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Introduction: Stripe rust is a global disease of wheat. Identification of new

resistance genes is key to developing and growing resistant varieties for

control of the disease. Wheat line PI 660122 has exhibited a high level of stripe

rust resistance for over a decade. However, the genetics of stripe rust resistance

in this line has not been studied. A set of 239 recombinant inbred lines (RILs) was

developed from a cross between PI 660122 and an elite Chinese cultivar

Zhengmai 9023.

Methods: The RIL population was phenotyped for stripe rust response in three

field environments and genotyped with the Wheat 15K single-nucleotide

polymorphism (SNP) array.

Results: A total of nine quantitative trait loci (QTLs) for stripe rust resistance were

mapped to chromosomes 1B (one QTL), 2B (one QTL), 4B (two QTLs), 4D (two

QTLs), 6A (one QTL), 6D (one QTL), and 7D (one QTL), of which seven QTLs were

stable and designated as QYrPI660122.swust-4BS, QYrPI660122.swust-4BL,

QYrPI660122.swust-4DS, QYrPI660122.swust-4DL, QYrZM9023.swust-6AS,

QYrZM9023.swust-6DS, and QYrPI660122.swust-7DS. QYrPI660122.swust-

4DS was a major all-stage resistance QTL explaining the highest percentage

(10.67%–20.97%) of the total phenotypic variation and was mapped to a 12.15-

cM interval flanked by SNP markers AX-110046962 and AX-111093894 on

chromosome 4DS.

Discussion: The QTL and their linked SNP markers in this study can be used in

wheat breeding to improve resistance to stripe rust. In addition, 26 lines were

selected based on stripe rust resistance and agronomic traits in the field for

further selection and release of new cultivars.
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Introduction

Wheat stripe rust, caused by Puccinia striiformisWestend. f. sp.

tritici Erikss. (Pst), is one of the most destructive diseases in the

world (Chen, 2005; Milus et al., 2009). Losses from stripe rust

typically range from 10% to 70% in commercial production

environments, depending on the cultivar, prevailing climatic

conditions, and inoculum pressure (Bariana et al., 2016; Zhou

et al., 2022a). However, the disease can cause a 100% loss of yield

for susceptible varieties (Bariana et al., 2016). Since 1950, the disease

has occurred on an annual average of 4 million hectares in China. In

particular, the five major outbreaks of wheat stripe rust in 1950,

1964, 1990, 2002, and 2017 all occurred on over 5.5 million hectares,

resulting in a loss of 13.8 million tons of yield (Li and Zeng, 2000;

Wan et al., 2004; Huang et al., 2018). Stripe rust can be controlled

by resistant cultivars, fungicides, and some cultural practices.

Compared to other approaches, planting resistant cultivars has

been proven to be the most effective, easy-to-use, economical, and

environmentally friendly way to control disease (Line, 2002;

Chen, 2005).

Depending on phenotypic performance at different growth

stages, wheat rust resistance can be classified into two types: all-

stage resistance (ASR) and adult plant resistance (APR), sometimes

also known as high-temperature adult plant (HTAP) resistance

(Qayoum and Line, 1985; Chen, 2005; Lin and Chen, 2007;

Rosewarne et al., 2013). All-stage resistance, also known as

seedling resistance, can be detected at the seedling stage but is

expressed at all growth stages. Such resistance is often race-specific

and, thus, easily overcome by virulent races (Line, 2002; Chen, 2005;

Chen, 2013). Due to race specificity, ASR often fails within 3–5

years of deployment (Jambuthenne et al., 2022). In contrast, HTAP

resistance becomes more effective as plants grow older and the

weather becomes warmer. It is usually non-race-specific,

quantitatively inherited, and more likely to be durable. However,

HTAP resistance is mostly incomplete, and the level is influenced by

plant growth stage, temperature, and disease pressure (Chen, 2013).

To date, 84 permanently named and a large number of

temporarily designated stripe rust resistance genes (Yr genes) and

quantitative trait loci (QTLs) have been reported in wheat (Klymiuk

et al., 2022). These resistance genes come mainly from common

wheat cultivars, local germplasm, and wild relatives. Among them,

Yr5/Yr7/YrSP, Yr10, Yr15, Yr18, Yr36, Yr46, YrU1, and YrAS2388

were cloned and characterized (Fu et al., 2009; Krattinger et al.,

2009; Liu et al., 2014; Moore et al., 2015; Klymiuk et al., 2018;

Marchal et al., 2018; Zhang et al., 2019; Wang et al., 2020). Most

ASR genes have been overcome by virulent races. ASR genes Yr5

and Yr15 are still effective against all Pst races identified in the

United States and many other countries (Wang and Chen, 2017).

However, races virulent on Yr5 gene have been reported in

Australia, India, China, and Turkey (Wellings and McIntosh,

1990; Zhang et al., 2020; Tekin et al., 2021), and the Yr15

virulence has been documented in Afghanistan (Gerechter-Amitai

et al., 1989). Most wheat cultivars that have shown durable

resistance to stripe rust have APR or HTAP resistance controlled

by variable numbers of genes or QTL (Lin and Chen, 2007; Lin and

Chen, 2008b; Santra et al., 2008; Carter et al., 2009; Paillard et al.,
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2012; Ren et al., 2012a; Lu et al., 2014; Zhou et al., 2014; Dong et al.,

2017; Feng et al., 2018; Liu et al., 2018; Liu et al., 2019; Liu et al.,

2020). In order to obtain a high degree of durable resistance,

combining the two types of resistance types in the same

background is considered a preferred method to improve the

resistance to stripe rust in wheat breeding (Chen, 2007; Ren et al.,

2012a; Chen, 2013; Liu et al., 2018).

The development of molecular markers, especially single-

nucleotide polymorphism (SNP) markers, has revolutionized QTL

analysis. A SNP is caused by a single-nucleotide mutation due to the

insertion, deletion, and replacement of a single base segment in the

genome. SNPs exist in the entire genomes of biological individuals

and are the most abundant. SNP markers are now widely used in

genetic analysis and breeding (Ma et al., 2019). Recent advances in

sequencing technology have led to the availability of many SNP

arrays in wheat (Rasheed et al., 2017). High-throughput genotyping

techniques, including Wheat 9K (Cavanagh et al., 2013), 15K

(Soleimani et al., 2020), 90K (Wang et al., 2014; Wu et al., 2018),

660K (Cui et al., 2017), and 820K SNP (Winfield et al., 2016) arrays,

are now available. Among these SNP arrays, the 15K array is

generally adequate and cost-effective for mapping traits of interest

(Soleimani et al., 2020).

