled using Python, while the excellent

PyTorch was adopted as the deep learning framework. To ensure

the full utilization of the computational capabilities of both graphics

cards during the training process, the Data Parallel (DP) module

from PyTorch was integrated for distributed training.

The related parameter settings are as follows: the batch size is set

to 8, training without freezing the network is employed, the initial

learning rate is set to 5e−4, and the minimum learning rate is set to

5e−6. Cosine annealing (Cos) (Loshchilov and Hutter, 2016) is

introduced as the learning rate adjustment strategy in this study

to ensure good convergence of the network while preventing

overfitting. To adapt to the rate of learning changes, we

incorporate the Adaptive Moment Estimation (Adam) optimizer

(Kingma and Ba, 2014), setting momentum to 0.9. The Dice_Loss

function is chosen as the loss function to overcome issues of

imbalance between foreground and background.

Dice_Loss = 1 −
2oN

i=1pigi

oN
i=1p

2
i +oN

i=1g
2
i

(3)

In the formula, N represents the total number of pixels, pi is the

value of the ith pixel predicted by the network, and gi is the value of

the ith pixel in the actual label. The range of Dice_Loss is between 0

and 1.

2.2.3 Model evaluation metrics
To compare the actual results and performance of the

segmentation algorithm and compare it with other algorithms, this

study uses the network’s accuracy on the test set, mean pixel accuracy

(mPA), and mean intersection over union (mIoU) to measure the

network’s performance. Meanwhile, the number of network

parameters (Parameters) and the average inference time on a single

dataset image are used to measure the network’s complexity.
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mPA is a metric that measures the accuracy of each class in the

segmentation task. PA calculates the ratio between the number of

correctly classified pixels and the total number of pixels for each

class. PA balances the impact of different objects in the image on

the segmentation metric and provides a more realistic reflection of

the segmentation results for each class. mPA is then calculated by

averaging the PA values for all classes. mIoU is a metric that

measures the overlap between the ground truth and predicted

segmentation masks for each class. It calculates the ratio of the

intersection to the union of the predicted and ground truth masks

for each class, and then averages these values across all classes.

mIoU is computed by calculating the IoU for each class and then

averaging the results. Assuming there are k + 1 classes, including k

object classes and one background class, pij represents the number

of pixels predicted as class j while they actually belong to class i.

The formulas for PA, mIoU, and mPA are shown in Equations

(4)–(6).

PA = ok
i=0pii

ok
i=0ok

j=0pij
(4)

mPA =
1

k + 1o
k

i=0

pii

ok
j=0pij

(5)

mIoU =
1

k + 1o
k

i=0

pij

ok
j=0pij +ok

j=0pji − pii
(6)

Inference time (computing time) is the average time taken by the

network to make inferences about the images on the test set.

Number of parameters: The total amount of code that needs to

be run in total, generally used to quantify the complexity of

the network.

2.3 Farmland boundary extraction method
Using the farmland boundaries extraction network

established in Section 2.2, the image is segmented into

farmland regions and non-farmland regions. To extract

farmland boundary lines, we propose a method based on

bwboundaries edge detection and least squares fitting to

generate straight lines. Figure 6 shows the complete flowchart

of the algorithm, which consists of two main components:

coordinate extraction of the plot boundaries and prediction of

the farmland boundaries. The following will provide a detailed

explanation of these components.

2.3.1 Plot boundary determination and extraction
of its coordinates

Taking Figure 7 as an example, Figure 7A shows an image of an

agricultural field: it consists of two farmlands without crops and a

field canal, and Figure 7B is the predicted result. First, the segmented

image is converted into a grayscale image and then binarized. Next,

we use morphological operations on the image: first, erode the test

image, then dilate it to remove tiny isolated noise points, obtaining

results as shown in Figure 7D. Subsequently, based on the binarized

image, we list a binary matrix and convert the binary values from
frontiersin.org

https://doi.org/10.3389/fpls.2023.1228590
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lu et al. 10.3389/fpls.2023.1228590
black and white, and this aids later edge extraction. A Cartesian

coordinate system is established in the image (with the x-axis as the

horizontal axis, the y-axis as the vertical axis, and the center of the

first pixel from the top left of the image as the origin; each pixel center

represents a coordinate point).

By iterating through the black pixels in the image, the number

of internal plots within the image is determined, while excluding

regions with a low number of pixels as they are likely to be

misidentified areas, as shown in Figure 7G. Once the plots are

identified, the coordinate ranges for each region are defined based

on the established Cartesian coordinate system. Finally, the

bwboundaries function is used to obtain the boundary regions for

each farmland, shown as purple dashed lines in Figure 7H.

