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Introduction: Sugarcane stem node detection is one of the key functions of a

small intelligent sugarcane harvesting robot, but the accuracy of sugarcane stem

node detection is severely degraded in complex field environments when the

sugarcane is in the shadow of confusing backgrounds and other objects.

Methods: To address the problem of low accuracy of sugarcane arise node

detection in complex environments, this paper proposes an improved sugarcane

stem node detection model based on YOLOv7. First, the SimAM (A Simple

Parameter-Free Attention Module for Convolutional Neural Networks)

attention mechanism is added to solve the problem of feature loss due to the

loss of image global context information in the convolution process, which

improves the detection accuracy of the model in the case of image blurring;

Second, the Deformable convolution Network is used to replace some of the

traditional convolution layers in the original YOLOv7. Finally, a new bounding box

regression loss function WIoU Loss is introduced to solve the problem of

unbalanced sample quality, improve the model robustness and generalization

ability, and accelerate the convergence speed of the network.

Results: The experimental results show that the mAP of the improved algorithm

model is 94.53% and the F1 value is 92.41, which are 3.43% and 2.21 respectively

compared with the YOLOv7 model, and compared with the mAP of the SOTA

method which is 94.1%, an improvement of 0.43% is achieved, which effectively

improves the detection performance of the target detection model.

Discussion: This study provides a theoretical basis and technical support for the

development of a small intelligent sugarcane harvesting robot, andmay also provide

a reference for the detection of other types of crops in similar environments.

KEYWORDS
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1 Introduction

Sugarcane is the main raw material for sugar production.

Although China’s sugarcane cultivation area is large, it is mostly

planted in hilly areas, which is not conducive to the work of existing

large and medium sized sugarcane harvesters (Zeng et al., 2012).

Therefore, the research of miniaturized and intelligent sugarcane

harvesters is a development trend, and the recognition of sugarcane

stem nodes to judge the position of sugarcane nodes cutting is the

first step to realizing intelligent sugarcane harvesting operation.

In the study of recognition of sugarcane stem nodes, Moshashai

et al. (2008) first investigated the recognition method of sugarcane

stem nodes by comparing the diameters of different parts of

sugarcane. Lu et al. (2010) proposed a support vector machine-

based feature extraction and recognition method for sugarcane stem

nodes, and the recognition rate reached 94.118%. Huang et al.

(2013) searched the edges of grayscale images by soble operator and

achieved 100% recognition rate in detecting and locating sugarcane

nodes using random transform. Meng et al. (2019) proposed a

sugarcane stem node recognition algorithm based on multi-

threshold and multi-scale wavelet transform, applied to stem

node recognition of leaf stripped sugarcane with 100%

recognition rate. Zhou et al. (2020) proposed a sugarcane stem

node recognition based on Sobel edge detection based sugarcane

stem node recognition method, the recognition rate of 93% can

meet the working requirements of a sugarcane seed-cutting

machine. Chen et al. (2021a) proposed a sugarcane node

recognition algorithm based on the minimum point local pixel

sum of vertical projection function and analyzed the recognition of

single and double nodes, where the recognition rate of a single node

is 100% and the recognition rate of double nodes is 98.5%. The

above methods mainly rely on traditional image processing

methods, which need to work in simple environments and

cannot meet the requirements of real-time detection in

complex backgrounds.

In recent years, with the development of deep learning

technology and the continuous open source of classical target

detection algorithms such as Faster-RCNN and YOLO series, the

algorithms of deep learning have been widely used in the field of

agriculture. As a single-phase detection method, the YOLO

algorithm has the characteristics of fast speed and high efficiency

compared to the two-phase detection method, which is widely used

in target detection in real scenes. Zhang et al. (2022) proposed an

improved lightweight network based on YOLOv5s to achieve all-

weather detection of dragon fruit in complex orchard

environments, introduced a ghost module in yolov5 to realize the

lightweight of the model, added a coordinate attention mechanism

so that the model can accurately locate and identify dense dragon

fruit, and adopted the SIoU loss function to improve the

convergence speed, and the results show that the average

precision (mAP) of the model is 97.4%. Zang et al. (2022)

