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Plants are widely grown around the world and have high economic benefits.

plant leaf diseases not only negatively affect the healthy growth and

development of plants, but also have a negative impact on the environment.

While traditional manual methods of identifying plant pests and diseases are

costly, inefficient and inaccurate, computer vision technologies can avoid these

drawbacks and also achieve shorter control times and associated cost

reductions. The focusing mechanism of Transformer-based models(such as

Visual Transformer) improves image interpretability and enhances the

achievements of convolutional neural network (CNN) in image recognition, but

Visual Transformer(ViT) performs poorly on small and medium-sized datasets.

Therefore, in this paper, we propose a new hybrid architecture named FOTCA,

which uses Transformer architecture based on adaptive Fourier Neural

Operators(AFNO) to extract the global features in advance, and further down

sampling by convolutional kernel to extract local features in a hybrid manner. To

avoid the poor performance of Transformer-based architecture on small

datasets, we adopt the idea of migration learning to make the model have

good scientific generalization on OOD (Out-of-Distribution) samples to improve

the model’s overall understanding of images. In further experiments, Focal loss

and hybrid architecture can greatly improve the convergence speed and

recognition accuracy of the model in ablation experiments compared with

traditional models. The model proposed in this paper has the best

performance with an average recognition accuracy of 99.8% and an F1-score

of 0.9931. It is sufficient for deployment in plant leaf disease image recognition.

KEYWORDS

plant leaf disease image recognition, hybrid architecture, transformer-based models,
adaptive Fourier Neural Operator, deep learning
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1 Introduction

As one of the main sources of economic growth in many

developing countries, it is necessary to produce agricultural crops

in a stable and efficient manner (Iqbal et al., 2018). However,

the expansion of crops, combined with the overuse of pesticides

and the exacerbation of global climate change, has led to an increase

in the occurrence and spread of agricultural pests and diseases.

Therefore, controlling these pests and diseases is becoming

increasingly challenging. Early detection and treatment of such

pests and diseases have unique advantages (Sanju and VelammaL,

2021). In the early stages of pest infestation, it is difficult to

distinguish the leaves of affected plants from those of normal

because of the high interclass variation in colour and profile and

the low intraclass variation.

Traditional methods for identifying agricultural pests typically

involve visual inspection of crops by farmers and agricultural

experts. However, these approaches are costly, time-consuming,

highly subjective, and non-transferable (Ouppaphan, 2017).

Although some success has been achieved in classifying

agricultural images using traditional image processing techniques,

these methods face several challenges. First, they often require

manual feature extraction, increasing workload. Second, the

manually extracted features may not adequately represent the

characteristics of agricultural images, leading to semantic gaps.

Lastly, the variability and complexity of agricultural images,

combined with factors such as image quality and shooting angle,

can significantly affect the final recognition results, rendering these

techniques unsuitable for large-scale applications (Bisen, 2021; Pan

et al., 2022).

In light of relevant research on plant leaf disease identification and

fine-grained recognition, we investigated issues associated with the

relatively coarse recognition of algorithms in current crop pest

identification approaches and their inadequate performance on

datasets containing multiple, similar pests and diseases. We

recognized the potential of the Transformer-based model and applied

it to this domain. However, using the original patch and position

embedding(Pap Embedding) would impose limitations on the

experiment outcomes. Concurrently, utilizing the adaptive Fourier

basis function to convert images to the frequency domain and

deploying a CNN-Transformer architecture to separately extract local

andglobal features could enhance the trainingupper limit.As a solution,

we propose a novel hybrid architecture for plant leaf disease image

recognition, termed FOTCA (where F and O signify Adaptive Fourier

Neural Operator (AFNO) (Guibas et al., 2021) and TCA represents the

Transformer-CNN Architecture). This approach addresses and

optimizes the convergence issue and generalization capability of the

ViT model, further improving training outcomes. Additionally, we

evaluate the performance of FOTCA using the Plant-village dataset, a

plant leaf disease dataset, to assess its scope and effectiveness.

In summary, this work makes the following three

main contributions.
Fron
• This article applies an operator called Adaptive Fourier

Neural Operator (AFNO) and learnable Fourier features

which can replace traditional position encoding. Compared
tiers in Plant Science 02
to traditional self-attention, AFNO maps images to

frequency domain for better performance.

• A model architecture that integrates both global and local

features has been proposed, connecting CNNs and

Transformers through inter-level concatenation to achieve

coupling of global and local receptive fields. This hybrid

architecture, which blends global and local features, can

better utilize the extracted features and improve the

performance and robustness of the model.

