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Rising temperatures impact different developmental stages of summer crops like

mung bean, particularly during the crucial seed-filling stage. This study focused on

twomung bean genotypes, categorized as heat-tolerant [HT] or heat-sensitive [HS].

These genotypes were grown in pots in an outdoor natural environment (average

day/night temperature 36°C/24.3°C) until the onset of podding (40 days after

sowing) and subsequently relocated to controlled-environment walk-in growth

chambers for exposure to heat stress (42°C/30°C) or control conditions (35°C/25°

C) until maturity. For all measured attributes, heat stress had a more pronounced

effect on the HS genotype than on the HT genotype. Heat-stressed plants exhibited

severe leaf damage, including membrane damage, reduced chlorophyll content,

diminished chlorophyll fluorescence, and decreased leaf water content. Heat stress

impeded the seed-filling rate and duration, decreasing starch, protein, fat, and

mineral contents, with a notable decline in storage proteins. Heat stress disrupted

the activities of several seed enzymes, inhibiting starch and sucrose accumulation

and consequently decreasing individual seed weights and seed weight plant−1. This

study revealed that heat stress during seed filling severely impaired mung bean seed

yield and nutritional quality due to its impact on various stress-related traits in leaves

and enzyme activities in seeds. Moreover, this research identified potential

mechanisms related to heat tolerance in genotypes with contrasting heat sensitivity.
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Introduction

The gradual increase in global average global temperatures,

especially in tropical and subtropical regions, poses significant

challenges to warm-season food crops (Jha et al., 2014), such as

mung beans, compromising their yield and nutritional security

(Bhardwaj et al., 2023). Crops thrive within specific temperature

ranges (minimum and maximum), with those exceeding

the maximum considered heat stress (Wahid et al., 2007;

Hasanuzzaman et al., 2013; Kumari et al., 2021). Heat stress

triggers various morphological, anatomical, physiological,

biochemical, and molecular changes in leaves, flowers, and seeds,

thereby curtailing the overall growth and yield (Bita and Gerats,

2013). Manifestations include leaf and stem scorching, leaf

abscission, senescence of leaves, flowers, and fruiting structures,

and reduced growth of leaves, shoots, roots, and seeds

(Vollenweider and Günthardt-Goerg, 2005; Chaudhary

et al., 2022b).

Heat stress profoundly affects the reproductive stage of plants,

leading to flower and fruiting structure abortion, as observed in

cereals (Niu et al., 2021) and legumes (Liu et al., 2019; Basu et al.,

2022). Seed filling plays a crucial role in determining the seed weight

and yield (Devasirvatham et al., 2012; Jiang et al., 2015). This

process involves the transportation of precursor molecules and

minerals from leaves to seeds to synthesize storage constituents,

such as carbohydrates, fats, and proteins (Barnabás et al., 2008;

Awasthi et al., 2014). Abiotic stresses, such as heat, negatively

impact leaf function, flowering, seed development, and seed

composition in legumes (Sarkar et al., 2021), causing significant

yield losses (Kumar et al., 2021).

Mung bean (Vigna radiata (L.) R. Wilczek) is the second most

cultivated leguminous crop after chickpea and is grown on over six

million hectares globally. India contributes approximately 54% of the

global mung bean production (HanumanthaRao et al., 2016; Nalajala

et al., 2023). Mung bean seeds have high nutritional value, containing

22%–27% protein; essential vitamins such as B5, B6, thiamine, and

niacin; minerals such as magnesium and iron; and dietary fiber.

Mung bean seeds also contain beneficial compounds, such as

alkaloids, coumarins, phytosterins, polyphenols, oligosaccharides,

and antioxidants, which support physiological metabolism in

animals and humans (Tang et al., 2014). Mung beans have low

input requirements, are adaptable, and are short-duration grain

legumes (65–90 days) (HanumanthaRao et al., 2016).

Mung beans are primarily grown in tropical areas characterized

by dry or semiarid conditions, usually during fall and summer.

Their ideal temperature range is 27°C–30°C (Pannu and Singh,

1993). However, as a warm-season crop, mung beans are susceptible

to extreme heat (Sharma et al., 2016), impairing vegetative and

reproductive growth (HanumanthaRao et al., 2016).