proposed an improved attention mechanism based on YOLOv5s

for detecting the number of small-scale wheat spikes and better

solving the problem of occlusion and cross-overlapping of wheat

spikes. The university’s channel attention module (ECA) is

introduced in the C3 module of the YOLOv5 backbone structure.
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The results show that the improved YOLOv5s model achieves an

accuracy of 71.61% in the wheat spike counting task, which is 4.95%

higher than the original model, and the method improves the

applicability in complex field environments. Wang et al. (2022a)

proposed an improved YOLOv4 model for the accurate detection of

pear blossoms in natural environments, which consists of the SENet

(squeeze - and - excitation Networks) module-embedded

ShuffleNetv2 replaces the original backbone network of

the YOLOv4 model and constitutes the backbone network of

the YOLO-PEFL model. The experimental results show that the

YOLO-PEFL model has an average accuracy of 96.71% and can

accurately detect pear blossoms in the natural environment. Li et al.

(2019) established an intelligent recognition convolutional neural

network model by improving the YOLOv3 network, and the

recognition accuracy of stem nodes was 96.89%, however,

sugarcane samples were preprocessed by manually removing

leaves in a preprocessed monochromatic background

environment. To promote sugarcane precut seeds good seeds and

good method planting technology, Wang et al. (2022b) proposed an

algorithm to improve YOLOv4-Tiny to achieve accurate and fast

identification and cutting of sugarcane stem nodes, and the

detection accuracy of the improved algorithm was 97.07%.Zhu

et al. (2022) proposed a new method of binocular localization

based on improved YOLOv4 for the difficult spatial localization of

sugarcane nodes using robots under agricultural conditions, and

lightened YOLOv4 for porting to embedded chips by network

slimming techniques. The results showed that the improved

YOLOv4 algorithm reduced the model size, parameters, and

FlOPs by about 89.1%, which greatly reduced the complexity of

the model. The complexity of the model is greatly reduced, but the

accuracy is also slightly reduced. Chen et al. (2021b) proposed a

deep learning-based target detection algorithm for the problem of

low accuracy of sugarcane stem node recognition in the natural

environment and improved the robustness and generalization

ability of the algorithm by data set expansion method, and the

results showed that the average accuracy was 95.17%. Although

good accuracy is obtained, the use of the dataset expansion method

is likely to lead to data over fitting.

Deep learning-based target detection methods have already

achieved good results in sugarcane stem node recognition in

simple backgrounds, but in the field, there is the problem of

difficulty in recognizing and accurately locating sugarcane stem

nodes in complex environments constituted by light, shading, and

other characteristics of the crop such as dense sugarcane and

different maturity levels. Therefore, a target detection model

based on improved YOLOv7 is proposed in this paper, and the

main contributions are as follows:
1. Establishing sugarcane datasets in complex environments.

2. In this paper, an improved target detection network model

for complex environments based on YOLOv7 is proposed.

The Deformable Convolution Network (DCN) is

introduced to replace part of the convolutional layer of

the feature extraction network in the original YOLOv7 so

that the feature extraction network can adaptively extract

the positional features such as occlusion and overlap that
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leads to the lack of information of sugarcane stems and

nodes and the SimAM is added to the ELAN module in the

backbone network and the concatenation layer in the

feature fusion module. An attention mechanism is added

to the ELAN module in the backbone network and the

Concat connection layer in the feature fusion module to

enhance the extraction ability of the model for small and

dense sugarcane stem node features without increasing the

complexity of the model. The WIoU loss function is used

instead of the original loss function to solve the sample

quality imbalance problem, which improves the

convergence speed of the model during training.

3. The superiority of our model in the task of target detection

in complex environments is verified from different

perspectives through comparative and ablation

experiments, and the experiments provide ideas and

rationale for small intelligent sugarcane harvesters to

recognize sugarcane stem nodes.
2 YOLOV7 network model
and improvements

2.1 YOLOv7 model

The YOLOv7 (Wang et al., 2023) target detection algorithm,

introduced by the original YOLOv4 (Bochkovskiy et al., 2020)