• This article proposes that using Focal Loss as the loss

function can effectively enhance the model’s ability to

train on difficult samples.
The rest of this article is organized as follows. The Section 3

mainly elucidates the details of the dataset composition and model

composition structure, in Section 4 we specify the optimization

scheme for settings other than the model.
2 Related works

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have become a

popular and powerful tool for image recognition in various fields.

In 1998, Lécun et al. (1998) pioneering introduction of the LeNet-5

model laid the fundamental framework for CNNs. In 2012, the

AlexNet model (Krizhevsky et al., 2012) used more convolutional

layers and a larger parameter space to fit large-scale datasets in

ILSVRC (ImageNet Large-Scale Visual Recognition Challenge). It

was a groundbreaking demonstration of the advantages of deep

neural networks over shallow neural networks, achieving

significantly higher accuracy than the runner-up in recognition

accuracy. This breakthrough established the status of CNNs in

computer vision and brought new opportunities for plant leaf

disease identification.
2.2 Fine-grained image recognition

State-of-the-art deep learning algorithms for image recognition

predominantly rely on publicly available datasets such as ImageNet.

Although utilizing these datasets enhances a model’s capability to

identify objects in images, including contour features (Wang D. et

al., 2021; Zhang andWang, 2016), discerning different types of pests

affecting the same plant leaves in plant leaf disease images remains

challenging due to their similar contour features (Kong et al., 2021).

Merely transferring a model trained on other data categories to the

study of plant leaf disease might not yield the anticipated accuracy.

Consequently, models should be encouraged to learn fine-grained

features of objects for improved results (Berg et al., 2014; Yang et al.,

2018; Chen et al., 2019)

To tackle this issue, numerous researchers have explored

convolutional neural networks in fine-grained recognition. For

instance, Zhang et al. (2014) developed a model that surmounts

these constraints by utilizing deep convolutional features derived
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from bottom-up region proposals for fine-grained recognition.

Multi-proposal Net (Zhang et al., 2016) obtains image blocks

through the Edge Box Crop method and incorporates an output

layer of key points and visual features to further reinforce the local

feature positional relationship between local features and overall

information. Deep LAC (Lin et al., 2015) performs part localization,

alignment and classification in the same network, and the VLF

(valve linkage function) function is proposed for back propagation

in Deep LAC, which is able to adaptively reduce the classification

and alignment errors and update the localization results.
2.3 Transformer-based models for fine-
grained visual recognition

As a decoding and encoding architecture model based on

attention mechanism, Transformer (Vaswani et al., 2017) has been

widely applied in the field of natural language processing. Inspired by

this significant achievement, many scholars have transferred the

Transformer structure to computer vision tasks and have achieved

considerable success (Carion et al., 2020; Dosovitskiy et al., 2020;

Wang Y. et al., 2021). The attention mechanism primarily identifies

and classifies objects through different parts of an object, thusmaking

it possible to focus on key features of the subject for datasets of plant

leaf diseases with small differences between inter-class. As a result,

the Transformer structure completes more successful recognition

compared toCNN structures. Focusing on this area of study, Cai et al.

(2021) introduced a ViT with adaptive attention that adds attention

weakening and strengthening modules. This improves the

performance of key features while capturing more feature

information. Fu et al. (2017) used multiple scales of recurrent

attention links to learn the target feature region and used within-

scale classification loss and between-scale ranking loss to make the

model more focused on the finer-grained features of the target object.

He et al. (2022) proposed the TranFG framework, which integrates

all original attention weights of the Transformer into one attention

map, enabling the model to recognize image blocks and calculate

their relationships while utilizing contrastive loss to expand the

distance between confusion class feature representations. Sun
Frontiers in Plant Science 03
(2019) improved the loss function in order to enable the

classification model to learn features with greater distinction

between more difficult to distinguish classes, and used feature map

inhibition methods to enable the model to learn subtle differences.
3 Materials and methods

3.1 Dataset and data pre-processing

In this study, the base dataset was selected from the publicly

available plant-village dataset on the web. This is a dataset

specifically designed to study the work of various plant leaf

disease recognition models, with a total of 54,303 images

containing a total of 38 different species of 13 plant species

(including apple, blueberry, cherry, corn, grape, orange, bell

pepper, potato, raspberry, soybean, pumpkin, strawberry, tomato).

Plant images, including non-plant leaf species, were inserted to train

the model to recognize non-plant leaf images. The ratio of the

training and validation sets was 8:2.

