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Agriculture is the most critical sector for food supply on the earth, and it is also

responsible for supplying raw materials for other industrial productions.

Currently, the growth in agricultural production is not sufficient to keep up

with the growing population, which may result in a food shortfall for the world’s

inhabitants. As a result, increasing food production is crucial for developing

nations with limited land and resources. It is essential to select a suitable crop for

a specific region to increase its production rate. Effective crop production

forecasting in that area based on historical data, including environmental and

cultivation areas, and crop production amount, is required. However, the data for

such forecasting are not publicly available. As such, in this paper, we take a case

study of a developing country, Bangladesh, whose economy relies on

agriculture. We first gather and preprocess the data from the relevant research

institutions of Bangladesh and then propose an ensemble machine learning

approach, called K-nearest Neighbor Random Forest Ridge Regression (KRR), to

effectively predict the production of the major crops (three different kinds of rice,

potato, and wheat). KRR is designed after investigating five existing traditional

machine learning (Support Vector Regression, Naïve Bayes, and Ridge

Regression) and ensemble learning (Random Forest and CatBoost) algorithms.

We consider four classical evaluation metrics, i.e., mean absolute error, mean

square error (MSE), root MSE, and R2, to evaluate the performance of the

proposed KRR over the other machine learning models. It shows 0.009 MSE,

99% R2 for Aus; 0.92 MSE, 90% R2 for Aman; 0.246 MSE, 99% R2 for Boro; 0.062

MSE, 99% R2 for wheat; and 0.016 MSE, 99% R2 for potato production prediction.

The Diebold–Mariano test is conducted to check the robustness of the proposed

ensemble model, KRR. In most cases, it shows 1% and 5% significance compared
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to the benchmark ML models. Lastly, we design a recommender system that

suggests suitable crops for a specific land area for cultivation in the next season.

We believe that the proposed paradigmwill help the farmers and personnel in the

agricultural sector leverage proper crop cultivation and production.
KEYWORDS

crop production, crop prediction, agricultural data processing, machine learning,
ensemble learning
Introduction

A constructive agricultural environment and fertile land make

agriculture the leading economic sector for a developing country

whose economy relies on agriculture. Agriculture is associated with

producing essential food crops and industrial raw materials. One of

the most critical aspects of the development cycle of a country is the

capacity to produce food using the unfavorable environment and

limited agricultural land (Goldstein et al., 2017). Experts believe that

land fertility has reduced to a certain extent over time, affecting the

crop production amount (Van Klompenburg et al., 2020). In this

paper, we consider the case study of a developing country,

Bangladesh, whose economy relies on agriculture. According to the

Bangladesh Rural Advancement Committee (BRAC), the agricultural

land in Bangladesh is shrinking by 1% annually, while the population

is growing by 1.2% annually (Das et al., 2022). In addition, the

farmers do not get the actual price due to the lack of knowledge of the

estimated crop production. This concern demotivates the farmers,

which has a long-term negative impact on the agriculture sector. To

alleviate this issue, proper planning of the best crop production in

terms of correctly predicting crop production for the upcoming year

can be provided to the farmers. The ability to accurately predict crop

yields has become essential for farmers to make rational choices

(Jansson et al., 2021). Various aspects, such as soil type, weather, and

crop management practices, are taken into account to estimate the

number of crops that may be grown in a particular area. Effective

prediction helps to generate an estimation of crops that helps the

government to take long-term and short-term policies to minimize

food shortages and import–export plans based on the agriculture

sector (Zhang et al., 2019). It also significantly impacts the economy

of an agricultural-based country like our study area. Machine

learning (ML) offers the most effective tool to predict the

dependent variables (i.e., crop production) using the independent

variables (i.e., the factors that regulate crop production) (Jayalakshmi

and Gomathi, 2020; Ahmed et al., 2022; Li et al., 2022; Monteiro et al.,

2022). In this paper, we investigate the simple but effective ML

approaches to propose an ensemble ML approach toward accurately

predicting the agricultural crop production of Bangladesh.