PI 660122, a spring wheat germplasm, was developed by the

Wheat Health, Genetics, and Quality Research Unit of the US

Department of Agriculture, Agricultural Research Service (USDA-

ARS), and Washington State University and deposited in the

USDA-ARS National Small Grains Collections (NSGC). In

previous studies, the germplasm showed a high level of resistance

in field tests over multiple years (Wang et al., 2012; Zhou et al.,

2015b). At the seedling stage, it was resistant to US races PST-43

and PST-127 and Chinese races CYR29, CYR31, CYR32, and

CYR33 and moderately resistant to US races PST-100 and PST-

114 and Chinese race PST-HY8 of Pst (Wang et al., 2012; Zhou

et al., 2015b). A comparison of greenhouse and field tests indicated

that PI 660122 had effective ASR and possible HTAP resistance. The

objectives of the present study were to further characterize the stripe

rust resistance in PI 660122, map QTL for ASR and APR, and

identify the QTL by comparing their chromosomal locations with

previously reported stripe rust resistance QTL.
Materials and methods

Plant materials

To map the QTL for stripe rust resistance in PI 660122, we

developed a mapping population from a cross between Zhengmai

(ZM9023, as the female parent) and PI 660122 (as the male parent).

PI 660122 was developed from cross Avocet S/PI 610755 (Wang

et al., 2012). Avocet S (AvS), an Australian spring wheat selection, is

highly susceptible to most Pst races in China and many other

countries and has been used as a susceptible control in stripe rust

tests. PI 610755 is a Mexico spring wheat variety, selected from the

cross Altar 84/Aegilops tauschii (191)//Opata M85. ZM9023, a

spring wheat cultivar developed by the Wheat Research Institute

of Henan Academy of Agricultural Sciences, is moderately or highly
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susceptible to the currently predominant Pst races in China (Xue

et al., 2014). We developed a total of 239 F5 and F6 recombinant

inbred lines (RILs) from the ZM9023 × PI 660122 cross, using the

single-seed descent method.
Greenhouse tests

Seedling tests were conducted in a greenhouse to evaluate the

stripe rust responses of PI 660122 and Zhengmai 9023. For each

genotype, 10–12 seeds were seeded in a 9 cm × 9 cm × 9 cm plot. At

the one-leaf stage, seedlings were uniformly inoculated with fresh

urediniospores of a Pst race mixed with talc at a ratio of 1:50. Three

Chinese Pst races, CYR31, CYR32, and CYR34, were used in the

seedling tests. Inoculated seedlings were kept in a dew chamber in

the dark at 8°C and above 100% relative humidity for 24 h. The

seedlings were then moved to a growth chamber at 16°C with a daily

16-h light for stripe rust development. The infection type (IT) data

were recorded 18 days to 21 days after inoculation using the 0–9

scale (Line and Qayoum, 1992). Seedlings of AvS were included as

the susceptibility check in each race test. Later, 15 RILs selected for

each containing only one QTL were also tested together with the

parents with the three races at the seedling stage in the greenhouse

under the same conditions.
Field tests

The F5 and F6 RILs and their parents were tested for stripe rust

responses to stripe rust in the experimental fields in Mianyang (MY;

31°33′N, 104°55′E) in 2021 (21) and both MY and Guangyuan (GY;

22:32°14′N, 106°17′E) in the Sichuan Province in 2022 (22). The

field tests were conducted with one replicate at 21MY and 22GY

and two replicates (completely randomized block design) at 22MY

based on the available seed quantity. Each plot consisted of a single

row, 1.0 m in length and with 25 cm between rows. Approximately

20 to 30 seeds were sown in each row. AvS was planted in a row

every 20 rows as a susceptible check and spore spreader for

increasing stripe rust pressure and uniformity in the nursery. To

increase the Pst inoculum, AvS was also planted around the nursery.

MY and GY are ideal regions for stripe rust, as Pst can over-winter

and over-summer, and the nursery was naturally infected without

artificial inoculation (Zhou et al., 2019).

The stripe rust IT of each parent or RIL was rated on a scale of

0–9 (Line and Qayoum, 1992). Disease severity (DS) was scored

using a modified scale as previously described (Lin and Chen, 2007).

Both IT and DS data were collected twice in each season. The first

record was taken when susceptible AvS showed approximately 80%

severity, and the second was approximately a week later (Nsabiyera

et al., 2018). Agronomic traits such as plant height (PH), spike

length (SL), productive tiller number (PTN), kernels per spike

(KPS), and thousand-grain weight (TGW) were determined to

select RILs. PH was measured from the ground to the top of the

spike excluding awn after the milking stage; KPS, SL, and PTN of

each plant were counted at maturity; TGW was measured

after harvest.
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DNA extraction and genotyping

Fresh young leaves of PI 660122, ZM9023, and 239 F5 RILs were

harvested from the experimental field in January 2021. DNA from

the fresh leaves was extracted using a modified cetyltrimethyl

ammonium bromide (CTAB) method (Li et al., 2013). DNA was

dissolved in ddH2O (100 mL), and DNA quality and concentration

were determined by spectrophotometry (NanoDrop ND-1000,

Thermo Scientific, Wilmington, DE, USA) after the DNA. DNA

stock solutions were diluted with sterilized ddH2O to different

concentrations according to individual experimental requirements

for molecular analyses.

The parents and the 239 RILs were genotyped by China Golden

Marker (Beijing) Biotech Co., Ltd. (http://www.cgmb.com.cn/)

using the 15K SNP chip (Soleimani et al., 2020).
Statistical analysis, genetic map
construction, and QTL mapping

Analysis of variance (ANOVA) and analysis of Pearson’s

correlation coefficients were performed to analyze the stripe rust

phenotypic data using the “AOV” tool in the QTL Ici Mapping V4.2

software (Wang, 2009; Meng et al., 2015). The same software was also

used to analyze the genotypic data. After the genotypic data were

scanned for missing and undetected data, redundant markers were

deleted using the “Bin” function. Genetic maps were constructed

using the Kosambi mapping function (Kosambi, 2016). QTL

mapping was performed using the genetic maps and the IT and DS

data based on inclusive composite interval mapping (ICIM) with

preset parameters Step = 1 cM, value p for input variables (PIN) =

0.0001, and logarithm of odds (LOD) = 2.5. A QTL was identified

when the logarithm of odds (LOD) score was greater than 2.5. To

determine the additive effects of QTL, the effects of QTL

combinations were demonstrated by plotting box plots for mean IT

and mean DS of RILs sharing the same number of beneficial alleles.
Results

Stripe rust responses of the parents
and RILs

In the greenhouse seedling tests, PI 660122 was highly resistant

(IT of 2) to the tested three Chinese Pst races, whereas Zhengmai

9023 was highly susceptible (IT of 8–9) similar to the susceptible

check AvS (Figure 1A). In the field tests under natural Pst infection,

the final adult plant IT of PI 660122 was 2 across the two years and

two locations, and its DS ranged from 5% to 10%, (Figure 1B). In

contrast, Zhengmai 9023 was moderately resistant (IT of 5–6) with

DS of 40%–50%. For comparison, AvS had IT of 9 and DS of 100%.