Before inputting the images into the model, the images need to

be quantified uniformly. In the first step, the training set is

expanded by applying some image enhancement techniques to

each image independently superimposed, and the main data

enhancement methods used in this study are RandomFlip,

RandomCrop, RandomHorizontalFlip and RandomResizeCrop,

mainly to eliminate the shift of the final recognition result by the

change of the shooting angle in real life, and to prevent the neural

network from overfitting phenomenon. In addition, the image size

is uniformly adjusted to a square of size 224*224 pixels to facilitate

further processing by the model. Figure 1 shows a portion of the

dataset images and the pre-processing process of the images.
3.2 Model

In this paper, we study applying deep transfer learning to all

models in the model and comparison experiments. The Pre-train

and Fine-tuning approach in deep transfer learning is the most
BA

FIGURE 1

Plant Village dataset presentation and data augmentation examples. (A) A partial sample images of the dataset (containing healthy and sick). (B) Data
augmentation operation examples.
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convenient and reliable method for deep model learning. By putting

a pre-trained model with some generalization ability onto a new

similar dataset, the model will show superior performance than

training a model from scratch after a simple and short training

process. Similarly, the pre-trained model is adjusted for a specific

dataset by a loss calculation function called model fine-tuning, and

the loss calculation function widely used in deep neural networks

today is the CrossentropyLoss (CE) (Shown in Figure 2B), which is

calculated as follows:

Loss  = L(y, p̂ ) = −y log  (p̂ ) − (1 − y) log  (1 − p̂ ) (1)

where p̂ is the predicted probability and y is the actual outcome

category. A remarkable feature of this loss calculation is that the losses

are also treated consistently for simple and easily scored samples ( pt
≫ 0:5). This result may also occur when the losses of a large number

of simple samples accumulate and the small lossmay swamp the sparse

classes, or when there are differences in the loss of different classes in a

near-saturated training process. There are two intuitive ways to deal

with this type of problem, one is to addweighting factors directly to the

loss function, and the other is to add adjustable factors represented by

focal loss. In this paper, focal loss is introduced into the model by

reducing the loss function to theweights of the easy samples, which can

help the loss function to favour the difficult samples and improve the

accuracy of the difficult samples (Shown in Figure 2C). The calculation

procedure is as follows:

Lossfl = −(1 − pt)
g log  (pt) (2)

where pt reflects the proximity to the ground truth. Larger pt
means closer to category y, representing more accurate recognition.

g is the adjustable factor.

Due to the wide recognition of the ImageNet dataset, as well as

the excellent performance and superior model fitting ability of the

pre-trained models, all the experiments cited in this paper are based

on the pre-trained models of the ImageNet dataset loaded with the
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corresponding models, effectively speeding up the training process

of the models by means of transfer learning.

The FOTCAmodel studied in this article is mainly composed of

a shortcut module and a Transformer module. The proposed overall

model structure is shown in the Figure 2A, which is mainly divided

into three steps: Patch and Position Embedding, Transformer

architecture based on adaptive Fourier Neural Operators

and Classifier.

3.2.1 Patch and position embedding
The module consists of two sub-modules: Patch Embedding

and Positional encoding based on learnable Fourier features.

Compared with the regular position embedding, a primary

advantage of Positional Embedding based on learnable Fourier

features is that it provides richer positional information,

especially for input from large datasets and long sequences. It can

more finely encode each position through learnable Fourier basis

functions, and this learnability makes it more flexible and adaptable.

Additionally, it has better local connectivity and translational

invariance when performing convolution operations, which can

further enhance the model’s performance.

For the input imageX ∈ RH�W�C , Assumingweuse apatch size of

P � P, we can divide the input image into ( W
P )� ( H

P ) local regions
Pi,j ∈ Rp�pmesc according to the patch size. ( i ∈ ½1, HP �, j ∈ ½1, WP �).
And expand it into a one-dimensional vector vi,j, whose size is D, where

D is an adjustable parameter representing the vector dimension after

patch embedding. For each matrix, we use a learnable weight matrix

Wwatch of sizeD� K to map it to a low dimensional space:

xpatch i,j = Wpatch · vi,j (3)

There, xpatch i,j ∈ RD�K is the feature vector obtained through

patch embedding.