Although the adverse impact of heat stress on overall plant

growth and yield is well established (Sharma et al., 2016), little is

known about its influence on pod formation, seed filling, seed size,

and seed quality in mung bean. Therefore, this study aimed to
Frontiers in Plant Science 02
determine the detrimental effects of heat stress during the

reproductive and seed-filling stages and evaluate its impact on

mung bean seed-filling duration and seed quality. Furthermore,

we sought to identify the genetic traits associated with heat

tolerance and susceptibility among the contrasting mung bean

genotypes. This information holds the potential to greatly

enhance breeding programs aimed at developing heat-tolerant

mung bean varieties for sustainable production in regions prone

to high temperatures.
Materials and methods

Raising of plants

Mung bean genotypes (heat-tolerant [HT: EC 693369] and heat-

sensitive [HS: KPS1]) procured from the World Vegetable Center

(ICRISAT, India) were raised in pots (8 kg capacity) containing air-

dried soil (loam; pH 7.1, available N, P, and K of 54, 43, and 158 kg

ha−1, respectively), sand, and farmyard manure (2:1:1 (v/v) ratio).

Before sowing, the seeds were inoculated with a suitable Rhizobium

strain (2.0 g kg−1 seeds). Four seeds were planted in each pot on 20/

03/2019 and thinned to two seedlings per pot after emergence. The

plants were grown in an outdoor natural environment with average

day/night temperatures of 36°C/24.3°C, relative humidity (RH) of

50.3%/22.3% max/min, and light intensity of approximately 1,500

mmol m−2 s−1–1,700 mmol m−2 s−1 (Figures 1A, B) until the beginning

of pod set (approximately 40 days after sowing). At this time, half of

the pots (five pots in three replications; 5 × 3 = 15 pots per genotype)

were transferred to a growth chamber set at day/night temperatures

of 35°C/25°C, RH of approximately 65%, and light intensity of

around 500 mmol m−2 s−1 (control treatment), and the other half

(five pots in three replications; 5 × 3 = 15 pots per genotype) were

transferred to a growth chamber set at day/night temperatures of

42°C/30°C, RH of approximately 65%, and light intensity of around

500 µmol m−2 s−1 (heat stress treatment), where they remained until

maturity. The temperatures for the control (35°C/25°C) and heat

stress (42°C/30°C) treatments were based on our previous studies.

The experiment had a randomized block design with two genotypes

(HT and HS), two treatments (control and heat stress), and

three replications.
Stress injury to leaves

Leaves were collected from the control and heat-stressed plants

after 5, 10, 15, 20, 25, and 30 days of pod filling to assess membrane

damage using an electrolyte leakage assay (Lutts et al., 1996). Fresh

leaves from the topmost branches were washed with deionized

water to remove contaminants and surface-attached electrolytes.

The leaf tissue was placed in vials containing 10 mL of deionized

water and incubated for 24 h at 25°C on a rotary shaker. The

electrical conductivity was determined using a conductivity meter.
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Leaf water status

Relative leaf water content (RLWC) was measured on the

topmost leaves by determining the fresh, dry, and turgid weights

according to the method described by Barrs and Weatherley (1962).

Stomatal conductance was measured on the same leaves using a leaf

porometer, as described previously (Kaushal et al., 2013).
Photosynthetic efficiency

Fresh leaves were extracted in 80% acetone and assayed

spectrophotometrically at 645 and 663 nm to measure the leaf

chlorophyll concentration using the method described by Arnon

(1949). Chlorophyll fluorescence, in terms of PSII activity, was

measured on the same leaves as chlorophyll fluorescence, using a

modulated chlorophyll fluorometer (OS1-FL, Opti-Sciences,

Tyngsboro, MA, USA) at 11:00 h, as previously described (Kaushal

et al., 2013).
Enzyme assays

Enzyme activity profiles (soluble starch synthase, sucrose

synthase, and acid invertase) were determined using fresh seeds
Frontiers in Plant Science 03
collected at various stages after pod filling (5, 10, 15, 20, 25, and 30

days) from pods on the uppermost branches of the control and heat-

stressed plants. Seeds were collected randomly from pods in triplicates

per genotype. Seeds (500 mg) were homogenized in ice-cold

extraction medium containing HEPES/KOH buffer (200 mM, pH

7.8), 1% (w/v) polyvinylpyrrolidone (PVP), 3 mM EDTA Na2.2H2O,

10 mM dithiothreitol (DTT), and 3 mM magnesium acetate. The

homogenate was centrifuged at 4°C for 20 min (10,000 × g), and the

supernatant was used to assay enzymes and proteins. The enzyme

extract was desalted and assayed for sucrose synthase, soluble starch

synthase, and acid invertase according to the methods described by

Xu et al. (1996) and Sung et al. (1989).
Seed reserves

Various seed reserves (starch, sucrose proteins, fats, and storage

proteins) were determined in mature seeds collected from control

and heat-stressed plants at maturity. Starch and soluble sugars were

extracted with 30% (v/v) perchloric acid and 95% (v/v) ethanol,

respectively, and determined according to the method of Dubois

et al. (1956), using glucose (Sigma D9434; Sigma, WI, USA) as a

standard. Crude proteins, crude fats, and mineral nutrients were

analyzed using standard AOAC procedures.
B

A

FIGURE 1

Weather data (2019) showing day/night temperatures (A) and relative humidity (B) from sowing until the start of seed filling.
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Storage proteins were sequentially isolated as fractions, according