Bangladesh is a country with six seasons, which enables

producing different kinds of crops over the year (Uddin et al.,

2019) while its main crops are rice, wheat, and potato. Rice is the

staple crop, and it can be cultivated in three different seasons
02
where the rice varieties are Aus, Aman, and Boro. Potato and

wheat are the second and third most important crops,

respectively. As such, we predict the production of these five

major crops (Aus rice, Aman rice, Boro rice, potato, and wheat)

for the upcoming season based on the environmental data (i.e.,

rainfall, humidity, minimum and maximum temperature,

sunshine, wind speed, and cloud coverage of a specific zone),

cultivation area, and previous production data. We use historical

data from 1969 to 2021 of different districts of Bangladesh

(Campbell et al., 2020) and collect these raw data from different

respective government organizations. In particular, we gather the

raw data from the yearbooks of the Bangladesh Meteorological

Department (BMD), Bangladesh Agricultural Development

Corporation (BADC), Bangladesh Rice Research Institute

(BRRI), and Bangladesh Bureau of Statistics (BBS). After that,

we investigate the classical ML algorithms, i.e., Support Vector

Regression (SVR), Naïve Bayes (NB), and Ridge Regression (RR),

and ensemble ML algorithms, i.e., Random Forest (RF) and

CatBoost (CB). Then, we propose an ensemble ML paradigm

combining K-Nearest Neighbors (KNN), RF, and RR, termed K-

nearest neighbors Random Forest Ridge regression (KRR), to

effectively predict the production of the crops. Finally, we

construct a recommender system that suggests suitable crops

for a given land area for cultivation in the next season. The main

contributions of this paper are summarized below.
• Development (collection, reformation, and data processing)

of an ML trainable crop dataset containing environmental,

cultivation area, and previous production data for

predicting five major crops (Aus rice, Aman rice, Boro

rice, potato, and wheat);

• Investigation and rigorous study of setting up a baseline ML

system with effective ML and ensemble ML models for

predicting crop production more efficiently;

• Design of a novel ensemble ML algorithm to accurately

predict the production of the crops and Diebold–Mariano

(DM) testing of the designed ensemble ML model to

illustrate its significance and superiority over the

benchmark ML and ensemble ML algorithms; and

• Designing a recommendation system for suggesting suitable

crops for cultivating in a specific region in the next season

among the contemporary crops.
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The rest of this paper is structured as follows. In the Related

work section, we discuss and compare the related works on crop

production prediction. The Proposed paradigm section describes the

overall idea and development of the proposed crop production

prediction and recommendation paradigm. In the Methods and

measurements section, we discuss the methods and materials for

dataset generation, existing ML and ensemble MLmethods, and our

proposed ensemble ML approach. The experiments and results are

explained and analyzed in the Experiment and result analysis

section. The Crop recommender system section demonstrates the

recommender system design for suggesting suitable crop cultivation

in the upcoming season, while the Conclusion section summarizes

and concludes the observations and findings. All the abbreviations

used in this paper are listed in Table 1.
Related work

Various applications of ML models in agriculture have been

listed, such as crop yield prediction, weather forecasting, smart

irrigation system, crop disease prediction, and deciding minimum

support price (Al-Gaadi et al., 2016; Nandy and Singh, 2020;

Sharma et al., 2020; Cravero and Sepulveda, 2021). Moreover, in

order to achieve accurate predictions, researchers used the

supervised ML algorithms for crop production prediction in

(Kaur, 2016; Shehadeh et al., 2021). The decision tree (DT)

classifier has been used to create predictions of yield and

cropland temperature in (Lee and Moon, 2014) (Bagis et al.,

2012). KNN and ID3 (a variant of DT) were applied to analyze

the crop production of the previous year (Charbuty and

Abdulazeez, 2021). Many researchers are using statistical models

like Auto-regressive Integrated Moving Average (ARIMA) and ML

model Support Vector Machine (SVM) for predicting crop

production (Sujjaviriyasup and Pitiruek, 2013). On the other
Frontiers in Plant Science 03
hand, time series analysis has been applied in order to predict the

production and the price of crops and vegetables. The aim was to

identify a time series function, which might identify patterns and

seasonality in specific vegetables, as well as explore supply and

demand variables (Bagis et al., 2012) (Jha and Sinha, 2013) (Young,

2019). In addition, many researchers proposed a methodology that

uses Average Pearson Correlation (APC) and Coefficient of

Variance (CV) to determine indications that reveal crop price

fluctuation (Pereira et al., 2021). All these methods require the

dataset to be extremely clearly described, which is difficult to

generate in the context of Bangladesh.