Additionally, the coordinate point sets for the intersections

between the black and white regions are obtained.
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2.3.2 Fitting boundary line
Based on the results from Section 2.3.1, Figure 8 illustrates the

entire boundary line fitting process. The first step is to detect the

number of boundary lines within a single region (① or ②). By

examining the obtained boundary coordinate set, the orientation of

the boundary lines in the image is determined (horizontal or

vertical). If there is a significant variation in the x-values of some

points in the set, accompanied by a small variation in the y-values,

it is considered a horizontal boundary. In this case, points with yD =|

yi - yi+1|ϵ[0,50] are classified as points on the horizontal boundary

line, forming the horizontal boundary point set. The same approach

applies to identifying vertical boundary lines.

To mitigate the influence of inaccurate boundary segmentation

in the segmented image on the fitting results of the LS algorithm,

this study utilizes standardized residuals to identify and remove
FIGURE 6

Farmland boundary extraction algorithm workflow diagram.
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outliers in the boundary point set P. This approach effectively

improves the fitting accuracy of the LS algorithm on the

boundary and reduces the impact of outliers on the fitting results.

The formula for calculating the standardized residual is shown as

Equation (7):

Zei =
ei
Se

�
�
�
�

�
�
�
�
=

yi − ŷ i

Se

�
�
�
�

�
�
�
�

(7)

In this context, yi represents the observed value of the dependent

variable, and ŷ i is the predicted value obtained from the estimated

regression equation, while ei is the residual of the ith observation.

We establish a rule that if the standardized residual Zei > 3, that

point is considered an outlier and is therefore removed.
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Subsequently, each data point within the transverse boundary

point set P is defined as Pn(xn,yn), and we conduct a polynomial

linear regression using the method of least squares. The data points

in this set all originate from multiple samplings of Equation (8).

f (xi) = q0 + q1xi + q2x
2
i +⋯+qnx

n
i (8)

In the formula, n represents the order of the polynomial, and q
represents the coefficients of each term of the polynomial.

At this point, the sum of the squared errors for each data point

within the dataset P is represented as shown in Equation (9).

S =o
m

i=1
½f (xi) − yi�2 (9)
FIGURE 7

Diagram of the farmland boundary coordinate extraction exercise. The purple dotted area is the boundary area: (A) Original image containing parcel
information; (B) segmented image; (C) binary image; (D) Image after morphological processing; (E) inverted binary image; (F) adding a Cartesian
coordinate system to the image; (G) the regional determination process; (H) image after parcel classification.
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The function f(xi) is the result obtained as per Equation (8). Finally,

all the boundary lines of this plot are summarized, followed by the

boundary coordinate screening and boundary line fitting for other

plot areas, until all the boundary lines of the image are

completely processed.

2.3.3 Boundary line evaluation indicators
In this study, in order to measure the error between the fitted

boundary line and the actual boundary of the farmland, we establish

a Cartesian coordinate system as shown in Figure 7F of Section

2.3.1. We introduce the angular error and the vertical error as the

standards for evaluating the accuracy of the boundary line

extraction (He et al., 2022), as shown in Figure 9. The angular

error is the angle between the actual boundary line and the fitted

boundary line. When the actual boundary line and the predicted

boundary line are in the same right angle coordinate system, the

absolute value of the difference between the vertical coordinates

when the horizontal coordinate is 0 is called the vertical difference,

and the ratio of the vertical difference to the total pixel height of the

image is the vertical error defined in this paper, and the calculation

formula is shown as in Equation (10).

Vertical error =
vertical differencej j
Height of the image

(10)
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3 Results and discussion

In order to verify the effectiveness of the method, ablation

experiments and comparative tests on the segmentation network

are conducted in this paper, and the final boundary extraction

results are evaluated. During the experimental process, all other

conditions are kept unchanged unless otherwise specified, and the

experimental conditions and related parameter configurations are

kept the same as in Section 2.2.2. A total of 130 images were

included in this test, none of which were involved in training.
3.1 Ablation study and result analysis

3.1.1 Ablation on attention mechanism
The attention mechanism module can enhance the adaptability

of the encoder–decoder structured network, improve the feature

effect of the encoder output, and thus increase the accuracy of the

segmentation results. By carrying out ablation experiments on the

attention mechanism, we compare CBAM with two other

commonly used attention mechanisms, SENet [Squeeze-and-

Excitation Network (Hu et al., 2018)] and ECANet [Efficient

Channel Attention Network (Wang et al., 2020)]. In conditions
FIGURE 8

Boundary line fitting process (with multi-directional boundaries as an example). The red dashed line is the true boundary, the purple dashed line is
the segmentation result boundary, and the blue dashed line is the fitted boundary.
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where other configurations and parameters remain the same, the

attention mechanisms are added at the same location. The results

are shown in Table 1. The mIoU of Experiment 1 is 0.48% and

1.87% higher than Experiments 2 and 3, respectively. The accuracy

of Experiment 1 is 0.31% and 0.82% higher than Experiments 2 and

3, respectively. In summary, while CBAM theoretically has a higher

recognition accuracy, because it combines two kinds of attention

mechanisms, its theoretical recognition speed is slower compared to

the other two mechanisms. Adding the CBAM module to

MobileNetV2 can effectively enhance the accuracy of the network

in UAV remote sensing image recognition tasks, thereby increasing

the network’s predicted PA and mIoU.
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3.1.2 Impact of different model improvement
options on performance