to the method described by Triboi et al. (2000). The seeds were

homogenized into wholemeal flour, and the samples were stirred

continuously for 60 min on a magnetic stirrer. The protein fractions

(soluble and insoluble) were separated by centrifugation at 8,000g for

30 min at an appropriate extraction temperature. Albumins and

globulins were extracted at 4°C with 25 mL of sodium phosphate

buffer (0.05 M; pH 7.8) and NaCl (0.05 M), respectively. Prolamins

were extracted from the previous pellet using 25 mL of 70% (v/v)

ethanol at 20°C. Glutelins were extracted from the earlier pellet with

25 mL of 20 g L−1 sodium dodecyl sulfate (SDS), 2% (v/v) 2-

mercaptoethanol (2-SH), and 0.05 M tetraborate buffer (pH 8.5) at

20°C. Glutelin was recovered from the supernatant by centrifugation.

The protein concentration in each fraction was estimated according

to the method described by Lowry (1951).
Seed growth rate and seed-filling duration

The seed growth rate from five pods plant−1, tagged at the start of

pod filling (pod size ~1 cm) and followed until physiological maturity,

was determined. Seeds were measured for their dry weight at two

stages; 7 days after the onset of pod filling and at physiological maturity.

Measuring the difference between the dry weights at the two stages and

dividing by the number of days to reach physiological maturity revealed

a seed-filling rate day−1. Many pods, set on the same date, were marked

to record these traits. Pods of the same size and dimension were

selected to record these observations. The seeds harvested from the

pods were oven-dried for 5 days at 45°C, and their dry weights were

recorded. The number of days to complete seed filling for the tagged

pods was recorded to calculate the seed-filling duration.
Yield parameters

To measure yield traits, 10 plants from each genotype were

examined for each treatment. The seed weight, number of seeds
Frontiers in Plant Science 04
number plant−1, and individual seed weight were recorded for

each case.
Statistical analysis

Observations were replicated three times, with the data

analyzed for means and standard errors. ANOVA was conducted,

with the least significant values (LSD) calculated (P < 0.05) using

AGRISTAT software. Principal component analysis (PCA) and

correlation coefficient determination were performed using the

R software.
Results

Tables 1, 2 show the mean sum of squares and genotype ×

treatment interaction significance for various traits, respectively.
Heat stress injury to leaves

Membrane damage
As measured by electrolyte leakage, the percentage of damage to

leaf membranes (Figure 2A) from 5 to 30 days after pod filling

(DAP)for the control plants was approximately 9% in the HT

genotype and 11% in the HS genotype. However, the HS

genotype under heat stress experienced 29% damage at 30 DAP

compared with 21% damage in the HT genotype.

Chlorophyll concentration
The chlorophyll concentration (Chl) in control plants ranged

from 21.6 mg g−1–24.2 mg g−1 DW in the HT genotype and 21.3 mg

g−1–23.4 mg g–1 DW in the HS genotype (Figure 2B). However, the

Chl concentration significantly decreased from 5 to 30 DAP under

heat stress, with a 56% decrease in the HS genotype compared with

a 34% decrease in the HT genotype.
TABLE 1 ANOVA values for the mean sum of squares for leaf traits, seed traits, and enzymes across the two mung bean genotypes under heat stress.

Leaf traits and seed traits.

Source of variation d.f EL Chl ChlF RLWC gS SFD SFR SSW SNP SWP

Treatment 1 55.8* 62.08* 0.032** 390.4* 59,004.1** 108.3 15.68* 81.4 3123.6* 3.63**