Next, we generate position encoding vectors for each patch. For

each coordinate binary (i, j), use a learnable Fourier feature function
B

C

A

FIGURE 2

FOTCA model architecture and two loss functions for fine-tuning (A) The figure provides an overview of the detailed structure of the entire FOTCA
model’s neural network. (B) Cross-Entropy loss for fine-tuning. (C) Focal loss for fine-tuning.belflow chart.
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to generate a vector f posi,j with a size of 2 K :

f posi,j (p) = ½cos  (〈p,w1〉 + b1), sin  (〈p,w1〉 + b1),…,

cos  (〈p,wK〉 + bK ), sin  (〈p,wK〉 + bK)�
(4)

Where p = ( (i−1)H , (j−1)W ) is the normalized representation of

input coordinates, wK and bK are learnable parameters, and 〈·, ·〉
represents inner product between vectors. Finally, we add the

position encoding vector to the feature vector obtained from

patch embedding, resulting in the final feature vector xposi,j :

xposi,j = xpatchi,j + f posi,j (5)

Then, we can use encoders to encode this sequence for further

processing and recognition tasks.

3.2.2 Adaptive Fourier Neural Operators
This module maps the input image to the frequency domain

and uses adaptive Fourier basis functions to map each small block in

the time domain to the frequency domain. This allows better

extraction of frequency domain features and offers advantages in

processing periodic as well as regular images, while providing better

robustness to transformations such as rotation and scaling of the

input data. Specifically, for each small block x, its frequency-domain

representation xfreq is obtained by first mapping it from the time

domain to the frequency domain through Fast Fourier Transform

(FFT). The (i, j)th element represents the frequency-domain

representation at position (i, j) on the frequency domain.

Xfreq
i,j = o

P−1

m=0
o
P−1

n=0
Xm,ne

−2p i(mi
P +

nj
P ) (6)

Next, we will map each patch from the time domain to the

frequency domain using adaptive Fourier basis functions.

Specifically, for each small block X i,j, we calculate the inner

product between it and the adaptive Fourier basis functions, and

use the inner product value as coefficients.

ai,j,k =
1
p2 o

p

u=1
o
p

v=1
Xi,j(u, v)Bu,v,k (7)

The coefficient of small block Xi,j under the k
th adaptive Fourier

basis function is ai,j,k, p is the size of the small block, and Bu,v,k is the

value of the kth adaptive Fourier basis function at position (u, v).

The specific calculation formula is as follows.

Bu,v,k = cos  (wT
k vu,v) + i · sin  (wT

k vu,v) (8)

Where vu,v denotes the spatial location vector of the center point

of the (u, v)th patch in the input image and wk represents the

adaptive basis vector.

Expand all small adaptive Fourier basis functions into a large

adaptive Fourier basis function matrix B ∈ Cp2�K , where K is the

number of adaptive Fourier basis functions. At the same time, expand

all small adaptive Fourier coefficients into a large adaptive Fourier

coefficient matrixA ∈ CN�K , where N is the number of small blocks.
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Then, by performing global average pooling on A, obtain the weight

wk of each basis function, and the calculation formula is:

wk =
1

(H=P)� (W=P) o
H=P

i=1
o
W=P

j=1
ai,j,k (9)

The original data is ultimately mapped to the frequency domain

through basis functions and basis function weights.

Xi,j = o
K

k=1

wk · Bi,j,k,: · xi,j,: (10)

Where Xi,j,: denotes the flattened vector of patch (i,j). Finally, we

merge the frequency-domain results of all patches into a large

frequency-domain tensor F ∈ CH
P�W

P �k. For channel mixing, it is

done through an MLP on this frequency-domain tensor to extract

high-level features.

Z(k)
i,j = MLP  F(k)

i,j

� �
, i ∈ 1,

H
P

� �
, j ∈ 1,

W
P

� �
, k ∈ 1,N½ � (11)

Finally, we concatenate all frequency domain features z together

to form the final feature vector.

Z = z(1), z(2),…, z(F)
h i

(12)

The feature vector can be fed into any type of neural network for

further training or inference operations. This process has strong

expressiveness and interpretability in data processing.
3.2.3 Classifier
When using the Transformer-based model, its output vector is

often passed to a classifier for image recognition. The traditional

approach is to use the hidden layers of MLP to collect features and

perform classification. However, there are many localized feature

points in plant leaf disease images, and these localized feature points

can usually be extracted and represented more efficiently by means

of convolutional operations. Therefore, the use of CNNs may be

more appropriate for such problems. Here, we consider using a

basic block as a classifier, which includes convolutional layers and

batch normalization layers, as well as shortcut operations. By

upsampling to a higher dimension to obtain local feature values,

feature transfer and information fusion are achieved. Also, shortcut

operations can avoid gradient disappearance and model overfitting

problems caused by excessive stacking of convolutional layers.