Recently, satellite data have been utilized to predict the

temperature in crop-growing areas (Prasad et al., 2021)

(Danilevicz et al., 2021) (Jung et al., 2021). Because this method

requires access to real-time satellite data, it would be inaccessible to

most people. The precision of this method was additionally found to

be insufficient. Some researchers also used the Neural Network

(NN) approach to predict crop production, which might perform

better than traditional ML methods (Minghua et al., 2012).

However , NN is most common when working wi th

multidimensional data. When the types of datasets are defined,

the network model becomes more difficult to design, and more

training time is required as the convergence time increases. It is also

prone to slipping into the local minimal state.

Researchers have devised a way to predict crop yields at multiple

spatial levels based on ML crop yield forecasts for regions. They

developed a general ML workflow to show how proper regional

agricultural yield forecasting can be in Europe. They predicted crop

yields for 35 case studies, comprising nine nations that are major

producers of six commodities (soft wheat, spring barley, sunflower,

grain maize, sugar beets, and potatoes), to evaluate the validity and

usefulness of regional predictions (Paudel et al., 2022). For the

prediction of Irish potato and maize, authors collected data from

multiple areas and analyzed it using RF, Polynomial Regression, and
TABLE 1 List of the abbreviations used in the paper.

Abbreviations Full Form Abbreviations Full Form

KRR K-nearest Neighbor Random Forest Ridge Regression BRAC Bangladesh Rural Advancement Committee

ML Machine Learning BMD Bangladesh Meteorological Department

BADC Bangladesh Agricultural Development Corporation BRRI Bangladesh Rice Research Institute

BBS Bangladesh Bureau of Statistics SVR Support Vector Regression

NB Naive Bayes RR Ridge Regression

RF Random Forest CB CatBoost

KNN K-Nearest Neighbors DM Diebold–Mariano

ARIMA Auto-regressive Integrated Moving Average SVM Support Vector Machine

APC Average Pearson Correlation CV Coefficient of Variance

NN Neural Network LR Logistic Regression

MSE Mean Square Error RMSE Root Mean Square Error

MAE Mean Absolute Error RR Ridge Regression

DT Decision Tree DL Deep Learning
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the SVR. The only variables employed as forecasters were rainfall and

temperature. RMSE for RF was 510.8 and 129.9 for potato and maize,

respectively, while R2 was 0.875 and 0.817 for the same crop datasets,

indicating that RF is the best model (Kuradusenge et al., 2023). Based

on the previous 12 years’ data, researchers proposed an ML-based

crop yield prediction in North China Plan. To find the best model,

they investigate several ML algorithms on winter wheat and dry

matter prediction (Wang et al., 2023).

In comparison to the existing works in the literature, we, in our

study, (i) generate a learnable environmental dataset containing

eight features to predict crop production; (ii) propose an ensemble

ML algorithm using KNN, RF, and RR, called KRR; (iii)

demonstrate that KRR produces better results than the other

classical ML algorithms, such as SVR, NB, RR, RF, and CB; and

(iv) design a recommender system that suggests suitable crops to

grow in the next session. To this end, we deliver the parametric

differences between our proposed paradigm and the studied

interconnected crop production prediction works in Table 2.
Proposed paradigm

Crop production prediction is a major concern for an

agriculture-based country like Bangladesh because many

prospective crops can be planted in a single season. Currently, the

farmers choose the crops for plantation on their own knowledge,

which might not be an effective prediction every time. Sometimes, it

might give better production, and sometimes, not, which would

then be very harmful to the economy of such an agriculture-based

country. Moreover, the government necessitates predicting crop

production to estimate crop amount for the upcoming year. We

design an ensemble ML model to predict crop production based on
Frontiers in Plant Science 04
the environment, cultivation area, and previous production