To validate the effectiveness of the various improvements in

AttMobile-DeeplabV3+, we conducted a comparative analysis

before and after the network modification. As shown in Table 2,

the analysis results indicate that AttMobile-DeeplabV3+ performs

best in all indicators, with mIoU, mPA, and reasoning time being

88.98%, 94.05%, and 0.080 ms, respectively. DeeplabV3

+(MobileNetV2) is the simplest network among the four groups

of experiments, with the lowest complexity, but the worst data in all

indicators. DeeplabV3+(Attention-MobileNetV2) achieves

significant improvements in mIoU and mPA by adding an

attention mechanism, but its reasoning time slightly increases

compared to DeeplabV3+(MobileNetV2). Experiment 3 slightly

improves in terms of mIoU and mPA, but the increase in

reasoning time is considerable. In summary, the direction of

improvement for DeeplabV3+ is correct, AttMobile-DeeplabV3+

has the best overall performance, but its complexity is

relatively high.

The farmland images are divided into two main categories

(image a contains the background and one of the labels, and

image b contains the background and two labels), and the images

in a are further divided into those where the farmland boundaries

appear parallel in the image and those where the farmland

boundaries appear interlaced in the image. Therefore, to further

verify the impact of the improvements on the image segmentation

effect, multiple farmland images of three different classification

cases are selected for illustration in this paper, as shown in

Figure 10. The red markers highlight the locations where

segmentation errors occurred. From the overall effect of multiple
TABLE 1 In the same configuration and parameters, Experiments 1–3 are the results of adding CBAM, SENet, and ECANet to the same location,
respectively.

Test Num CBAM SENet ECANet mIoU
(%)

Accuracy
(%)

Reasoning time
(ms)

1 √ - - 87.67 95.17 0.081

2 – √ – 86.74 94.86 0.076

3 – – √ 85.35 94.35 0.074
Bold values represents the modules or models used in this study.
FIGURE 9

Schematic diagram of angular and vertical errors. The yellow dashed
line is the real farmland boundary line and the blue solid line is the
predicted farmland boundary line.
TABLE 2 Performance comparison before and after.

Number Name Complexity
(M)

mIoU
(%)

mPA
(%)

Reasoning time
(ms)

1 MobileNetV2 5.814 85.90 92.15 0.075

2 Attention-MobileNetV2 5.839 87.67 93.36 0.081

3 ASPP only improvement 6.044 86.99 92.57 0.078

4 AttMobile-DeeplabV3+ 6.070 88.98 94.05 0.080
Experiments 1–4 correspond to the following models: DeeplabV3+ with MobileNetV2 as backbone network, DeeplabV3+ with Attention-MobileNetV2 as backbone network, DeeplabV3+ with
only improved ASPP module, and AttMobile-DeeplabV3+.
Bold values represents the modules or models used in this study.
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images, it can be seen that DeeplabV3+ (with MobileNetV2 as the

backbone network) can recognize feature information correctly.

However, in Figures 10A, B, E, this network’s recognition of the

long straight boundaries of the farmland is poor, and in Figure 10C,

there is a phenomenon of missing farmland. Also, in Figure 10D,

the vertical boundary is largely unrecognizable. After changing the

backbone network to Attention-MobileNetV2, the network can

better recognize the farmland covered by crops, offering more

details. Still, the recognition of long straight plot boundaries is

not accurate enough, and there are cases of part misclassification,

which have been marked. By keeping the backbone network as

MobileNetV2 and adding extra pooling layers in ASPP, the

network’s recognition accuracy for long straight plot boundaries

has been greatly improved.