The RIL population had ITs ranging from 0 to 9 and DS from 0

to 90% across the years and locations (Figure 2). The IT and DS data

from both sites and from both 2021 and 2022 at MY were each

highly correlated (r = 0.76–0.81, p < 0.001 for IT; r = 0.61–0.75, p <

0.001 for DS) (Table 1). The ANOVA results showed significant
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variations (p < 0.001) among RILs, environments, and line ×

environment interactions for both IT and DS. The stripe rust

phenotypes were influenced more by the environment than by

the interaction of line and environment. The broad-sense

heritability (h2) was estimated at 0.92 using the IT data and 0.86

based on the DS data across the two sites (Table 2).
Genetic linkage map construction

A total of 5,432 SNPs in the 15K SNP array showed homozygous

polymorphisms between the two parents. After the redundant

markers were filtered out, 4,102 SNPs with known chromosome

locations were obtained and used as inputs in the linkage analysis

using QTL Ici Mapping V4.2. The 4,102 SNPs covered a total map

length of 7,937.6 cM, with the genetic length ranging from 135.6 cM

for chromosome 1B to 635.5 cM for chromosome 5A (Table 3). The

number of markers per chromosome ranged from 60 for

chromosome 6A to 322 for chromosome 2A, with an average of

189 SNPs. The mean distance between adjacent SNP markers ranged

from 0.5 cM for chromosome 1B to 7.3 cM for chromosome 2D, with

an overall mean of 1.9 cM. Genomes A, B, and D included 1,374

(33.50%), 1,672 (40.76%), and 1,056 (25.74%) SNPs covering lengths

of 2,630.1 cM, 2,144.1 cM, and 3,163.4 cM with mean marker

distance of 1.91 cM, 1.28 cM, and 3.00 cM, respectively. The map

was used to identify significant associations between SNPs and stripe

rust resistance.
QTL analysis of stripe rust resistance

QTL scans on all 21 chromosomes were performed using the ICIM

method in the software QTL Ici Mapping V4.2. A total of nine QTLs

contributing to stripe rust resistance in the Zhengmai 9023 × PI 660122
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RIL population were identified with one QTL each on chromosomes 1B,

2B, 6A, 6D, and 7D and two QTLs each on 4B and 4D. Then, ICIM,

single-marker analysis (SMA), and ICIM epistatic QTL (ICIM-EPI) for

epistatic mapping were performed onQTL chromosome regions of these

chromosomes. Among the QTL, seven (QYrPI660122.swust-4BS,

QYrPI660122.swust-4BL, QYrPI660122.swust-4DS, QYrPI660122.swust-

4DL, QYrZM9023.swust-6AS, QYrZM9023.swust-6DS, and

QYrPI660122.swust-7DS) were detected in all environments, and two

(QYrZM9023.swust-1BL and QYrPI660122.swust-2BL) were only

detected in 22MY. Of the nine QTLs, six (QYrPI660122.swust-2BL,

QYrPI660122.swust-4BS, QYrPI660122.swust-4BL, QYrPI660122.swust-

4DS, QYrPI660122.swust-4DL, and QYrPI660122.swust-7DS) were from

PI 660122 and three (QYrZM9023.swust-1BL, QYrZM9023.swust-6AS,

and QYrZM9023.swust-6DS) from Zhengmai 9023.

QYrZM9023.swust-1BL, located at an 8.27-cM interval spanned

by SNP markers AX-89763895 and AX-109273019, explained 7.41%

and 7.29% of phenotypic variation in IT and DS, respectively, and

was detected only in 22MY. QYrPI660122.swust-2BL, located at a

1.83-cM interval spanned by SNP markers AX-109849173 and AX-

109349804, explained 4.65% and 5.57% of phenotypic variation in

IT and DS, respectively, and was only detected in 22MY.

QYrPI660122.swust-4BS, located at a 0.96-cM interval spanned by

SNP markers AX-108767762 and AX-109309162, explained

10.94%–15.00% and 5.84%–12.93% of phenotypic variation in IT

and DS, respectively, across all environments. QYrPI660122.swust-

4BL, mapped to a 1.54-cM interval flanked by SNP markers AX-

108935256 and AX-108984536, explained 8.25%–9.09% and 5.75%–

13.51% phenotypic variation in IT and DS, respectively, and was

detected in all environments. QYrPI660122.swust-4DS, located at a

12.15-cM interval spanned by SNP markers AX-110046962 and AX-

111093894, explained 11.64%–17.20% and 13.22%–20.97%

phenotypic variation in IT and DS, respectively, across all

environments. QYrPI660122.swust-4DL, located at a 1.23-cM
BA

FIGURE 1

Stripe rust response of resistant parent PI 660122, susceptible parent Zhengmai 9023 (ZM9023), and susceptible check AvS with Chinese race CYR34
of Puccinia striiformis f sp. tritici at the seedling stage (A) and stripe rust reactions on flag leaves of ZM9023 and PI 660122 (B).
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interval spanned by SNP markers AX-94560848 and AX-111557122,

explained 11.18%–18.24% and 6.60%–17.37% phenotypic variation

in IT and DS, respectively , across al l environments .

QYrZM9023.swust-6AS, located at a 10.37-cM interval spanned

by SNP markers AX-95124889 and AX-110995858, explained
Frontiers in Plant Science 05
5.43%–9.11% and 6.23%–7.92% of phenotypic variation in IT and

DS, respectively, across all environments. QYrZM9023.swust-6DS,

located at a 2.58-cM interval spanned by SNP markers AX-

11475193 and AX-109317417, explained 7.24%–13.33% and

7.25%–12.22% of phenotypic variation in IT and DS, respectively,
TABLE 1 Correlation coefficients (r) of infection type (IT) and disease severity (DS) of the recombinant inbred lines Zhengmai 9023 × PI 660122 tested
in different environments.

Environmenta 21MY 22MY 22GY

21MY NAb

22MY 0.81 (0.69)***c NA

22GY 0.77 (0.61)*** 0.76 (0.76)*** NA
frontie
a21, 2021; 22, 2022; MY, Mianyang; GY, Guangyuan.
bNA, not applicable.
cThe r values based on DS data are given in parentheses.
“***” denotes the r value is significant at p < 0.001.
B

A

FIGURE 2

Frequency distributions of mean infection types (IT) (A) and disease severity (DS) (B) for 239 F6 RILs from cross Zhengmai 9023 × PI 660122 tested in
Mianyang (MY) in 2021 (21) and 2022 (22) and Guangyuan (GY) in 2022. Arrows indicate the values of the parent lines. RILs, recombinant inbred lines.
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across all environments. QYrPI660122.swust-7DS, located at a 4.75-

cM interval spanned by SNP markers AX-110467729 and AX-

89378255, explained 11.64%–17.20% and 13.22%–20.97% of

phenotypic variation in IT and DS, respectively, and was detected

in two environments, 21MY and 22GY (Figure 3, Table 4).
Frontiers in Plant Science 06
Identification of QTL resistance

Fifteen lines containing only one QTL were selected and tested

for seedling reaction in the greenhouse using three Chinese Pst races

(CYR31, CYR32, and CYR34). Among them, four lines contained
TABLE 2 Analysis of variance and estimate of broad-sense heritability (h2) of infection type (IT) and disease severity (DS) in the recombinant inbred
line (RIL) population of Zhengmai 9023 × PI 660122 tested at Mianyang in 2021 and 2022 and Guangyuan in 2022.