Replication 2 3.86 0.52 0.005 10.05 1,086.70 0.64 0.01 0.02 0.27 0.14

Error 2 2.01 0.46 0 0.37 42.6 8.1 0.28 13.4 33.7 0.008

Seed constituents

Source of variation d.f Carb Proteins Fat Suc SS SSS AI

Treatment 1 40,491.6* 8,392.5** 16** 101.6 732.6* 1,338,592** 406,640**

Replication 2 5.2 0.38 1.1 0.52 98.9 289 292.3

Error 2 846.5 45.29 0.002 6.8 19.1 18.16 860.10
frontie
EL, electrolyte leakage; Chl, SPAD chlorophyll; ChlF, chlorophyll fluorescence; RLWC, relative leaf water content; gS, stomatal conductance; SFD, seed filling duration; SFR, seed filling rate; SSW,
single seed weight; SNP, seed number plant−1; SWP, seed weight plant−1.
Carb, carbohydrates; Suc, sucrose; SS, sucrose synthase; SSS, soluble starch synthase; AI, acid invertase.
*Significance at P < 0.05; ** at P < 0.01.
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Chlorophyll fluorescence
Chlorophyll fluorescence (ChlF) in the control plants ranged from

0.75 to 0.77 units (Fv/Fm ratio) in the HT genotype and 0.76–0.78 units

in the HS genotype (Figure 2C). The ChlF levels significantly decreased

from 5 to 30 DAP under heat stress, with a 39% decrease in the HS

genotype and a 19% decrease in the HT genotype.

Leaf water status
Relative leaf water content (RLWC; Figure 3A) in the control

plants ranged from 81.3% to 85.3% in the HT genotype and from

79.7% to 84.3% in the HS genotype. However, under heat stress

conditions, the RLWC decreased significantly. Specifically, between

5 and 30 DAP, the RLWC in the HS genotype decreased to 54.5%

whereas the HT genotype showed a higher RLWC value of 70.1%.

The stomatal conductance (gS) of the control plants in the HT

genotype ranged from 311.3 mmol m−2 s−1 to 331.3 mmol m−2 s−1,

and in the HS genotype, it ranged from 312 mmol m−2 s−1 to 325.6 l

mmol m-2 s−1 (Figure 3B). Heat stress gradually increased gS in the

HT genotype from 5 to 20 DAP, after which it decreased at 30 DAP.

However, in the HS genotype, gS followed a similar trend but

reached a much lower value at 30 DAP.
Seed traits

The seed-filling rate of the control plants was 8.5 mg day−1 in

the HT genotype and 6.8 mg day−1 in the HS genotype (Table 3).

Under heat stress, the seed-filling rate significantly decreased by
Frontiers in Plant Science 05
32% and 20% in the HS and HT genotypes, respectively, compared

with that of the controls.

The seed-filling duration (SFD) of the control plants was 31.3

days in the HT genotype and 29.7 days in the HS genotype

(Table 3). Under heat stress, relative to the control, SFD

significantly decreased by 44% in the HS genotype to 16.5 days

and 18% in the HT genotype to 25.6 days.

The control plants of the HT and HS genotypes had single-seed

weights of 34.5 mg and 26.3 mg, respectively (Table 3). Heat stress

significantly decreased the single-seed weight of the HS and HT

genotypes by 32% and 23%, respectively, compared with their

respective controls (see Figure 4).

Heat stress significantly reduced the seed number plant−1

(Table 3) by 36.6% in the HS genotype and by 13% in the HT

genotype relative to the control plants (see Figure 4).

Seed weight plant−1 (Table 3) significantly decreased under heat

stress by 40% in the HS genotype and 19.3% in the HT genotype

compared with the control plants.
Nutritional traits

Heat stress significantly decreased carbohydrate accumulation

by 45% in the HS genotype and 24% in the HT genotype, relative to

their respective controls (Table 4).

Heat stress significantly decreased seed protein content by

48.4% in the HS genotype and 27% in the HT genotype,

compared with the control plants (Table 4).
TABLE 2 Analysis of variance (ANOVA) showing statistical significance in various traits measured in two mung bean genotypes across the treatments.

Traits Genotype Treatment Interaction

Electrolyte leakage ** ** *

Chlorophyll ** * *

Chlorophyll fluorescence ** * **

Relative leaf water content ** * *

Stomatal conductance ns ** **

Seed filling duration ** ** *

Seed filling rate ** ** *

Single seed weight * ** ns

Seed number plant-1 ** ** **

Seed weight plant-1 ** ** ns

Seed carbohydrates ** ** **

Seed proteins ** ** *

Seed fat ** ** *

Seed sucrose * ** *

Seed sucrose synthase ** ** ns

Seed soluble starch synthase ** ** **

Seed acid invertases ** ** **
*Significance at P < 0.05, **significance at P < 0.01, ns = non-significant.
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Heat stress significantly decreased seed fat content by 55% in

the HS genotype and 30% in the HT genotype, relative to their

respective controls.