research team in July 2022, is a novel and excellent detector that

uses instead of efficient aggregation network, the ELANmodule that

appears in the network structure, to effectively enhance the network

learning capability compared to the previous YOLO series. The

YOLOv7 network structure mainly consists of the Input layer,

Backbone layer, Neck layer and Head layer, Backbone layer, Neck

layer, and Head layer. The input layer is the input layer, which

scales the input image to a fixed size to meet the input size

requirement of Backbone. The backbone layer is the feature

extraction layer, and based on YOLOv5, ELAN structure, and MP

structure are introduced. Among them, the ELAN structure consists

of different convolutional blocks stacked without changing the

width-height of the input feature layers and enhances the

interaction between each feature layer through expansion,

random combination, and splicing to improve the learning ability

of the model. The MP structure consists of convolutional blocks of

3x3 size and a Maxpool dual path, which compresses the width-

height of the input feature layers to enhance the feature fusion

ability of the network. The neck feature fusion network (Neck layer)

includes CBS, SPPCSPC, MP, and ELAN, which follow the

traditional PAFPN structure to extract three feature layers located

in the middle, lower middle, and bottom layers of the backbone

part, respectively, to achieve full fusion of multi-scale features. the

SPPCSPC structure achieves a full fusion of multi-scale features by

introducing a convolutional spatial pyramid (CSP) in the spatial

pyramid pool (SPP) structure) structure to improve the perceptual

field of the network, while multiple pooling operations are added in
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parallel in a string of convolutions, using residual edges for

optimization and feature extraction. The Head layer uses the

anchor mechanism to output feature maps at three scales, large

and small, and uses the reparameterized structure RepConv to

articulate the regular convolution to adjust the number of channels

and prediction, and then the final prediction results are obtained

through the processing of CIou loss function and nonlinear maxima

suppression (NMS).

Although the YOLOv7 algorithm performs well in common

task scenarios (e.g. pedestrian and vehicle detection), there are still

many problems in applying it directly to sugarcane stem node

recognition in complex environments: for example, in the actual

sugarcane environment, dense clusters of sugarcane, small stem

node size, and a large number, and a certain degree of occlusion or

overlap will lead to serious cases of missed and false detection. To

address the above problems, this paper improves the YOLOv7

algorithm in terms of attention mechanism, convolution layer,

and loss function to improve the recognition effect in complex

environments. The YOLOv7 network structure is shown

in Figure 1.
2.2 SimAM attention mechanism

The attention mechanism refers to the model ignoring

irrelevant information and focusing on important information by

assigning different weights to the input parts of the network, which

can effectively improve the feature extraction ability of the model in

complex backgrounds. pyramid feature extraction is used as the

backbone network in YOLOv7, and in response to the

characteristics of dense sugarcane, small target, large number, and

easy to obscure and overlap in the natural environment, this paper

adds an attention mechanism to the backbone In this paper, we add

an attention mechanism to the backbone network to improve the

feature extraction capability and enhance the feature representation

capability. The traditional attention mechanisms SE (Hu et al.,

2018) (Squeeze-and-Excitation), (Woo et al., 2018) CBAM

(Convolutional Block Attention Module), ECA (Wang et al.,

2020) (Efficient Channel Attention Module), CA (Hou et al.,

2021) (Coordinate Attention), all assign attention weights along

channels or spatial locations and require additional sub-network

structures and model parameters, which on the one hand cannot

generate real 3D weights based on channels or spaces, and on the

other hand, the additional sub-network structures inevitably lead to

an increase in network complexity. In order to solve the shortage of

traditional attention mechanisms, this paper proposes to use

SimAM (Yang et al., 2021) non-parametric attention mechanism,

whose attention weights are assigned as shown in Figure 2.

The SimAM attention mechanism generates truly effective 3D

weights directly by designing an energy function, without adding

additional sub-networks or additional model parameters. The

design of the energy function is inspired by neuroscience theory

and aims to measure the linear differentiability between neurons to

find the important neurons, and for each neuron of the input, the

minimum energy function is defined as follows.
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e*t =
4 (ŝ 2 + l)

(t − m̂ )2 + 2ŝ 2 + 2l
(1)

where t denotes the target neuron of the input feature in the

current channel, where µ,s2, is the mean and variance of all neurons

in the channel to avoid repeated calculations and reduce the

computational cost, and l is the weight constant. To better realize

attention, the SimAM module needs to assess the importance of

each neuron. In neuroscience, neurons with rich information

usually exhibit different firing patterns than surrounding neurons.