Source of variation DS IT

dfa Mean square F value df Mean square F value

Lines 238 1,427.69 44.51***b 238 18.17 56.86***

Environments 2 7,683.04 239.53*** 2 64.90 203.16***

Line × Environment 459 224.64 7.00*** 459 1.65 5.17***

Error 689 32.08 689 0.32

h2 0.86 0.92
adf, degree of freedom.
b“***” denotes the significance level of p < 0.001.
TABLE 3 Summary of chromosome assignment, number of SNPs, map length, and marker density of the genetic maps of the Zhengmai 9023 × PI
660122 recombinant inbred population.

Chromosome No. of SNPs Map length (cM) Mean SNP distance (cM)

1A 156 311.4 2.0

1B 256 135.6 0.5

1D 82 561.9 6.9

2A 322 379.2 1.2

2B 254 339.4 1.3

2D 197 465.3 7.3

3A 249 362.0 1.5

3B 194 318.6 1.6

3D 190 428.1 2.3

4A 179 296.5 1.7

4B 193 281.5 1.5

4D 71 235.9 3.3

5A 235 635.5 2.7

5B 223 368.9 1.7

5D 138 500.5 3.6

6A 60 288.0 4.8

6B 303 390.1 1.3

6D 109 440.4 4.0

7A 173 357.5 2.1

7B 249 310.0 1.2

7D 269 531.3 2.0

Total 4102 7937.6 1.9

Average 195 376.7 1.9
SNPs, single-nucleotide polymorphisms.
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QYrZM9023.swust-1BL, three lines contained QyrPI660122.swust-

4DS, and eight lines contained QYrPI660122.swust-7DS. The lines

containing QYrZM9023.swust-1BL or QYrPI660122.swust-7DS

were susceptible (IT of 7–9) to all three races but showed

moderate resistance at the adult-plant stage in the fields,

indicating that these QTLs confer APR. In contrast, the lines

containing QYrPI660122.swust-4DS were resistant (IT of 1–3)

in the seedling tests, indicating that this QTL confers ASR

(Figure 4, Table 5). The resistance types of QYrPI660122.swust-

2BL , QYrPI660122.swust-4BS , QYrPI660122.swust-4BL ,
Frontiers in Plant Science 07
QYrPI660122. swust-4DL , QYrZM9023. swust-6AS , and

QYrZM9023.swust-6DS were uncertain, as there were no single-

QTL lines available from the RIL population.
QTL combinations

To determine the effects of the QTL in various combinations

for Pst resistance, the 239 RILs were grouped into different

genotypic groups based on the presence of markers closely
B C

D E F

G H I

A

FIGURE 3

Stripe rust resistance QTLs on the genetic map of chromosomes 1BL (A), 2BL (B), 4BS (C), 4BL (D), 4DS (E), 6AS (F), 6DS (G), 7DS (H), and 4DS (I)
based on infection type (IT) and disease severity (DS) data. The y-axis is in centimorgan (cM) distance, and the x-axis denotes LOD value. The red
rectangle on the genetic map indicates the corresponding QTL region. QTLs, quantitative trait loci; LOD, limit of detection.
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associated with the nine QTL. These genotypes were further

sorted into 10 groups based on the number of potential QTLs.

Clearly, RILs carrying any number of QTL had lower mean DS

than those without any of the QTL. Lines without any QTL had a

mean IT of 6.6 and a mean DS of 46.91%. In comparison, when 0,

1, 2, 3, 4, 5, 6, and more than 6 QTLs were combined, the lines

with one QTL had mean IT of 5.9 and mean DS of 36.04%, those

with two QTLs had mean IT of 5.0 and mean DS of 31.81%,

those with three QTLs had mean IT of 4.0 and mean DS of

23.25%, those with four QTLs had mean IT of 3.7 and mean DS

of 19.52%, those with five QTLs had mean IT of 3.1 and mean

DS of 14.76%, those with six QTLs had mean IT of 2.7 and mean

DS of 10.45%, and those with seven or more QTL had mean IT of

2.4 and mean DS of 10.58%, close to the resistance level of PI

660122 (Figure 5).
Frontiers in Plant Science 08
Selection of breeding lines

Various agronomic traits, including PH, PTN, SL, KPS, and

TGW, of the parents and the 239 RILs were assessed in 2021 and

2022 in Mianyang and 2022 in Guangyuan. The mean PH values

of PI 660122 and ZM9023 were 90.3 cm and 79.3 cm,

respectively, and the RILs were mainly distributed in the range

of 81–110 cm. The mean PTN values of PI 660122 and ZM9023

were 5 and 4, respectively, and the mean PTN values of RILs were

between 4 and 10. The mean SL values of PI 660122 and ZM9023

were 9.8 cm and 8.4 cm, respectively, and the mean SL values of

RILs were between 7.3 cm and 11.3 cm. The mean KPS values of

PI 660122 and ZM9023 were 48 and 44, respectively, and the

mean KPS values of RILs were between 33 and 58. The mean

TGW values of PI 660122 and ZM9023 were 48 g and 44 g,
frontiersin.or
TABLE 4 Summary of nine stripe rust resistance QTLs identified based on mean disease severity (DS) and infection type (IT) of 239 RILs from
Zhengmai 9023 × PI 660122 cross-tested in Mianyang 2021–2022 and Guangyuan 2022.

QTL Environment
Center marker Right marker

IT DS

LODa PVEb Addc LOD PVE Add

QYrZM9023.swust-1BL 22MY AX-89763895 AX-109273019 4.02 7.41 0.57 3.80 7.29 3.75

QYrPI660122.swust-2BL 22MY AX-109849173 AX-109349804 2.52 4.65 −0.45 3.00 5.57 −.3.29