After downsampling or upsampling the feature maps using

convolutional layers, the downsampled or upsampled feature maps

are added to the output feature map using element-wise addition,

which implements shortcut. This operation allows the model to

better learn details and local features in the input, thereby

improving the model’s performance. In this article’s classifier

design, a 1� 1 convolutional layer is embedded in the shortcut to

adjust the depth of the feature maps so they can be added to the

feature maps from the next layer. This helps preserve lower-level

features, enhance inter-channel communication, and improve the
frontiersin.org
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model’s performance. Specifically, the input vector undergoes two

3� 3 convolutional layers consecutively, with a certain amount of

non-linear activation function (such as ReLU) inserted between

them, as shown below:

x1 = ReLU(Conv3�3(x)) (13)

x2 = ReLU(Conv3�3(x1)) (14)

At the same time, downsampling is applied to the input vector

to promote the underlying features towards the final recognition

result. This operation can be achieved by using a 1� 1 convolution

layer in the shortcut. Finally, add the output of twoconsecutive

convolution layers to the output of the shortcut, as shown below:

xout = ReLU (x2 + xshortcut)

= ReLU (x2 + ReLU (Conv1�1(x)))
(15)

Among them, xshortcut is the output of the shortcut, and it needs

to ensure that its depth is the same as the output depth of the second

convolution layer.

In the Classifier of this article, it has been demonstrated that

shortcuts effectively alleviate the gradient vanishing problem,

resulting in a decent convergence rate even when applied to very

deep models. Using two 3� 3 convolutional layers instead of a

larger kernel increases nonlinearity, allows for faster collection and

extraction of local features, and reduces the number of parameters,

making the model easier to train and generalize.
4 Experiments and discussion

4.1 Experimental environment

The models we studied was developed based on the open source

of deep learning framework pytorch1.11.0 with the following

experimental equipment: CPU is Intel(R) Xeon(R) Platinum

8255C, GPU is single card V100-SXM2-32GB, CUDA version is

11.3, and programming language is Python3.8 (ubuntu20.04).
4.2 Experimental parameters,
evaluation indicators

Based on earlier work by scholars (Kumar et al., 2023a; Kumar

et al., 2023b; Wei et al., 2023), we selected DenseNet-169, Inception-

v3, VGG19, ResNet-50, ResNet-101, ViT as our comparative

experimental models to verify the feasibility and reliability of the

improved model plant leaf disease image recognition method in this

paper. We all iteratively update the pre-trained model parameters

based on each model to accelerate the model convergence during

the training process.

The training process uniformly uses the stochastic gradient

descent SGD optimization algorithm to optimize its model. The

same learning rate adjustment strategy is used for each parameter in

the model, and the learning rate is dynamically adjusted using

LambdaLR, which is adjusted by adjusting the learning rate
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according to the number of learning rate updates to linearly

decay on top of the original one. The loss calculation function of

the FOTCA model uses focal loss, and the rest of the models in the

comparison experiments use the cross-entropy loss function.

Dropout regularization is also used in the training process. By

randomly dropping some neuron connections temporarily during

the training process, the purpose is to effectively avoid overfitting of

the model during the training process. The generalization ability of

the model is also enhanced. The specific hyperparameter settings

for the experiments are shown in Table 1.

We choose accuracy, adjustment time for accuracy, loss,

adjustment time for loss, F1-score, parameters and FLOPS. We

define for the first time the adjustment time for accuracy (loss).

Adjustment time is the number of iterations required during model

training to bring the model performance from the initial

performance to 95% difference from the final converged

performance. This metric reflects the ability of the model in terms

of speed of convergence as well as training efficiency. The concept of

adjustment time helps to deeply evaluate and compare the speed of

the model training process. A shorter adjustment time means that

the model reaches its potential performance faster within a limited

number of iterations. Thus, with this metric, researchers can more

intuitively assess the performance gap between different models.

In addition, adjustment time complements other commonly

used evaluation metrics (e.g., accuracy, loss, etc.) to provide

researchers with a more comprehensive view of how a model

performs during training. In the case of similar model

performance, shorter adjustment times may be an advantage due

to greater savings in computational resources and time.
4.3 Comparative experiments

Firstly, the performance of Vision Transformer (ViT) is

typically affected by the size of the training dataset due to the fact

that ViT is based on transformers methods, which typically require

a large amount of data for effective training. This is because

transformers models, including ViT, are variants of the self-

attention mechanism, which allows the model to capture the
TABLE 1 Hyperparameter tuning for the model.