In addition, activated neurons tend to inhibit surrounding neurons,

spatial inhibition, and neurons with spatial inhibition should be

given higher importance (Webb et al., 2005). Equation (1) reveals a

phenomenon: the lower the energy t of a neuron, the more it differs

from surrounding neurons, and therefore the more significant its

contribution to visual processing. Thus, the importance of each

neuron can be evaluated in terms of e*t . SimAM attention

mechanism is added to the ELAN module of the backbone

network as well as the Concat connection layer of the neck

network, SimAM adjusts the distribution of the attention of the

feature map by evaluating the importance of each neuron, so that

the channel and the spatial attention work in synergy, the

importance of the neurons of the sugarcane stem node will be
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calculated through the training model, and the information of the

secondary disturbances other than the sugarcane stem node will be

suppressed, so that the information of the secondary disturbances

other than the sugarcane stem node will be suppressed, thus weaken

the influence of complex environmental factors on sugarcane stem

node recognition. At the same time, SimAM can adaptively adjust

the weights of feature mapping and pay more attention to the local

area of the target. This can improve the target localization accuracy,

reduce the localization error and enhance the feature extraction

ability of the backbone network.

The output equation of the attention module is:

Y = sigmoid
1

E(X)

� �
☉X (2)

The final output is obtained by adding the Sigmoid function to

suppress the outliers of the attention weights and performing the

dot product operation with the corresponding elements of the input

feature matrix.

Aiming at the recognition of sugarcane stem nodes in complex

environments and the lack of an attention mechanism in the

YOLOv7 network, this paper effectively extracts finer-grained

feature information by adding the SimAM attention mechanism
FIGURE 1

YOLOv7 network structure diagram.
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to the last layer of the 1×1 CBS of the ELAN module in the

Backbone module of YOLOv7 and by incorporating the Concat

in the Neck into the SimAM attention mechanism.
2.3 Deformable convolution

In the original YOLOv7 model, ordinary convolutional blocks

are used in the feature extraction network Backbone, which mainly

consists of a traditional convolutional layer, BN layer, and

activation function, and due to the fixed size of the convolutional

kernel of the traditional convolutional layer, it has poor robustness

to unknown geometric transformations and poor generalization

ability. When performing feature extraction, it is difficult for the

fixed-size convolution kernel to extract the boundary information

of the object accurately because the size and contour of different

objects are generally different, which affects the ability of the

network to extract the features of the object. The traditional

convolutional calculation method is as follows:

y(p0) = o
pn∈R

W(pn) · X(p0 + pn) (3)

where R denotes the size of the partial feature map

corresponding to the convolution kernel, W (pn) denotes the

weight corresponding to the nth sampled point in the sampled

region, and X (p0 + pn) denotes the pixel value size of the nth

sampled point. To solve the above problem, a deformable

convolutional network (Dai et al., 2017) is introduced in this

paper, as shown in Figure 3:

The network is able to adaptively adjust the size and shape of

the convolution kernel for objects of different shapes, which has

better robustness and generalization ability compared with

traditional convolutional networks, thus enhancing the underlying

network’s ability to extract object features. In the variable

convolution operator, adding a learnable offset parameter offset to

each element in the convolution kernel can make the originally
Frontiers in Plant Science 05
fixed convolution kernel have the ability to adapt to the object

shape, and the computational equation is as follows:

y(p0) = o
n∈R

W(pn) · X(p0 + pn + Dpn) (4)

In the variable convolution calculation equation (3), Dpndenotes
the offset. Considering the irregularity of the sampling position of

the variable convolution, so that the offset is generally fractional,

equation (4) is implemented with bilinear interpolation as follows:

y(p) =o
q
G(q, p) · X(q) (5)

where p denotes an arbitrary position in the region

corresponding to the deformable convolution, q is the pixel value

corresponding to a sampling point in the feature map X, and G(q,p)

denotes a two-dimensional bilinear interpolation kernel. In the

sugarcane stem node detection task, sugarcane may have complex

deformations, such as cane twisting, deformation, or attitude

changes, which have an impact on the accurate identification of

sugarcane stem nodes. Traditional fixed convolution kernels are

difficult to capture these local deformations. Deformable

convolution adjusts the sampling position of the convolution

kernel by introducing offsets, which allows the convolution

operation to better adapt to the target’s deformations and

enhances the model’s ability to recognize complex shapes.