parameters. We first gather real-world data records from different

periods (1969–2021) of the diverse areas of Bangladesh and then

propose an ensemble ML learning approach, called KRR, to

accurately predict crop production on the basis of the

environmental condition after inquiring about the most popular

classical ML models. Using our KRR, the farmers can choose the

best crops for the plantation, and the government can better

estimate crop production for the next year. Notice that we do not

find any such work to predict crop production in the Bangladesh

context. Note that we discuss with a number of agriculturists to sort

out the environmental factors related to the production of crops in

Bangladesh. After that, we consider eight factors for predicting crop

production, as illustrated in Table 3. The final dataset contains 7,000

samples of five categories of crops (Aus rice, Aman rice, Boro rice,

potato, and wheat), each having 1,400 samples. If we want to add

other crops in this system, then the same dataset should be

generated and then we need to train the best-performing model

as the procedure of ML training and testing.
Approach overview

We illustrate the working steps of the proposed crop production

and recommendation paradigm in Figure 1. The first stage is dataset

preparation, which delivers a suitable data format for training and

testing using the proposed ensemble learning and the existing

investigated ML approaches after the necessary preprocessing and

feature extraction. After that, the evaluation and analysis are performed

based on the experimental results. Finally, the recommended system is

presented for suggesting suitable crops for cultivating a specific region

in the next season.
TABLE 2 Comparison among the related works on crop production prediction.

Ref Year Dataset Technique Error/Score

(Cravero and
Sepulveda, 2021)

2021 Big data Classical ML and
ensemble ML

Comparison charts

(Nandy and Singh,
2020)

2020 Collected data using multistage random sampling
technique from 45 rural areas in West Bengal of India

RF and Logistic
Regression (LR)

RF = 75.21% accuracy and 85.0% AUC and
LR = 72.34% accuracy and 78.0% AUC

(Sharma et al.,
2020)

2020 Collecting data from different sources RF, DT, Bayesian
network, SVM, NN, and
GA

Comparison among the models

(Minghua et al.,
2012)

2012 Historical agricultural product price data in China NN Prediction error 6.5% and 8.1% for different
years

(Shehadeh et al.,
2021)

2020 Bureau of Economic Analysis, U.S. Census Bureau DT, LightGBM, and
XGBoost

DT shows 93% accuracy, LightGBM 87%, and
XGBoost 85%

(Charbuty and
Abdulazeez, 2021)

2021 Private data generation DT Comparison among the models

(Sujjaviriyasup and
Pitiruek, 2013)

2013 Thailand’s Pacific white shrimp export data ARIMA and SVM SVM (MAE 1504.52, RMSE 1978.79, and
MAPE 11.22%)

(Lee and Moon,
2014)

2014 Yearly yield of apple Kernel smoothing model MAPE 5.7 and R2 is 1

Ours 2023 Self-generated dataset KRR (proposed) and SVR,
NB, RR, RF, and CB

KRR obtains highest results
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Top-down crop production prediction is depicted in the

proposed methodology shown in Figure 1. After collecting raw

data, we structure it crop-by-crop for the five regular crops in our

research, jointly with the environmental variables during each of the

crops’ relevant months. To create a dataset suitable for ML training,

we handle missing values, mitigate wrong format and wrong data

and modify raw data as required. In keeping with the standard ML

practice, we split the final dataset into training and testing segments

for the purposes of model training and testing with various

evaluation methods. The ML models are trained independently

using 80% of the training data and evaluated using the remaining

20%. After training and testing several models, we tabulate the

evaluation outcome in terms of MSE, RMSE, MAE, and R2. To

determine the superiority of the proposed ensemble KRR, we

conduct a DM significant test to compare it to the state-of-the-art

benchmark ML models and determine its relative performance.
Dataset preparation

We collect the raw data samples from four different agricultural

organizations in Bangladesh, which are BMD, BADC, BRRI, and BBS

from 1969 to 2021 of different seasons, as shown in Table 4. Kharif

and Rabi are the two harvest seasons in Bangladesh for the majority

of crops. The environment varies depending on the harvest season.

The months responsible for crop production are considered when

constructing the dataset for each crop. The specific crop’s weather

information for the corresponding month is then provided. For
Frontiers in Plant Science 05
example, Aus rice is harvested during the Kharif season, from June

through August. It indicates that the monthly environmental data are

regarded as weather data for Aus rice. Other crops’ samples are

generated using the same manner, and the months corresponding to

each season are listed in Table 4. In the final dataset, the data samples

include 7,000 records offive categories of crops (Aus rice, Aman rice,

Boro rice, potato, and wheat), each having 1,400 samples of different

districts of Bangladesh. In particular, we prepare eight attributes

(rainfall, maximum temperature, minimum temperature, humidity,

wind speed, cloud coverage, bright sunshine, production area, and

production amount) from a total of 17 original attributes to predict

the production of a particular crop, as shown in Table 3. As the

weather of the different crops is different for the month, we take the

average of maximum temperature, minimum temperature, rainfall,

humidity, wind speed, cloud coverage, and bright sunshine for each

crop according to the month.
Learning and evaluation

After generating the machine-learnable dataset, we split the

dataset into training and testing sets. Then, we build the proposed

ensemble ML (KRR) and investigated ML models (SVR, NB, CB,

RF, and RR) using the training dataset and evaluate the trained

models on the testing dataset to assemble the results. We consider

four state-of-the-art performance indicators, i.e., mean absolute

error (MAE), mean square error (MSE), root MSE (RMSE), and R2

score to evaluate the proposed and investigated ML models. All the
TABLE 3 Short description of the attributes in the raw data records.