Seed storage proteins

Heat stress significantly decreased seed albumins, globulins,

prolamins, and glutelins in the HS and HT genotypes (Table 4) by

45% and 28%, 47% and 19%, 42.6% and 34%, and 46.9%, and 26.3%,

respectively, compared with the control plants.

Minerals

The HS genotype had significantly greater reductions in mineral

accumulation (Table 5) under heat stress compared with the control,
Frontiers in Plant Science 06
particularly for iron and zinc, than the HT genotype. The HS genotype

also showed greater reductions in calcium, magnesium, potassium, and

phosphorus compared with the controls, than the HT genotype.
Sucrose metabolism in seeds

Sucrose
Heat stress decreased sucrose accumulation from 20 to 30DAP,more

so in the HS genotype than in the HT genotype at 30 DAP (Figure 5A).

Sucrose synthase
Heat stress increased sucrose synthase (SS) activity from 5 to 20

DAP in the HT genotype and from 5 to 15 DAP in the HS genotype
B

C

A

FIGURE 2

Membrane damage (A), chlorophyll content (B), and chlorophyll fluorescence (C) in control and heat-stressed (S) leaves of heat-tolerant (HT) and
heat-sensitive (HS) genotypes on different days after pod filling (DAP). * indicate significance differences (P<0.05) between control and heat-stressed
HT and HS genotypes at various DAP.
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(Figure 5B). However, SS activity significantly decreased in the HS

genotype from 15 DAP onward. At 30 DAP, the heat-stressed HT

genotype had significantly higher SS activity (52.6 µmol min−1 mg−1

protein) than the heat-stressed HS genotype (32.5 µmol min−1

mg−1 protein).

Soluble starch synthase
The heat-stressed HT and HS genotypes increased soluble

starch synthase activity from 5 to 20 DAP but subsequently

decreased. At 30 DAP, the heat-stressed HT genotype exhibited

significantly higher soluble starch synthase activity than the heat-

stressed HS genotype.
Frontiers in Plant Science 07
Acid invertases
Acid invertase activity increased in the heat-stressed HT

genotype from 5 to 20 DAP but subsequently decreased

(Figure 5D). In contrast, acid invertase activity decreased in the

heat-stressed HS genotype from 5 to 15 DAP. At 30 DAP, the heat-

stressed HT genotype exhibited significantly higher acid invertase

activity than the heat-stressed HS genotype (Figure 5C).

Correlations and PCA

Several leaf and quality-related traits were positively correlated

with SFD, seed number plant−1, and seed weight plant−1 (Table 6).
TABLE 3 Various seed traits in control and heat-stressed mung bean genotypes.

Trait Heat-tolerant Heat-sensitive LSD (P < 0.05)

Control Heat-stressed Control Heat-stressed

Seed growth rate
(mg day–1)

8.5 ± 0.54a 6.8 ± 0.48b 6.4 ± 0.61b 3.2 ± 0.53c 0.68

Seed-filling duration (days) 31.3 ± 1.7a 29.7 ± 1.5 b 25.6 ± 1.4c 16.5 ± 1.6d 1.6

Seed number (plant–1) 163.4 ± 5.1a 142.1 ± 4.7b 121.3 ± 5.9c 76.8 ± 4.2d 5.9

Seed weight (g plant–1) 5.78 ± 0.35a 4.66 ± 0.26b 4.02 ± 0.28c 2.41 ± 0.25d 0.31

Individual seed weight (g) 0.034 ± 0.004a 0.026 ± 0.003b 0.024 ± 0.004c 0.016 ± 0.003d 0.0046
Values represent mean ± SE (n = 3) along with LSD values (P < 0.05). Different letters in a row for a trait indicate significant differences (P < 0.05).
B

A

FIGURE 3

Relative leaf water content (A) and stomach condutance (B) in control and heat-stressed (S) leaves of heat-tolerant (HT) and heat-sensitive (HS)
genotypes on different days after pod filling (DAP). * indicate significant differences (P<0.05) between control and heat-stressed HT and HS
genotypes at various DAP.
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The PCA of the HT and HS genotypes revealed significant

differences in 17 studied traits under heat stress, including leaf

traits, seed traits, yield traits, and enzyme activities. The first two

principal components (PC1 and PC2) explained 97.1% of the total

variability, with PC1 contributing 93% and PC2 contributing 4.1%

(Figure 6). Electrolyte leakage had the most negative contribution
Frontiers in Plant Science 08
(–0.944) to PC1, whereas all other variables contributed positively.