Initial learning rate 0.001

Epochs 100

Batch size 8

Image size(for all) 224*224

Image size(for Inception-v3) 299*299

Transformer-based models Embedding dimension 768

Patch size 16

Head number 8

Depth 12
front
This table presents the various hyperparameters and their selected values used of the proposed
FOTCA model and compared models.
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global relationships of the input data, but this mechanism also

requires a large amount of data to support.

For the specific minimum sample requirement, it may vary as

it depends on several factors, including the size of the model (e.g.,

the number of layers of the model, the number of hidden units, etc.),

the complexity of the task (Lee et al., 2021) and the distribution of

the data. Therefore, it can only be explored by trying the following

experimental procedure.

We chose to compare the ViT model with the ResNet101

model. This decision was made because ResNet101 has similar

flops and comparable convergence capability to ViT on large-scale

datasets. In preliminary experiments, we selected training set

proportions of 6%, 8%, 10%, 20%, and 80%, respectively, to

investigate the convergence capability and accuracy of ViT and

ResNet101 on medium-sized datasets. The experimental results are

shown in Figures 3A–C.

We observed that ViT’s training performance deteriorated

rapidly on medium-sized datasets when the size of the training

set was small. In contrast, ResNet101 demonstrated smaller

variations and more stable curves, with minimal decreases in

accuracy. Particularly, there was a significant turning point in

ViT’s performance when the training set was at 8%. However,

these experiments were not able to establish a definitive standard for

determining the minimum sample requirements. On the contrary,

the optimal dataset size may vary depending on specific applications
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and data characteristics. In many cases, if feasible, using larger

datasets often yields better results.

Next, we compared six mainstream image recognition models,

using the same backbone training model and dataset to ensure the

fairness of testing. The only exception is that the input image size

must be 299� 299 for the Inception-v3 model. We show the

accuracy and loss values of each model during the iteration

process in the chart. Due to the significant difference between the

initial and final iteration results, the observation of the later

iteration effect is not very clear and accurate. Therefore, we re-

drew the chart showing the changes in the accuracy and loss values

of later iterations between 20 and 100 iterations to achieve deeper

analysis and optimization. This approach can enhance our

understanding of the model’s performance, which helps us

further improve and optimize our algorithms. The final

experimental effect comparison is shown in Figure 4. Specifically

shown in Figure 3D. The plot offers a visual representation of the

balance between performance and computational efficiency among

different models. The final result of the iteration is shown in Table 2.

According to the chart, the six mainstream image recognition

models showed good feature extraction and representation abilities

in the first 20th epochs, with an accuracy of over 95% and a loss of

below 0.35 for all of them. However, we observe a strange status quo

demonstrated in the figure: the growth curve of the Transformer-

based model is more stable, but the curve of the CNNs model
B

C D

A

FIGURE 3

(A) Accuracy of the ViT model on small and medium-sized datasets: This plot demonstrates the training performance of the ViT model on datasets
with different sizes. (B) Accuracy of the ResNet101 model on small and medium-sized datasets: This plotdemonstrates the training performance of
the ResNet101 model on datasets with different sizes. (C) Comparison of the accuracy of ViT and ResNet101 for small and medium-sized datasets.
(D) Scatter plot comparison of model accuracy and FLOPs(floating-point operations per second) for the models.
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fluctuates up and down consistently at 1% (in accuracy) and 0.03 (in

loss), and DenseNet-169 even overfitted, with its accuracy and loss

at the 29th epoch values are the highest (99.8%) and lowest (0.072)

of the whole iteration, respectively. Subsequently, the accuracy

gradually declined and finally stabilized at about 98.3%. This

phenomenon may be due to thedifferent learning patterns and

model depths of CNNs and Transformer-based models(containing

FOTCA and ViT) during the training process.The convolutional

operation of CNN networks requires a large number of parameters.

In contrast, the ViT network uses aself-attention layer instead of a

fixed convolutional layer, which is better able to cope with long

sequences of image features. The training error of ViT networks is
Frontiers in Plant Science 08
usually less jittery due to the relatively simple training process of the

self-attention layer. Meanwhile, the characteristics of the attention

link are more suitable for training fine-grained plant leaf disease

image recognition tasks, which is further demonstrated inside the

section4.4. At the same time, overfitting is sooner or later as long as

the network is large and deep enough, as indicated in (Hinton et al.

(2012). The large depth of DenseNet-169 (model depth of 169)

reflects the overfitting of the model more quickly.