QYrPI660122.swust-4BS

21MY

AX-108767762 AX-109309162

5.97 14.15 −0.64 5.03 10.36 −5.69

22MY 7.91 15.00 −0.76 6.72 12.76 −4.82

22GY 4.77 10.940 −0.53 2.75 5.51 −4.84

QYrPI660122.swust-4BL

21MY

AX-109495166 AX-108935256

4.40 8.25 −0.56 3.04 5.75 −4.50

22MY – – – 7.19 13.51 −4.99

22GY 3.90 9.09 −0.48 – – –

QYrPI660122.swust-4DS

21MY

AX-110046962 AX-111093894

13.13 21.82 −0.99 10.72 18.11 −8.83

22MY 14.29 23.78 −1.06 12.65 21.04 −7.03

22GY 7.57 13.81 −0.74 6.53 12.58 −7.57

QYrPI660122.swust-4DL

21MY

AX-111526214 AX-111557122

5.18 11.18 −0.60 3.81 7.22 −5.05

22MY 9.51 18.23 −0.84 8.20 17.36 −5.33

22GY 4.58 12.71 −0.52 2.71 6.60 −4.83

QYrZM9023.swust-6AS

21MY

AX-95124889 AX-110995858

2.97 5.53 0.46 – – –

22MY 5.06 9.11 0.67 4.39 7.92 4.17

22GY 2.70 5.43 0.41 3.01 6.23 5.13

QYrZM9023.swust-6DS

21MY

AX-109317417 AX-111475193

3.78 7.24 0.52 3.47 7.26 4.80

22MY 7.48 13.33 0.75 6.85 12.44 4.87

22GY 4.54 9.39 0.52 3.91 7.79 5.76

QYrPI660122.swust-7DS
21MY

AX-110467729 AX-89378255
3.24 6.91 −0.50 4.92 11.39 −5.85

22GY 3.70 7.32 −0.50 4.19 8.26 −6.22
aLOD, logarithm of odds score.
bAdd, additive effect of resistance allele.
cPVE, percentages of the phenotypic variance explained by individual QTL.
QTLs, quantitative trait loci; RILs, recombinant inbred lines.
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respectively, and the mean TGW values of RILs were between

30.6 g and 58.4 g.

In order to select RILs with desirable agronomic traits, the

following criteria were used: PH between 80 cm and 100 cm, PTN 5

or more, SL greater than 9 cm, KPS not less than 45, and TGW over

42 g, with stripe rust IT of 1–3 and DS < 20%. Based on these
Frontiers in Plant Science 09
criteria, 26 lines were selected. The QTLs detected by their highly

associated SNP markers in the selected lines are listed in Table 6.

These lines had at least two QTLs, and three lines (F6-61, F6-78, and

F6-86) had as many as seven QTLs. According to Table 7, the DS is

negatively correlated with SL, PTN, KPS, and TGW, indicating that

with the increase of DS, the SL, PTN, KPS, and TGW will decrease.
B

A

FIGURE 4

Stripe rust responses of lines containing only one QTL tested with Chinese race CYR32 of Puccinia striiformis f sp. tritici at the seedling stage (A) and
on flag leaves of the resistant parent PI 660122, susceptible parent Zhengmai 9023 (ZM9023), and some selected recombinant inbred lines (RILs) (B).
Line 27 containing QYrPI660122.swust-2BL, QYrPI660122.swust-4BS, QYrPI660122.swust-4BL, QYrPI660122.swust-4DS, QYrPI660122.swust-4DL,
QYrZM9023.swust-6AS, QYrZM9023.swust-6DS, and QYrPI660122.swust-7DS; Line 24 containing QYrZM9023.swust-1BL, QYrPI660122.swust-2BL,
QYrPI660122.swust-4BS, QYrPI660122.swust-4BL, QYrPI660122.swust-4DL, and QYrPI660122.swust-7DS; Line 143 containing QYrPI660122.swust-
2BL, QYrPI660122.swust-4BS, QYrPI660122.swust-4BL, QYrPI660122.swust-4DL, and QYrPI660122.swust-7DS; Line 195 containing
QYrPI660122.swust-4BS, QYrPI660122.swust-4BL, QYrPI660122.swust-4DL, QYrZM9023.swust-6AS, and QYrZM9023.swust-6DS; Line 24 containing
QYrPI660122.swust-2BL and QYrPI660122.swust-4DS; Line 3 containing QYrZM9023.swust-1BL, QYrPI660122.swust-4BS, QYrPI660122.swust-4BL,
and QYrPI660122.swust-4DL; Line 4 containing QYrPI660122.swust-2BL, QyrPI660122.swust-4BS, QyrPI660122.swust-4BL, and QyrPI660122.swust-
4DL; Line 66 and Line 102 without any QTLs. QTL, quantitative trait locus.
TABLE 5 Numbers of recombinant inbred lines from the Zhengmai 9023 × PI 660122 cross having only one stripe rust resistance and their infection
types (ITs) at the seedling stage and mean IT and disease severity (DS) at the adult-plant stage in the fields of 2021 (21) and 2022 (22) at Mianyang (MY)
and/or Guangyuan (GY).

QTL No. of lines Seedling ITs Mean IT Mean DS (%)

21MY 22MY 22GY 21MY 22MY 22GY

QYrZM9023.swust-1BL 4 8–9 5.6 7.1 5.8 39.5 36.2 40.0

QYrPI660122.swust-4DS 3 1–3 3.2 5.4 6.5 12.7 30.3 55.0

QYrPI660122.swust-7DS 8 7–9 6.4 7.3 5.9 26.6 40.2 42.5
frontie
QTL, quantitative trait locus.
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The correlation coefficients between DS and PH, and PTN were

0.13 and 0.15, respectively, and the correlation was significant (p <

0.05). The correlation coefficients between DS and SL, KPS, and

TGWwere 0.05, 0.08, and 0.02, respectively, and the correlation was

not significant (p > 0.05).
Discussion

Developing durable resistance to stripe rust has been a top priority

in wheat breeding over the past decade. Wheat line PI 660122 has

exhibited high levels of stripe rust resistance for over a decade (Wang
Frontiers in Plant Science 10
et al., 2012). In the present study, a RIL population containing 239 lines

developed from a cross of PI 660122 with a Chinese elite cultivar,

ZM9023, was phenotyped for stripe rust response in multiple

environments and genotyped with the 15K wheat SNP array. We

detected a total of nine QTLs, of which six (QYrPI660122.swust-2BL,

QyrPI660122.swust-4BS, QyrPI660122.swust-4BL, QyrPI660122.swust-

4DS, QyrPI660122.swust-4DL, and QyrPI660122.swust-7DS) came

from PI 660122 and three (QYrZM9023 . swus t -1BL ,

QYrZM9023.swust-6AS, and QYrZM9023.swust-6DS) came

from ZM9023.