Deformable convolution utilizes additional convolutional layers to

learn the corresponding offsets, and superimposes the obtained

offsets on the corresponding pixels in the input feature maps,

allowing the convolutional kernel to diverge the sampling in the

input feature maps, so that the network can focus on the target

function. The embedded deformable convolutional layer can

adaptively adjust the sensory field size and position during the

convolution process, so that the sampling position around each

position during pooling is adaptive and better adapts to the shape

and size of the sugarcane stem nodes, thus improving the

detection accuracy.
FIGURE 2

SimAM attention mechanism.
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Since deformable convolution adds one more parameter

compared to conventional convolution, the 3 × 3 convolution

kernel in the ElAN module of the backbone network is replaced

with deformable convolution (DCN) in the improved algorithm of

this paper, and DCN, BN, and SiLU form the DBS module. And the

last layer of 1 × 1 CBS in ELAN is replaced with the SimAM

attention mechanism, as shown in Figure 4, and the replaced

structure is represented by DS-ELAN, which enhances the

network with a smaller increase in the computational capability

of feature extraction and complex background target detection.
2.4 Loss function improvement

The YOLOv7 network uses CIoU (Zheng et al., 2021) Loss as

the Bounding Box loss function of the model. This function is

mainly used for the regression of the prediction box so that the

prediction box of the object is closer to the position of the object

labeled bounding box. In the model training, CIoU Loss calculates

the distance between the prediction box and the center of the real

bounding box, the overlap area, and the aspect ratio of the two

boxes for the regression of the bounding box, but it does not take

into account the balance of the quality of the training samples,

which will lead to the slow convergence and low efficiency of the

network, and may result in a worse model due to the random

matching of the prediction boxes during training. CIoU is

calculated as follows:

LCloU = 1 − IIoU +
r2(b, bgt)

c
+ a (6)
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v =
4
p2 arctan

wgt

hgt
− arctan

w
h

 !2

(7)

a =
v

(1 − IIoU ) + v
(8)

Where: b denotes the centroid of the prediction frame; bgt
denotes the centroid of the true frame; r represents the Euclidean

distance between the two centroids is calculated, and c denotes the

diagonal length of the minimum enclosing frame covering the

prediction frame and the true frame;a is the balance parameter; v

is used to measure whether the aspect ratio is consistent. It can be

seen from Equation (7) that when the aspect ratio of the prediction

frame and the true value are equal and v takes 0, the penalty term

for the aspect ratio in the loss function in CIoU degenerates to 0,

resulting in a penalty failure and the final prediction frame cannot

fit the true frame. When the prediction frame fits the target frame

well, a good loss function should be able to attenuate the penalty of

geometric factors.

Because the training data inevitably contains low-quality

examples, geometric measures such as distance and aspect ratio

can exacerbate the penalty on low-quality examples thus degrading

the generalization performance of the model.Wise Iou (Tong et al.,

2023) can well improve the sample quality imbalance problem and

increase the accuracy of the target detection algorithm. The WIoU

loss function is formulated as follows:

LWIoUv1  =  RWIoULIoU (9)

RWIoU = exp
(x − xgt)

2 + (y − ygt)
2

(W2
g +H2

g )*

 !
(10)
FIGURE 3

Deformable convolutional network diagram.
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RWIoUrange is [1,e), which significantly amplifies the LIoUof the

common quality anchor box.LIoUrange is [0,1]. will significantly

reduce the LIoUof the high-quality anchor frame and the distance

between its center of attention when the anchor frame overlaps well

with the target frame.

where x y is the coordinate of the center point of the prediction

frame, xgt,ygt is the coordinate of the center point of the real frame,

andWg, Hg denote the width and height of the minimum enclosing

frame. In order to prevent the generation of gradients that hinder

convergence, Wg and Hg are separated from the computational

graph (the superscript * indicates this operation), which effectively

eliminates the factors that hinder convergence, so no new metric,

such as aspect ratio, is introduced. Since LIoUis dynamic, the quality

classification criteria of the anchor boxes are also dynamic, which

allows WIoU to make a gradient gain allocation strategy that best

fits the current situation at each moment.