Meanwhile, comparing the adjustment time of various models,

ViT’s training results and FOTCA model performance are optimal,

both achieving near-maximum effects at the 9th epoch. Other CNN

models are relatively slower and require higher computational costs
B

C D

A

FIGURE 4

Showing training accuracy and loss comparison between the proposed FOTCA model and compared models in the study. (A) Training accuracy
curve for all models. (B) Training loss curve for all models. (C) Partial training accuracy curve for all models. (D) Partial training loss curve for all
models.
TABLE 2 Performance metrics of the proposed FOTCA model and compared models.

Model Accuracy(%) Adjustment time F1 score(%) Loss Adjustment time Params(M) FLOPS(G)

DenseNet169 98.3 13 91.85 0.082 14 14.15 3.44

Inceptionv3 96.8 28 94.45 0.15 29 23.83 2.86

ResNet50 99.5 21 98.23 0.103 27 25.56 4.13

ResNet101 97.6 32 95.69 0.107 32 44.55 7.87

VGG-19 97.8 28 91.42 0.206 30 78.14 29.96

ViT 99.4 9 98.03 0.026 9 58.07 11.28

FOTCA 99.8 11 99.31 0.005 9 59.14 11.87
Model Accuracy(%)Adjustment F1-Loss Adjustment Params(M) FLOPS(G).
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to achieve the same training effect. Therefore, FOTCA model

exhibits efficiency and accuracy in feature extraction, learning

ability, and model convergence efficiency, making it a more

excellent image recognition model.

Two categories of performance can be identified in the

comparison experiments. One is represented by models such as

VGG-19, DenseNet-169 and Inception-v3, whose accuracy did not

reach 98% but has already approached the best performance, so the

trend is no longer rising. The other category is represented by

models such as ViT, ResNet-50, and ResNet-101, which are based

on FOTCA proposed in this article. During the iteration process,

these models can approach an accuracy of 99.9%, which means that

almost perfect image recognition results can be achieved through

limited training. Additionally, FOTCA has leading positions in both

accuracy and F1-score indicators compared to other models, and it

is the only model with an F1-score of 0.9931. On the basis of

efficient recognition using ViT, FOTCA further improves accuracy,

loss, and F1-score without increasing parameter quantity and

FLOPS compared to other models. This makes its performance

nearly perfect, as shown in all the final parameters, parameter

quantities, and FLOPS charts for all models in the experiment.

Therefore, the FOTCA model proposed in this article achieves the

best performance in plant leaf disease recognition.
4.4 Model visualization analysis

We proceeded to discuss the differences between the models in

terms of their focus on image features by selecting 11 more

representative photographs from the dataset that contained

features that were essentially the basic features under the

category. One photo of a healthy cherry leaf was taken with a

global angle of view of the whole leaf and with a portion of the

background included (this allows surveying the model’s ability to

segment objects and backgrounds and verifying whether the model

can focus more on the objects themselves), with the diseased and

healthy traits shown on the leaf as curling at the edges of the

diseased leaf and wilting of the whole leaf, and one partial image of a

leaf with grey leaf spot A partial image of a maize leaf with grey leaf

spot, which does not include the background (this verifies the

model’s ability to focus on fine-grained features of the object and

the size of the receptive field), and the trait of grey leaf spot on the

maize showing random grey-brown rectangular long or irregular

long spots and brown-black pockmarks throughout the leaf, with

additional longitudinal correlation images having similar features.

The graph shows the attention of the seven models to the same

image, where the warmer the colour, the more attention the model

pays to that feature, and the colour distribution gives an indication

of the model’s ability to accurately identify the image features. Each

model feature concern map is showing in the Figure 5.

First of all, both FOTCA and ViT models focus more accurately

on the details of cherry leaf edges, but in the results, it was found

that the ViT model focuses more on the whole leaf surface, which
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generates more errors and retains unnecessary information, thus

reducing the recognition accuracy. At the same time, none of the

CNNs can accurately and carefully focus on the correct plant leaf

disease feature points, and the fluctuating anomalies of the metrics

(including accuracy and loss values) during the training process are

proved accordingly, and it also sideways proves the results that the

training of Convolutional Networks is not as good as the ViT effect

in the recognition of plant leaf disease images.