In conclusion, the direction of improvement for AttMobile-

DeeplabV3+ is validated. Specifically, using Attention-

MobileNetV2 as the backbone network can achieve a lightweight

balance between speed and accuracy. The improvements to the

ASPP module can optimize the recognition tasks of boundaries with

long-distance dependencies, significantly enhancing recognition
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results. Compared to the control experiment, the AttMobile-

DeeplabV3+ network that combines all improvement proposals is

more accurate and complete in boundary segmentation in

agricultural environments, whether in terms of detail handling or

accuracy in recognizing long straight plot boundaries.
3.2 Effective results of
AttMobile-DeeplabV3+

To validate the effectiveness of the AttMobile-DeeplabV3+

network in obtaining boundary information of farmland from

drone remote sensing images, we conducted comparative

experiments with several commonly used semantic segmentation

networks, including U-Net, DeeplabV3+ (ResNet50), BiSeNetV2,

and HR-Net. The values of various evaluation indicators are shown

in Table 3, which respectively display the mIoU, mPA, and IoU

value of each label for each network. The theoretical values of

DeeplabV3+ (ResNet50) perform well, while BiSeNetV2 and HR-

Net perform somewhat worse across all categories, although they
B

C

D

E

A

FIGURE 10

(A–E) Comparison of image recognition results before and after model modification.
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still yield respectable results. U-Net has the lowest mIoU among all

networks at 82.03%, making it the worst in terms of overall

segmentation theoretical values. AttMobile-DeeplabV3+ achieves

the highest evaluation index theoretical values among all networks,

outperforming the control group networks. Its mIoU is 6.25%,

4.89%, 3.18%, and 0.45% higher than that of U-Net, HR-Net,

BiSeNetV2, and DeeplabV3+ (ResNet50), respectively.

The segmentation results of each network on the test set are

shown in Figure 11. Analyzing the recognition results of Table 3 and

Figure 11, all comparison networks have issues with insufficient

recognition, and some networks also have misclassification issues.

Overall, the AttMobile-DeeplabV3+ network has the best

recognition effect, its segmentation of farmland boundary is

smoother, and its recognition of long straight lines is more

accurate and complete, which provides a good basis for the

subsequent research on boundary line extraction.
Frontiers in Plant Science 13
3.3 Analysis of boundary line
extraction results

In order to verify the accuracy of this algorithm in different

farmland boundary extraction tasks, three representative images

(a), (c), and (d) were selected from Figure 11. Boundary fitting

verification was conducted for all boundaries in the images, and the

error analysis results are shown in Table 4. The average vertical

error of fitting the Crop boundary line is 0.038, and the average

angular error is 1.976°, while the vertical error of fitting the Soil

boundary line is 0.040, and the average angular error is 1.347°. The

overall average vertical error of the fitted boundary line is 0.039, and

the average angular error is 1.473°. These results meet the accuracy

requirements for farmland boundaries of unmanned agricultural

machinery and provide a data basis for subsequent boundary

coordinate extraction.
TABLE 3 Performance comparison of different models (%).

Model mIoU mPA Crop (IoU) Soil (IoU) Background (IoU)

U-Net 82.03 92.43 89.40 92.01 66.48

DeepLabv3+(ResNet50) 88.53 93.97 93.16 92.33 80.11

BiSeNetV2 85.80 92.20 92.52 91.48 73.39

HR-Net 84.09 92.57 90.41 89.85 72.03

AttMobile-DeeplabV3+ 88.98 94.05 93.25 93.14 80.54
Bold values represents the modules or models used in this study.
B

C

D

A

FIGURE 11

(A–D) Analysis of comparative test results of different models.
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4 Conclusion

This study proposes a semantic segmentation network based on

DeeplabV3+, and designs a method to extract farmland boundaries

from UAV remote sensing images using this network. The

principles and structure of this method are analyzed, and ablation

experiments and comparative experiments are conducted. On the

crop-covered farmland and the uncropped farmland, the IoU of the

network is 93.25% and 93.14%, respectively, and the PA of the crop-

covered farmland is 96.62%. The segmentation results show that the

AttMobile-DeeplabV3+ can accurately identify crop-covered

farmland and uncropped farmland. The proposed method

significantly improves the accuracy of farmland boundary

positioning and the ability to identify boundary details, effectively

solving the problem of incomplete boundary segmentation in the

UAV farmland image recognition method. At the same time, the

results of the boundary line fitting were also evaluated, with an

average vertical error and average angular error of 0.039 and 1.473°,

respectively. The results of boundary line fitting show that the

proposed method has high accuracy, and can provide practical and

accurate method support for subsequent autonomous unmanned

agricultural machinery for farmland boundaries. At the same time,

this method is expected to be widely applied in different types of

farmland, providing a practical method for the current acquisition

of farmland boundary information.

However, there are some limitations to this research. Because of

factors such as lighting, the shadows of obstacles in the farmland

cannot be completely eliminated, which, to some extent, affects the

extraction accuracy of the farmland boundaries and interferes with

the accuracy of boundary line identification. Therefore, in future

work, we need to further improve the semantic segmentation

network and equip it with more advanced training platforms and

clearer image collection equipment to solve the existing problems

and achieve the long-term goal of precision agriculture.
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