This strategy reduces the competitiveness of high-quality anchor

boxes and also reduces the deleterious gradients generated by low-

quality samples. In the sugarcane stem node detection task, some

samples may be challenging due to the diversity and complexity of

sugarcane images, such as blurred, occluded, or small size of sugarcane

images. For these low-quality examples, they may generate noisy or

unreliable gradient signals that interfere with the model training

process. By introducing category weights through multiple, the WIoU

loss function can reduce the weights of low-quality samples relatively,

which reduces the impact of these samples on the model parameter

updates. Therefore, by reducing the competitiveness of high-quality

anchor boxes and reducing the harmful gradient of low-quality samples,

the WIoU loss function is able to focus more on the optimization of

average-quality anchor boxes and improve the performance of the
Frontiers in Plant Science 07
target detector in general. This strategy helps to make the model more

focused on the detection accuracy of important target categories and

enhances its ability to handle medium-quality samples, thus improving

the effectiveness and performance of overall target detection.

Therefore, this paper uses the WIoU loss function to replace the

CIoU in the original network to solve the problem that the regression

boxes cannot be matched accurately due to the unbalanced

sample quality.

In summary, the improved algorithm adds the SimAM

attention mechanism to the feature fusion part of the original

YOLOv7 backbone network to enhance the network’s ability to

extract target feature information in complex scenes. By using

deformable convolution to replace some ordinary convolution

layers, the convolution kernel is deformed by more pairs of

convolution kernels, which in turn enhances the perceptual field

and feature extraction ability of the convolutional network, so that it

can better adapt to the shape and position changes of target objects,

thus improving the accuracy of object recognition and localization.

The CIoU is replaced by WIoU to solve the sample mass balance

problem and to make the prediction frame fit the real frame better

to improve the detection accuracy. The structure diagram of the

improved YOLOv7 network is shown in Figure 5.
3 Experiment and analysis

3.1 Experimental data set

The sugarcane images used in this paper were taken from Su

Village, Tao Wei Town, Hengxian County, Guangxi, China, which
FIGURE 4

DS-ELAN structure diagram.
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is a sugarcane plantation. The images were captured by a Xiaomi

10pro digital camera with a resolution of 1080 × 1440 pixels, and

the shooting time periods were morning, noon, and afternoon, and

a total of 2144 different sugarcane images were obtained by

constantly changing the distance and shooting angle. They

contain images under uneven conditions of natural scenes such as

leaf occlusion, overlapping occlusion, visual similarity to the

background image, dense target, backlight, front light, and side

light, and are saved in JPG format. The following Figure 6 shows

some images taken under different conditions, which were

randomly divided into 80% as the training set, 10% as the

validation set, and 10% as the test set, forming 1715, 214, and 214

images for model training and testing, respectively. The datasets

were then annotated, and the sugarcane stem node bounding boxes

in each image were drawn manually using the Roboflow annotation

platform, and the annotation files were saved in YOLO text format,

which requires the target class, coordinates, height, and width. The

process of annotating the sugarcane stem nodes is shown

in Figure 7.
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3.2 Model evaluation metrics

This paper adopted evaluation metrics including precision (P),

recall (R), mean average precision (mAP), and F1 score.

P and R refer to the precision and recall of the detection model,

respectively. Precision represents the proportion of true positive

samples in the samples predicted as positive by the classifier. The

recall represents the proportion of true positive samples that are

correctly predicted as positive by the classifier among all true

positive samples. The formula for calculating precision and recall is:

P =
TP

TP + FP
� 100% (11)

R =
TP

TP + FN
� 100% (12)

The F1 score considers both precision and recall, and it can

reflect the stability of a model. A higher F1 score indicates a more

stable model. The formula for calculating the F1 score is:
FIGURE 5

Improved YOLOv7 network structure diagram.
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F1 =
P � R� 2
P + R

(13)

mAP is the average precision of each class and the average value

of AP, its calculation formula is:

mAP =
1
C

Z 1

0
P(R)dR (14)
3.3 Experimental environment and
parameter settings

The experimental environment is a 64-bit Ubuntu 22.04 system

with an Intel(R) Xeon(R) Platinum 8157 CPU @ 2.30GHz and an
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NVIDIA GeForce RTX3090 graphics card with 24GB video

memory. The study is based on the PyTorch deep learning

framework, and the development environment is PyTorch 1.11.0,

Cuda 11.3, and Python interpreter version 3.9. The parameters of

the experiments conducted in this experiment are shown in Table 1:
3.4 Ablation experiments