RLWC, stomatal conductance, seed weight per plant,

carbohydrates, proteins, soluble starch synthase, and acid

invertase were identified as the major contributors to PC1. Strong

positive correlations were observed between soluble starch synthase

activity and carbohydrate (0.93*) and sucrose (0.86*) content in
FIGURE 4

Adverse effects of heat stress: Leaves in control plants (A), leaf burning (B), chlorosis (C), genotypes differences under heat stress (D), pod size (E)
and seed size (F).
TABLE 4 Various seed constituents of control and heat-stressed mung bean genotypes.

Seed constituents (g kg–1) Heat-tolerant Heat-sensitive LSD (P < 0.05)

Control Heat-stressed Control Heat-stressed

Carbohydrates 603.4 ± 9.4a 560.4 ± 8.86b 483.6 ± 9.3c 310.4 ± 9.2d 12.3

Proteins 246.5 ± 8.7a 213.5 ± 9.4b 183.4 ± 8.4c 110.4 ± 8.4d 11.3

Fats 10.09 ± 1.7a 9.7 ± 1.2b 7.6 ± 1.3c 4.3 ± 1.2d 1.6

Albumins 89.6 ± 6.4a 81.3 ± 6.1b 64.5 ± 5.8c 44.6 ± 5.3d 6.8

Globulins 510.4 ± 11.3a 489.2 ± 10.3b 413.4 ± 9.5c 265.4 ± 8.6d 7.8

Glutelins 187.4 ± 8.5a 157.5 ± 9.4b 123.5 ± 8.4c 90.4 ± 8.5d 9.5

Prolamins 25.3 ± 3.5a 21.3 ± 2.3b 18.7 ± 2.1c 11.3 ± 2.5d 3.6
Values represent mean ± SE (n = 3) along with LSD values (P < 0.05). Different letters in a row for a trait indicate significant differences (P < 0.05).
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seeds. Sucrose synthase activity was also positively correlated with

sucrose (0.88*), soluble starch synthase (0.71*), and acid invertase

(0.83*) activities in seeds. ()
Discussion

Our investigation focused on the impact of heat stress on seed

filling in two contrasting mung bean genotypes. Studies have shown

that heat stress adversely affects pod set and reduces seed number in

mung bean (Sharma et al., 2016; Van Haeften et al., 2023). Our

results showed that heat stress decreased seed number plant−1 in the

HT and HS genotypes, likely due to a reduction in filled pods,

similar to observations in other crops such as wheat (Balla et al.,

2019), maize (Niu et al., 2021), lentil (Choukri et al., 2020), pea

(Mohapatra et al., 2020), urdbean (Chaudhary et al., 2022a), and

chickpea (Devi et al., 2022). Heat stress also significantly reduced

seed weight and size, possibly due to decreased seed-filling rate and

duration (Sarkar et al., 2021). The accelerated maturation of legume
Frontiers in Plant Science 09
plants under heat stress could also hinder seed filling, decreasing

seed weight (Gaur et al., 2015).

Studies on various crops, including maize (Wilhelm et al.,

1999), rice (Begcy et al., 2018), mung bean (Bhardwaj et al.,

2023), field pea (Sharma et al., 2023), and chickpea (Devi et al.,

2022), have documented the adverse effects of heat stress on seed

size. Heat stress disrupts seed development by impeding the

transport and utilization of molecules and minerals, including

carbohydrates such as sucrose, which serve as precursors for

protein and fat synthesis (Kaushal et al., 2013). The leaves of

heat-stressed mung bean plants showed chlorosis and necrosis,

resulting in poor photosynthetic efficiency in both the genotypes.

These changes correlated with significant reductions in leaf water

status (RLWC) and stomatal conductance, especially in HS

genotypes. High temperatures and photooxidation can damage

leaf tissues and membranes, leading to the loss of chlorophyll

pigments (Ibrahim, 2011; Chen et al., 2012; Prasad et al., 2017).

Consequently, sucrose production declines, limiting its availability

and transport to the developing seeds (Weber et al., 1997; Weschke
B

C D

A

FIGURE 5

Sucrose content (A), sucrose synthase activity (B), starch synthase activity (C) and acid invertase activity (D) in control and heat-stressed (S) seeds of
heat-tolerant (HT) and heat-sensitive (HS) genotypes on different days after pod filling (DAP). *indicate significant differences (P<0.05) between
control and heat-stressed HT and HS genotypes at various DAP.
TABLE 5 Minerals in seeds of control and heat-stressed mung bean genotypes.