QYrZM9023.swust-1BL, an APR QTL, was from Zhengmai

9023. This QTL was flanked by SNP markers AX-89763895 and
B

A

FIGURE 5

Effects of individual QTL and their combinations on stripe rust scores illustrated by mean infection type (IT) (A) and disease severity (DS) (B)
scores of recombinant inbred lines from Zhengmai 9023 × PI 660122 (ZM9023 in three environments, 2021 Mianyang (21MY), 2022 Mianyang
(22MY), and 2022 Guangyuan (22GY). Box plots indicate the infection type (IT) and disease severity (DS) associated with the identified QTL and
their combination.
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AX-109273019, corresponding to the region from 670,429,611 bp to

681,685,826 bp of chromosome 1BL in the Chinese Spring (CS)

genome (IWGSC RefSeq v1.0). Three permanently named stripe

rust resistance genes, Yr21 (Chen and Line, 1995), Yr26 (Ma et al.,

2001), and Yr29 (William et al., 2006), were mapped to 1BL. Among

them, Yr21 and Yr26 confer ASR, while Yr29 is an APR gene linked

with SSR markers Xwmc44 and Xwmc367 and located at the distal

end of chromosome 1BL. The physical position of Xwmc367 is in

the range of 678,736,681–678,736,834 bp, which is within the

genome range of QYrZM9023.swust-1BL. According to a previous

study, ZM9023 has Lr27/Yr30/Sr2 and Lr46/Yr29/Pm39/Sr58 (Li
Frontiers in Plant Science 11
et al., 2020). As both Yr29 and QYrZM9023.swust-1BL confer APR,

QYrZM9023.swust-1BL should be Yr29. Yr29 has been reported and

deployed widely in wheat varieties around the world (William et al.,

2006; Melichar et al., 2008; Lan et al., 2014; Hou et al., 2015;

Maccaferri et al., 2015; Muleta et al., 2017; Wang and Chen, 2017;

Cobo et al., 2018; Godoy et al., 2018; Liu et al., 2019; Rosa et al.,

2019; Liu et al., 2020).

QYrPI660122.swust-2BL was derived from PI 660122, and it was

flanked by SNP markers AX-109849173 and AX-109349804,

corresponding to the region from 777,831,275 bp to 779,847,527

bp of chromosome 2BL in CS (IWGSC RefSeq v1.0). Seven
TABLE 6 Mean stripe rust response, agronomic traits, and presence (+) and absence (−) of resistant QTLs detected with SNP markers in Zhengmai
(ZM) 9023, PI 661022, and selected recombinant inbred linesa.

Parent/line Stripe rust Agronomic trait QTL

IT DS (%) PH SL PTN KPS TGW 1BL 2BL 4BS 4BL 4DS 4DL 6AS 6DS 7DS

ZM9023 5 45 79.3 8.4 4 44 40.9 + − − − − − + + −

PI 660122 2 7 90.3 9.8 5 49 45.1 − + + + + + − − +

F6-5 2 9 95.0 9.5 5 49 46.4 + − + + + + − − −

F6-13 1 3 93 9.7 5 50 52.1 − + + + + + − − −

F6-18 3 13 83.0 9.4 6 48 53.7 + − − − − − + + −

F6-22 2 5 97.0 9.1 7 46 47.5 + + + + − + − − +

F6-27 1 3 93.7 9.4 8 52 50.7 − + + + + + + + +

F6-32 3 9 99.3 10.4 6 52 56.8 + + − − − − − − +

F6-48 3 11 95.7 9.1 6 51 46.9 + − − − + − − − +

F6-54 2 7 84.3 9.1 6 49 45.0 − − + + − + − − −

F6-56 2 5 83.7 9.0 6 45 53.5 − − − − + − + + +

F6-61 3 10 86.7 10.2 7 52 46.3 + − + + + + + + −

F6-78 2 6 96.3 9.5 6 49 44.2 − + + + + + + + −

F6-86 3 14 90 9.6 7 50 47.9 + + + + − + + + −

F6-115 3 12 98 9.7 5 48 52.6 + + − − + + − − +

F6-124 2 6 90.7 9.4 8 57 53.2 + + − − − − + + −

F6-150 3 13 98 9.6 6 47 51.9 − + − − + − + + −

F6-161 3 15 93 9.4 7 54 50.1 − − − − − − − + +

F6-162 3 11 94.7 9.1 7 49 49.5 − + − − + − − − −

F6-170 3 11 93 9.6 7 50 52.0 − + − − − − + + +

F6-178 3 11 89.5 9.5 7 51 48.3 + − + − − + + + −

F6-186 2 8 96 9.9 5 45 46.0 − − − − + − − − +

F6-187 2 4 80 9.4 5 49 52.4 + − + + + + − − −

F6-207 2 3 82 9.7 6 52 44.0 − − + + + + + + +

F6-211 2 3 82.0 9.7 6 52 49.6 − − + − + + − − −

F6-228 3 10 92.7 9.5 6 48 49.3 − − − − + − + + +

F6-231 3 14 93.7 9.3 5 56 45.6 + − − − − − + + +

F6-235 3 13 97 9.5 7 48 49.9 + + − − + − + + −
frontier
aIT, infection type; DS, disease severity; PH, plant height; PTN, productive tiller number; SL, spike length; KPS, kernels per spike; TGW, thousand-grain weight.
QTLs, quantitative trait loci; SNP, single-nucleotide polymorphism.
sin.org

https://doi.org/10.3389/fpls.2023.1232897
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yan et al. 10.3389/fpls.2023.1232897
permanently named stripe rust resistance genes, including Yr5 and

Yr7 (Macer, 1963; Marchal et al., 2018), Yr43 (Cheng and Chen,

2010), Yr44 (Sui et al., 2009), Yr53 (Xu et al., 2013), Yr72 (McIntosh

et al., 2016), and YrSP (Feng et al., 2015), were mapped to 2BL. Yr5/

Yr7/YrSP (Marchal et al., 2018) had been cloned, and it encoded

nucleotide-binding (NB) and leucine-rich repeat (LRR) proteins.

The physical map position of Yr5/Yr7/YrSP was 685.265–685.27

Mb. Yr43, an ASR gene, was flanked by Xwgp110 and Xwgp103, but

its physical map position is unknown. Yr44, an ASR gene, was

derived from spring wheat cultivar Zak and flanked by XpWB5/

N1R1 and Xwgp100, but its physical map position is unknown.

Yr53, an ASR gene, was derived from PI 480148 and flanked by

Xwmc441 and XLRRrev/NLRRrev350. The physical map position of

Xwmc441 was 598,064,318–598,064,477 bp. Yr72, an ASR gene, was

derived from AUS27507 and flanked by Xsun481 and IWB12294.

The physical map position of IWB12294 was 767,171,587–

767,171,587 bp. In addition, several major QTLs have been

mapped to the long arm of chromosome 2B. QYr.hbaas-2BL was

located at 453.3 Mb (Jia et al., 2020). Yr.niab-2B.1 was located at

683.05–750.12 Mb (Bouvet et al., 2022). QYrpd.Swust-2BL.1,

QYrpd.Swust-2BL.2, QYrpd.Swust-2BL.3, and QYrpd.Swust-2BL.4

were located at 773.79–775.17 Mb, 753.37–777.52 Mb, 793.15–

798.00 Mb, and 782.53–784.55 Mb, respectively (Zhou et al.,

2022b). Qyr.gaas.2B.1 was located at 698.22–705.68 Mb (Cheng

et al., 2022). YrQz was located at 557.37–630.40 Mb (Deng et al.,

2004). QYr.nafu-2BL was located at 553.73–615.79 Mb (Zhou et al.,

2015a; Hu et al., 2020). QYrww.wgp.2B-4 was located at 524 Mb

(Mu et al., 2020). Yrdr.wgp-2BL was located at 709.84 Mb (Hou

et al., 2015). QTL 2BL was located at 779.11–783.89 Mb (Somers

et al., 2004). QYr.inra-2BL was located at 615.79–621.47 Mb

(Mallard et al., 2005). QYraq.cau-2BL was located at 670.60–

739.40 Mb (Ramburan et al., 2004). QYr.caas-2BL was located at

693.74–733.16 Mb (Ren et al., 2012b). Yrns.orz-2BL was located at

685.74 Mb (Vazquez et al., 2015). YrV23 is closely linked to

Xwmc356 at position 796,684,893–796,685,357 bp (Wang et al.,

2006). Based on the chromosomal positions, QYrPI660122.swust-

2BL is likely different from Yr5/Yr7/YrSP and Yr53, but its

relationships with other genes or QTL on 2BL need to be

further studied.