To validate the effectiveness of the improvement points in this

paper, five sets of ablation experiments were conducted on the

sugarcane dataset using the original YOLOv7 network as a baseline

and keeping the environment and parameters uniform. The

validation criteria include mAP values and F1 values. The
FIGURE 7

Marking process.
B C

D E F

A

FIGURE 6

Partial data set display: (A) Sunbeam; (B) Back lighting; (C) Light blocking; (D) Leaf wrap; (E) Foliage shade; (F) Weed shading.
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experimental results are shown in Table 2, where bold font indicates

the optimal results in each column and √ indicates the use of the

corresponding method.
3.5 Comparison of experimental results
and analysis

In order to evaluate the performance of the algorithms, the

improved algorithm proposed in this paper is compared with the

algorithms such as YOLOv7, YOLOv5, YOLOv8, Faster-R-CNN,

and SSD for the detection performance on the dataset, and

all the experiments are conducted under the same parameters.

The experimental results are shown in Table 3, the table below, the

improved algorithm, the mAP reached 94.53% and the F1 score

reached 92.41, which are 3.43% and 2.21 respectively higher than

the baseline YOLOv7, compared to the other algorithms in Table 3

with the best overall results. Faster R-CNN and SSD algorithms

are affected by the fixed parameters of the anchor frame, which

reduces the model detection effect. The YOLOv5 algorithm

optimizes the network structure better, and the predicted

position regression is more accurate. YOLOv8 has higher

accuracy and recall because the C3 structure of the backbone

network is replaced by the C2f structure with a richer gradient

flow, and the number of channels is adjusted differently for
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different scale models, which significantly improves the model

performance, but it is higher than There is still a certain gap

compared with this paper. Comprehensive measurement of

different detection algorithms, the improved algorithm in this

paper is better, which confirms the effectiveness of the improved

algorithm in this paper.
4 Discussion

Below we discuss the visualization results after the introduction

of the attention mechanism. In Figures 8, 9, A is the original image

of Cane, (B-F) are the heat maps before and after adding the

attention mechanism, respectively, and the darker red color in the

heat map indicates the larger value. From Figure 8, it can be seen

that the model is not accurate enough in predicting the stem nodes

during the target detection, the darkest colored part is not the

sugarcane stem node, and there is a false detection. From Figure 9, it

can be seen that after adding the attention mechanism, the model is

more accurate in locating the stem nodes.

Here we discuss the effect of the improved loss function.

Figures 10, show the box loss and total loss before and after the

improved algorithm, respectively, and the horizontal coordinates

are the number of training rounds. It can be directly concluded

from the above figures that the improved algorithm has smaller loss

values than the original algorithm, and the values of its box loss and

total loss are stable at 0.035, 0.045, and From the figure, we can see

that although the improved algorithm has a higher loss value than

the original YOLOv7 at the beginning of training, the loss value

decreases quickly and stabilizes as the number of training rounds

increases. Therefore, it shows that the improved algorithm

converges faster and has better performance.

In order to compare the detection effect of the algorithm

improvement more intuitively, the detection effect of the original

YOLOv7 algorithm, other models, and the improved model of

this paper is compared with the real labeled frame as the

benchmark, and the detection results of the sugarcane stem

nodes are shown in Figure 11. It can be seen that in the case of

complex background interference, YOLOv7 and other models
TABLE 2 Ablation experiments.

Number SimAM DCN WIoU mAP(%) F1

No.1 91.10 90.20

No.2 √ 92.50 91.13

No.3 √ 92.30 91.08

No.4 √ 92.23 90.87

No.5 √ √ √ 94.53 92.41
frontier
(1) No.1 shows the experimental results of the pre-improved YOLOv7 algorithm, which serves as a comparative benchmark for the experiments of the latter 4 groups, detecting an mAP value of
91.10% and an F1 value of 90.20.
(2) No.2 is to add only the attention mechanism, although the attention mechanism increases the amount of computation and the number of parameters, the mAP value is improved by 1.40%,
and the F1 value is improved by 0.93.
(3) No.3 is to replace only some of the convolutional layers in the backbone network with deformable convolution, the mAP value is improved by 1.20%, and the F1 value is improved by 0.88.
(4) No.4 for replacing only the WIoU loss function, without increasing the number of model parameters and computational effort, the mAP value is improved by 1.13%, and the F1 value is
improved by 0.67.
(5) No.5 shows the experiment of the improved algorithm in this paper, compared with the YOLOv7 algorithm before improvement, the mAP value is improved by 3.43%, F1 value is improved
by 2.21, which confirms the validity of each improvement point.
"√*" indicates that this methodology is used.
TABLE 1 Experimental parameters.