Minerals (g kg–1) Heat-tolerant Heat-sensitive LSD (P < 0.05)

Control Heat-stressed Control Heat-stressed

Calcium 0.114 ± 0.043a 0.0097 ± 0.046b 0.0867 ± 5.2b 0.0513 ± 0.038d 0.053

Iron 0.0083 ± 0.002a 0.0076 ± 0.002b 0.0062 ± 0.0013c 0.0046 ± 0.0012d 0.004

Phosphorus 1.43 ± 0.31a 1.34 ± 0.21b 1.18 ± 0.26c 0.956 ± 0.18d 0.21

Potassium 1.32 ± 0.26a 1.23 ± 0.19b 1.06 ± 0.18c 0.76 ± 0.19d 0.22

Magnesium 0.194 ± 0.04a 0.168 ± 0.05b 0.113 ± 0.05c 0.089 ± 0.06d 0.09

Zinc 0.0036 ± 0.0011a 0.0028 ± 0.0013b 0.0021 ± 0.0014c 0.0013 ± 0.0011d 0.0016
Values represent mean ± SE (n = 3) along with LSD values (P < 0.05). Different letters in a row for a trait indicate significant differences (P < 0.05).
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et al., 2000; Asthir et al., 2012). Reduced photosynthetic ability can

impede seed filling in legumes, as has beeb reported in chickpea

(Gaur et al., 2015). Moreover, heat stress adversely affects sucrose

transport more than photosynthesis, further inhibiting sucrose

synthesis (Asthir et al., 2012; Phan et al., 2013; Liu et al., 2019).

Seeds consist primarily of carbohydrates, proteins (including

storage proteins), lipids, and minerals. These organic compounds

originate from precursor molecules transported from the leaves to

seeds. Invertases are essential for releasing glucose and fructose

from imported leaf sucrose, with glucose involved in starch

synthesis during seed development. However, under heat stress,

the activities of the enzymes responsible for sucrose synthesis and

utilization (sucrose synthase and acid invertases, respectively) and

starch synthesis (soluble starch synthase) notably diminished in this

study, decreasing carbohydrate accumulation in seeds. Similar

adverse effects on enzymes involved in carbohydrate and protein

synthesis have been reported in various crops, including chickpea

(Kaushal et al., 2013), lentil (El Haddad et al., 2021), common bean

(Soltani et al., 2019), and wheat (Zhao et al., 2008). We found that

the HS genotype had more pronounced inhibition of sucrose

synthase, acid invertase, and soluble starch synthase than the HT

genotype, resulting in a greater reduction in seed size, possibly due

to the decreased import of sucrose into seeds. Reduced starch

synthesis in mung bean seeds further hindered their development,

possibly due to the low acid invertase activity decreasing the

availability of glucose precursors. Similar observations have been

reported in heat-stressed maize (Wilhelm et al., 1999; Yang et al.,

2018), wheat (Liu et al., 2011), and lentil (Sita et al., 2018). Sucrose

synthase and starch synthase activities increased from 5 to 15 DAP
Frontiers in Plant Science 10
in both mung bean genotypes but subsequently decreased, more so

in the HS genotype than the HT genotype, similar to the patterns

observed in the grain of heat-stressed maize (Yang et al., 2018) and

‘basmati’ rice (Ahmed et al., 2015).

Heat stress significantly reduced grain protein content,

including storage proteins, in mung bean, indicating a lack of

sufficient precursors and inhibition of biosynthetic enzymes

(Triboi et al., 2000). Similar reductions in grain protein content

in high-temperature environments have been reported in other

crops such as wheat (Wilhelm et al., 1999) and lentil (Sita et al.,

2018). Interestingly, heat-stressed maize experienced an increase in

protein content due to the activation of related enzymes (Yang et al.,

2018). Understanding the mechanisms underlying the decreased

protein synthesis in heat-stressed mung bean seeds is essential for

future studies. The decline in protein content can reduce grain

nutritional quality, highlighting the need to explore strategies to

mitigate the adverse effects of heat stress on crops.

The reduced fat synthesis in heat-stressed mung bean seeds is

likely due to impaired photosynthesis, reducing acetyl-CoA

production, as reported in the leaves of heat-stressed common

bean (Phaseolus vulgaris L.) (Taiz and Zeiger, 2006). Similar studies

have found that heat stress significantly decreases fat accumulation

in mung bean seeds, consistent with observations in canola

(Brassica napus L.) seeds exposed to high temperatures (Aksouh

et al., 2001). However, the mechanism underlying the decrease in fat

accumulation in heat-stressed mung bean seeds requires

further investigation.

Heat-stress-induced leaf damage may have decreased the

enzyme profiles in seeds, further disrupting photosynthesis due to
TABLE 6 Correlation coefficients of various traits with yield traits under heat stress.