QYrPI660122.swust-4BS was derived from PI 660122, and it was

flanked by SNP markers AX-108767762 and AX-109309162,
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corresponding to the region from 32,961,964 bp to 36,395,734 bp

of the CS (IWGSC RefSeq v1.0) chromosome 4BS. QYr.caas-4BS

was located between markers Xwmc652 and Xgpw4388 (Wang et al.,

2020). The physical map position of QYr.caas-4BS was 38.6–47.6

Mb.QYrcl.sicau-4B was located at the end of chromosome 4BS (Yao

et al., 2020), which is different from the physical map position of

QYrPI660122.swust-4BS. QYrPI660122.swust-4BS in PI 660122 is

likely different from the previously mapped stripe rust resistance

genes on chromosome 4BS.

QYrPI660122.swust-4BL was derived from PI 660122 and was

flanked by SNP markers AX-109495166 and AX-108935256,

corresponding to the position from 396,263,280 bp to 445,689,397

bp of the CS chromosome 4BL. Three permanently named stripe

rust resistance genes, Yr50 (Liu et al., 2013), Yr62 (Lu et al., 2014),

and Yr68 (McIntosh et al., 2016), were mapped to 4BL. Yr50, an

ASR gene, was reported to be associated with Xbarc1096 and

Xwmc47. The map position of Yr50 is 105.1 Mb–644.9 Mb. Yr62,

a HTAP gene, was reported to be associated with Xgwm192 and

Xgwm251. The physical map position of Yr62 was 482.8–568.6 Mb.

Yr68, an APR gene, was reported to be associated with IWB74301

and IWB28394, and its physical map position was 575.04–600.66

Mb. In addition, several major QTLs were located on chromosome

4BL. QYrhm.nwafu-4B, Qyr.hbaas-4BL.1, and QYr.hbaas-4BL.2

overlapped Yr62 (Yuan et al. , 2018; Jia et al. , 2020).

QYrhm.nwafu-4BL was derived from Humai 15 and flanked by

AX-111150955 and Xgwm251, which was mapped to 523.4–568.6

Mb (Yuan et al., 2018). QYr.hbaas-4BL.1 was linked with

IWB73717, and its physical map position was 531.3 Mb (Jia et al.,

2020). QYr.hbaas-4BL.2 was linked with IWB63337 at the physical

map position of 558.1 Mb. QYr.hbaas-4BL.3 was linked with

IWB32927 at the physical map position of 579.4 Mb. QYr.sun-4B

was derived from the Australian wheat cultivar Janz and exhibited

minor variation (9.4%–16.8%) (Zwart et al., 2010). It was flanked by

wPt-8543 and Xwmc238. The physical map position of Xwmc238

was 236,742,906–236,743,133 bp. QPst.jic-4B (Melichar et al., 2008)

was derived from the UK winter wheat cultivar Guardian and

mapped to the region between Xwmc652 and Xwmc692 with a

PVE of 12%. QYr.crc-4BL was flanked by markers BS00048794_51

and RAC875_rep_c72961_977, and the physical map position of

QYr.crc-4BL was 601.93–617.00 Mb (Rosa et al., 2019). YrBm, an

APR QTL, was derived from Chinese winter wheat landrace
TABLE 7 Correlation coefficients (r) of important traits of the recombinant inbred lines Zhengmai 9023 × PI 660122.

Trait IT DS (%) PH SL PTN KPS TGW

IT NAa

DS (%) 0.95***b NA

PH 0.16* 0.13* NA

SL −0.01ns −0.05 0.10ns NA

PTN −0.12ns −0.15* −0.02ns 0.07ns NA

KPS −0.03ns −0.08ns 0.19** 0.45*** 0.12ns NA

TGW 0.01ns −0.02ns 0.06ns 0.06ns 0.02ns −0.02ns NA
frontie
aNA, not applicable.
b“***” denotes the r value is significant at <0.001, “**” denotes the r value is significant at <0.01, “*” denotes the r value is significant at <0.05, and “ns” denotes the r value is not significant at p > 0.05.
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Baimangmai (Hu et al., 2022). It was flanked by markers Xgpw7272

and Xwmc652. The physical map position of YrBm was 611.1–621.1

Mb. QYrPI660122.swust-4BL overlapped with Yr50, but further

studies are needed to confirm the relationship between

QYrPI660122.swust-4BL and Yr50 and determine the

relationships with other QTLs on chromosome 4BL.

QYrPI660122.swust-4DS, an ASR QTL, was derived from PI

660122, and it was flanked by SNP markers AX-110046962 and AX-

111093894 and corresponds to the region from 1,702,954 bp to

9,555,772 bp of the CS 4DS chromosome. Yr28 has been mapped to

the short arm of chromosome 4D (Singh et al., 2000). Yr28 is a

major ASR gene conferring stripe rust resistance from Ae. tauschii

and located between SSR markers Xbcd265 and Xmwg634. Yr28 has

been cloned and characterized, which encoded a typical nucleotide

oligomerization domain-like receptor (NLR) (Zhang et al., 2019).

The gene was further mapped between Xsdauw92 and Xsdauw96,

approximately 0.13-cM interval, and its physical map position of

Yr28 was 1.820–1.826 Mb. Based on the physical map position, the

resistance type, and the Mexican wheat genotype PI 610755 that has

Ae. tauschii in the pedigree as stripe rust resistance donor of PI

660122 (Wang et al., 2012), QYrPI660122.swust-4DS is highly

likely Yr28.

QYrPI660122.swust-4DL was derived from PI 660122 and was

flanked by SNP markers AX-94560848 and AX-111557122

corresponding to 288,430,275 bp to 310,458,135 bp of the CS

chromosome 4DL. So far, only one permanently named Yr gene,

Yr46 (Herrera-Foessel et al., 2011), has been reported on

chromosome 4DL. Yr46 is an APR gene from wheat cultivar

RL6007 and flanked by SSR markers Xgwm165 and Xgwm192,

and its physical map position is approximately 417.2 Mb. Two

QTLs, QYr.ucw-4DL (Cobo et al., 2018) and QYr.hbaas-4DL (Jia

et al., 2020), have been also reported on chromosome 4DL.