In addition, during the recognition of maize grey leaf spot

leaves, the FOTCA and ViT models focused on the brown-black

pockmarks on the leaves, and the ViT model focused more evenly

on the background colour similar to the subject colour, Inception-

v3 was able to observe the rectangular long stripes on the image

more accurately, while the rest of the models focused on looser areas

and could not reflect a more convincing pattern. In turn, the rest of

the images show that the FOTCA model focuses more on the fine-

grained features of the edges and less on the details of the whole leaf

than the ViT model, and the five CNN models, on the other hand,

have a more mixed focus, tending to focus on the global

information and main features of the images. From this we can

conclude that the Transformer-based models focuses more on the

global features of the image, forming a global attention to the image,

while the CNNs model focuses more on the subtle features, forming

a local attention to the image.
4.5 Ablation experiment

To evaluate the effectiveness of each improvement module in

the FOTCA model, we conducted ablation experiments using the

original dataset. We compared four models: the FOTCA model, the

FOTCA model with original Pap Embedding, the FOTCA model

with MLP-Classifier, and the FOTCA model lacking data

augmentation. We plotted the accuracy and loss curves for each

model as a function of epoch value in Figure 6. Detailed training

data is presented in Table 3. Partial iteration accuracy and loss

values are not shown here because the comparison of the individual

models in the results of this experiment can be shown more clearly

in Figure.
4.5.1 Between FOTCA model and the model
using original pap embedding

Using Fourier transform can better capture texture and detail

information in the image. This is because the Fourier transform can

convert spatial-domain information into frequency-domain

information, allowing the model to better process this

information. In addition, using Fourier transform can greatly

reduce the dimensionality of the vector and thus reduce

computation complexity.

However, Fourier transformation may cause some spatial

information loss, thereby affecting the performance of image

recognition tasks. From the experimental results, it can be seen

that using Pap Embedding with Fourier operator can partially
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improve the accuracy and convergence speed of the model, thus

achieving better performance. Compared with using original Pap

Embedding, the accuracy was improved by 0.7% and the loss

decreased by 0.014.

4.5.2 Between FOTCA model and the model
using MLP − classifier

The classifier used in this article contains shortcut connections

across layers, which can help information transmit more effectively,
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avoid gradient vanishing and information bottleneck problems, and

has better explainability. In contrast, using MLP as the classifier will

lose some important spatial structure information because MLP is a

fully connected layer that flattens all features together and ignores

their relationships. The classifier in this article can reconstruct spatial

structure information of images more accurately, retain more feature

information, and improve the model’s recognition accuracy. At the

same time, as a classifier, it can help reduce the risk of overfitting by

helping the model learn more robust features that have similar
FIGURE 5

Attention heatmaps for the models on representative plant leaf disease images. The attention heatmaps visually demonstrate the regions within the
image that the respective models focus on, highlighting their effectiveness at capturing relevant features for accurate recognition.
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responses for different input data, thus improving the model’s

generalization ability, which is also reflected in the training results.
4.5.3 Between FOTCA model and the model
lacking data augmentation

From the iteration graph, it can be observed that themodelwithout

data augmentation behaves extremely similarly to the original model

during the process of iteration (the accuracy of the original model is

99.8%, and the accuracy of the comparative model is 99.7%). Even in

the early stages of training, it produces better results than the original

model, possibly due to the large amount of pest and disease data in this

study, which allows for a sufficient sample size to collect fine-grained

features without the need for data augmentation. However, continuous

data augmentation during the initial stages ofmodel training causes the

model to learn orientation features while learning the original features

of the photos, increasing the computational load of the model,

resulting in a less effective performance on the test set compared to

the model without data augmentation.

For the model using the original Pap Embedding, its learning

ability is constrained for the same linkages, which adds limitations

to the model architecture. As for the model using MLP-Classifier, its

performance change is the largest among the four models,

indicating significant contributions of the classifier used in this

paper, which can significantly improve the fitting effect of the

model. At the same time, the adjustment time of accuracy (loss)

for the four experiments is roughly the same, indicating that making

minor changes to the model architecture under the same model

does not have a significant effect on convergence efficiency. The

FOTCA model is still a fast-converging model that is leading in

plant leaf disease image recognition.
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5 Conclusions

Based on the above experimental results, the Transformer-based

models outperforms the CNNs in the field of plant leaf disease image

recognition, mainly because it allows a more detailed and accurate

focus on image features., and can surpass the CNNs in terms of

accuracy, loss, model matching speed, convergence efficiency, etc.

The FOTCA model proposed in this paper can further improve its

feature observation and extraction ability, and has a tendency to

improve in accuracy, loss and F1-score, while demonstrating the

enormous potential and application of adaptive Fourier operators.

We will continue to extend our model in the future to combine

diverse approaches for plant crop disease identification and detection

in complex contexts in complex future contexts.
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FIGURE 6

Showing training accuracy and loss comparison between the proposed FOTCA model and ablation experiment models with different parts removed.
(A) Training accuracy curve for all models. (B) Training loss curve for all models.
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