Parameters Values

Learn rate 0.01

Epochs 100

Batch-size 16

Wokers 4

Img size 640×640

Nms 0.3

Conf thres 0.25
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will have problems such as incomplete detection and

misdetection, etc. In this paper, by improving the YOLOv7

model and strengthening the spatial feature extraction ability

of the backbone network, the probability of misdetection of the

sugarcane stem nodes is significantly reduced. In the case of

sugarcane stem nodes with fuzzy edges, unclear contours, and

obscured by leaf wrappings, the original YOLOv7 algorithm is

prone to miss detection, and the accuracy of sugarcane stem

node detection is low. In contrast, the algorithm in this paper, by

introducing deformable convolution in the feature fusion
Frontiers in Plant Science 11
network, acquires a larger sensory field and captures more

spatial information, and incorporates the attention mechanism

in the stem network, which utilizes the multidimensional

interaction between channels and space to retain the key

information, so that the model can have the ability to

differentiate between overlapping targets, and improve the

occurrence of leakage detection well. In this paper, the WIoU

loss function is introduced to make the model more accurate in

judging the position of sugarcane stem nodes and improve

detection accuracy. In summary, it shows that the improved

model has good applicability in complex environments.
5 Conclusion

In this paper, we propose an improved YOLOv7-based

sugarcane stem node detection algorithm for dense sugarcane in

the natural environment, small target, large number, and easy to

obscure and overlap, and verify the effectiveness of the proposed

algorithm through experiments. In order to make the feature

extraction network adaptive to extract the shape and location

features of dense sugarcane stem nodes in the natural

environment, a deformable convolutional network is introduced
B C

D E F

A

FIGURE 8

Heat map before adding the attention mechanism: (A) Original image; (B-F) Heat map of each sugarcane stem node of the original model.
TABLE 3 Comparison experiments.

Models mAP(%) F1

YOLOv7 91.10 90.20

YOLOv5 92.34 91.20

YOLOv8 91.41 91.00

Faster-R-CNN 76.89 76.00

SSD 72.48 72.00

Improved-YOLOv7 94.53 92.41
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in the module of the original YOLOv7 algorithm, which is used to

replace some ordinary convolutional layers to improve the feature

extraction ability of the algorithm for dense and occluded sugarcane

stem nodes. In the backbone network of YOLOv7, the SimAM

attention mechanism is added to improve the network’s ability to

extract deep and important features. To improve the matching
Frontiers in Plant Science 12
between the prediction frame and the real labeled frame, the WIoU

boundary regression loss function is introduced to replace the CIoU

loss function in YOLOv7, which can better guide the network

learning and improve the accuracy of detection results. The mAP

of the improved YOLOv7 algorithm is 94.53%, which is 3.43%

higher than the mAP of the YOLOv7 algorithm, with certain
B C

D E F

A

FIGURE 9

Heat map after adding the attention mechanism: (A) Original image; (B-F) Heat map of each sugarcane stem node for the improved model.
BA

FIGURE 10

Loss. (A) Box loss; (B) Total loss.
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robustness and generalization, and 17.64%, 2.19%, 3.12%,

compared with the average accuracy of the Faster-RCNN,

YOLOv5, YOLOv8, and SSD network models, respectively,

22.05%, providing a new research idea for the intelligent

sugarcane harvester to identify stem nodes. The improved

YOLOv7 algorithm can improve the detection accuracy of

obscured and overlapping sugarcane stem nodes in the natural

environment, but the model detection speed decreases while the

accuracy is improved; therefore, in future work, it is still necessary

to consider how to further optimize the improved algorithm, use a
Frontiers in Plant Science 13
lighter network while ensuring the detection accuracy and

improving its generalization ability, to provide new sugarcane

stem node recognition in natural environment Detection methods.
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