QYr.ucw-4DL was linked with the IWA2395, and its physical map

position was 497.65 Mb (Cobo et al., 2018). QYr.hbaas-4DL is

linked to SNP marker IWB44356 (Jia et al., 2020), with the physical

map position of approximately 477.9 Mb. Based on the different

physical map positions of QYrPI660122.swust-4DL from those of

Yr46, QYr.ucw-4DL, and QYr.hbaas-4DL, QYrPI660122.swust-4DL

is likely a new QTL for stripe rust resistance.

QYrZM9023.swust-6AS is derived from Zhengmai 9023 and

flanked by SNP markers AX-95124889 and AX-110995858

corresponding to the 27,748,586–71,705,701-bp region of the CS

chromosome 6AS. Numerous genes or QTLs for stripe rust

resistance have been mapped to 6AS. Yr38 was mapped to 6AS

(Marais et al., 2006), but its physical map position is unknown. Yr81

is flanked by KASP_3077 and Xgwm459 (Gessese et al., 2019), and

the physical map position of Xgwm459 is within the 6,805,513–

6,805,994-bp region. YrP10090 is flanked by AX-94460938 and AX-

110585473 (Liu et al., 2021), and its physical map position is within

107.1–446.5 Mb. Qyr.gaas.6A was flanked by AX-109558600 and

AX-109542604 (Cheng et al., 2022), and its physical map position is

within 609.11–609.89 Mb. QYr-6A_Saar derived from the

CIMMYT variety Saar (Lillemo et al., 2008) is flanked by XwPt-

7063 and Xbarc3, and its physical map position is within 62.92–

85.28 Mb. QYr.uaf-6A.1 and QYr.uaf-6A.4 were mapped with

IWA8028 and IWB29623, respectively (Habib et al., 2020). The
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physical map position of QYr.uaf-6A.1 is at 105.02 Mb, and that of

QYr.uaf-6A.4 is at 18.71 Mb.QYr.uga-6AS is flanked by wPt-671561

and wPt-7840 (Hao et al., 2011), and its physical map position is

within 24.09–85.28 Mb. QYrex.wgp-6AS is flanked by markers

Xgwm334 and Xwgp56 (Lin and Chen, 2008a), which indicate the

QTL physical map position within 9.25–61.02 Mb. Yrq3 is flanked

by SSR markers Xgwm334 and Xgwm169 (Cao et al., 2012), and its

physical map position was found to be within 9.25–595.38 Mb.

QYrcl.sicau-6A.1 was detected by two adjacent DArT-seq markers

(3936688 and 1266956) on chromosome 6A between 5.14 and 5.83

Mb (Yao et al., 2020). QYr.sicau-6A is flanked by SNP markers AX-

94548199 and AX-111101235 (Ma et al., 2019), and its physical map

position of QYr.sicau-6A is within 90.32–97.52 Mb. QYrswp-6A is

linked with IWA272 (Liu et al., 2019b), and its physical map

position is 3.85 Mb. QYrZM9023.swust-6AS overlapped with QYr-

6A_Saar, Yr.uga-6AS, and QYrex.wgp-6AS, but further studies are

needed to determine if they are the same or different.

QYrZM9023.swust-6DS was also derived from Zhengmai 9023

and flanked by SNP markers AX-11475193 and AX-109317417

corresponding to the 35,630,857–44,498,347-bp region of the CS

chromosome 6DS. Few genes or QTL for stripe rust resistance have

been reported on 6DS. Yr77 is an APR gene flanked by Xbrac54 and

Xcfd188, and the physical map position of Xcfd188 is within the

238,118,148–238,118,395-bp region (R. McIntosh, personal

communication). QYr.ucw-6D is linked with IWA167 (Maccaferri

et al., 2015), which is at the physical map position of 73.2 Mb.

QYr.ufs-6D is flanked by Xgwm325 and Xbarc175 (Agenbag et al.,

2012), and its physical map position is within the 79.96–411.88-Mb

region. QYR7 is flanked by Xbcd1510 and XksuD27 (Boukhatem

et al., 2002), and its physical map position is approximately 12 Mb.

Based on the physical positions, QYrZM9023.swust-6DS is likely

different from these genes or QTLs for stripe rust resistance genes

previously mapped on chromosome 6DS.

QYrPI660122.swust-7DS, an APR QTL derived from PI 660122,

is flanked by SNP markers AX-110467729 and AX-89378255

corresponding to the 43,386,933–47,379,368-bp region of the CS

7DS chromosome. Only the permanently named stripe rust

resistance gene Yr18 has been mapped to chromosome 7DS. Yr18

was mapped to 7DS in a number of different wheat cultivars, such as

Jupateco 73R and Opata 85 (Singh, 1992; Singh et al., 2000),

Australian cultivar Cook (Bariana et al., 2001), and Fukuho-

komugi (Suenaga et al., 2003). Yr18 is an APR gene flanked by

Xgwm1220 and Xgwm29 and encodes a putative ATP-binding

cassette transporter (Krattinger et al., 2009; Lagudah et al., 2009).

The physical map position of Yr18 is from 47.412 Mb to 47.424 Mb,

similar to QYrPI660122.swust-7DS. Yr18 is an important slow

rusting gene and can confer high levels of resistance when

combined with other minor genes (Singh and Rajaram, 1993;

Navabi et al., 2004). Cultivars with Yr18 have been widely used in

the International Maize and Wheat Improvement Center

(CIMMYT) wheat breeding program (Singh et al., 2005). PI

660122 was developed from a cross of AvS with Mexican wheat

genotype PI 610755 (Wang et al., 2012), PI 610755 has Opata 85 in

its pedigree (Altar 84/Ae. tauschii (191)//Opata M85) (https://

npgsweb.ars-grin.gov/gringlobal/accessiondetail?id=1580210),

Yr18 was mapped in a RIL population for mapping Yr28 (Singh
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et al., 2000) as discussed above, and QYrPI660122.swust-7DS is

most likely Yr18.
Conclusions

In the present study, we mapped nine QTLs conferring different

types and levels of resistance to stripe rust. Among these QTLs,

QYrZM9023.swust-1BL was identified as Yr29, QYrPI660122.swust-

4DS as Yr28, and QYrPI660122.swust-7DS as Yr18, while

QYrPI660122.swust-4BS , QYrPI660122.swust-4BL , and

QYrZM9023.swust-6DS should be new. We demonstrated that

combinations of different QTLs increased the levels of resistance.

Furthermore, we selected lines from the RIL population with high

adequate resistance to stripe rust combined with desirable

agronomic traits, and these lines can be used in further evaluation

for releasing commercial cultivars. The resistant lines and molecular

markers for resistance QTL should be useful in developing wheat

cultivars with high levels and durable resistance to stripe rust.
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