Seed filling duration Seed number plant−1 Seed weight plant−1

Electrolyte leakage -0.92* -0.90* -0.97**

Chlorophyll 0.87* 0.95** 0.97**

Fv/Fm 0.91* 0.91* 0.84*

Stomatal conductance 0.92** 0.93** 0.95**

RLWC 0.95** 0.95** 0.95**

Seed filling duration (SFD) 1.00 0.87* 0.92**

Seed filling rate (SFR) 0.85* 0.94** 0.94**

Single seed weight 0.94** 0.78 0.88*

Seed number/plant 0.87* 1.00 0.94**

Seed weight/plant 0.91* 0.94** 1.00

Seed carbohydrates 0.92** 0.84* 0.91*

Seed protein 0.89* 0.81* 0.81*

Seed fat 0.88* 0.92** 0.84*

Seed sucrose 0.75 0.92** 0.89*

Seed sucrose synthase (SS) 0.91* 0.88* 0.85*

Seed soluble starch synthase (SSS) 0.93** 0.92* 0.92**

Seed acid invertase (AI) 0.81* 0.83* 0.82*
*Denotes significant at 5% and ** denotes significant at 1%.
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the source–sink relationship interrupting seed filling. Positive

correlations were observed between soluble starch synthase

activity and carbohydrate content in mung bean seeds, indicating

the significance of this enzyme in controlling carbohydrate

synthesis during storage. Similarly, positive associations occurred

between sucrose synthase activity and sucrose, sucrose synthase and

soluble starch synthase, and sucrose synthase and acid invertase

activity, suggesting that sucrose synthase regulates sucrose

metabolism and starch synthesis in mung bean seeds. Our

findings corroborate those of Fan et al. (2019), who emphasized

the importance of these enzymes in carbohydrate storage. These

correlations highlight the potential of targeting these enzymes to

enhance mung bean yield and quality under heat stress conditions.

Incorporating genotypes with diverse heat tolerance in this

study captured a broad range of responses to high-temperature

stress and enhanced our understanding of the underlying

mechanisms involved. The PCA revealed significant differences

between HT and HS genotypes across 17 traits, including leaf

traits, seed traits, yield traits, and enzyme activities. The strong

negative impact of electrolyte leakage on PC1 highlighted its pivotal

role in determining heat sensitivity in mung bean genotypes.

Conversely, positive contributions to PC1, including RLWC,

stomatal conductance, seed weight per plant, carbohydrates,

proteins, soluble starch synthase, and acid invertase, likely play

integral roles in determining heat tolerance. These findings

underscore the significance of maintaining appropriate plant

hydration, managing stomatal conductance, and ensuring

adequate levels of carbohydrates, proteins, and enzymes, such as

soluble starch synthase and acid invertase, in developing HT mung

bean genotypes. This knowledge can aid in identifying potential
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markers for selecting heat-tolerant genotypes and developing heat-

resistant mung bean varieties. Previous studies have demonstrated

that heat-tolerant genotypes often exhibit superior leaf traits,

including membrane integrity (chickpea; Kumar et al., 2013; Devi

et al., 2022), leaf water content (urdbean; Chaudhary et al., 2022a),

chlorophyll levels (lentil; Sita et al., 2017), photosynthetic activity

(mung bean; Sharma et al., 2016), and yield traits (Sita et al., 2017;

Chaudhary et al., 2022b; Devi et al., 2022; Devi et al., 2023).
Conclusions

This study revealed that heat stress significantly impacts the yield

and quality of mung bean seeds during the seed-filling phase. Heat stress

damages leaves and seeds, reducing seed numbers and weight and

altering seed composition, encompassing carbohydrates, proteins, lipids,

and minerals. Reductions in these crucial constituents can compromise

seed nutritional value, posing potential risks to food security. Our

investigations revealed that the two mung bean genotypes responded

differently to high-temperature stress. The HT genotype (EC 693369)

exhibited greater resilience to heat stress and maintained optimal leaf

and seed functions at elevated temperatures, whereas the HS genotype

(KPS1) experienced considerable damage to various cellular and

enzymatic attributes. These findings suggest that the HT genotype

could be the preferred choice for cultivation in regions susceptible to

heat stress, as it can sustain higher yields and seed quality. These results

underscore the detrimental effects of high-temperature stress on mung

bean seed yield and quality, emphasizing the need to develop HT

cultivars to ensure food security in areas prone to heat stress.

Furthermore, this investigation emphasizes the importance of

understanding the physiological mechanisms underlying heat stress

responses in plants to develop effective strategies to alleviate the

unfavorable effects of heat stress on crops.
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