No. Attribute Short Description

1 Rainfall Average rainfall of the months responsible for the specific crop

2. Maximum Temperature Average maximum temperature of the months responsible for the specific crop

3 Minimum Temperature Average minimum temperature of the months responsible for the specific crop

4 Humidity Average humidity of the months responsible for the specific crop

5 Wind Speed Average wind speed of the months responsible for the specific crop

6 Cloud Coverage Average cloud coverage of the months responsible for the specific crop

7 Bright Sunshine Average bright sunshine of the months responsible for the specific crop

8 Aus Area Total area of Aus cultivation including local area and High Yielding Variety (HYV) area in acres

9 Aman Area Total area of Aman cultivation including local area and HYV area in acres

10 Boro Area Total area of Boro cultivation including local area and HYV area in acres

11 Potato Area Total area of potato cultivation including local area and HYV area in acres

12 Wheat Area Total area of wheat cultivation including local area and HYV area in acres

13 Aus Production Total production of Aus in tons

14 Aman Production Total production of Aman in tons

15 Boro Production Total production of Boro in tons

16 Potato Production Total production of potato in tons

17 Wheat Production Total production of wheat in tons
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experiments (dataset preprocessing, model training, model testing,

and result processing) are accomplished using the Python

programming language.
Methods and measurements

Data preprocessing

We preprocess the collected raw data to make them machine-

learnable datasets. As all of the values of our dataset are numeric, we

need not label any data during data preprocessing. Besides this, we

normalize the data lastly to make it more trainable.

The preprocessing steps are as follows.
Frontiers in Plant Science 06
Data cleaning
This step involves missing value handling, formatting, and

wrong data handling. We handle missing values by replacing

them with the mean of a feature, as illustrated in Algorithm 1.

Because crop production of a country is a continuous process,

environmental variable values follow a pattern. Missing values can

be the mean of the previous and next values in our dataset. For

particular features, we format all the data in a unique form, which

helps improve the performance of the ML models (Stekhoven and

Buhlmann, 2012).

Data integration
We consider three types of data, i.e., environmental parameters

related to crop production, areas of cultivation, and crop
TABLE 4 Dataset description for different crops and environmental variables according to the season of the crops.

No. Crop Name Harvest Season Data Duration Weather Data

1 Aus rice Kharif 1969 to 2021 June to August

2 Aman rice Rabi 1969 to 2021 December to January

3 Boro rice Kharif 1969 to 2021 March to May

4 Potato Kharif 1969 to 2021 February to March

5 Wheat Rabi 1969 to 2021 November to March
FIGURE 1

Proposed methodology for predicting crop production. Raw data collection, dataset preparation, data preprocessing, model development, crop
production prediction, and model evaluation with the significant test are all carried out in synchronization throughout the entire methodology.
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production amount of a particular area. We collect these data from

different government organizations. To prepare the learnable

dataset, we integrate all data into a single dataset.

Data reduction
Unnecessary, duplicate, and junk data are harmful to the

performance of the ML models (Royston et al., 2006; Benjelloun

et al., 2007). To make the best ML learnable dataset, we remove

unnecessary, duplicates, and junk values.
Fron
Input: Raw data (S)

Output: Preprocessed dataset after missing

value handling

1: procedure MissingValueHandling(S)
2: for each attribute Sa do

3: ma = mean (Sa) [ma is the arithmetic mean of

attribute Sa]

4: for each sample data Sd
a do

5: if Sd
a is missing then

6: Sd
a:=ma

7: end if

8: end for
9: end for

10: end procedure
ALGORITHM 1
Missing value handling

Data normalization
Finally, we normalize the entire dataset to integer values to fit

into the ML algorithms. We employ the classical min–max

normalization technique to normalize the dataset.
Training models

In this section, we recapitulate the working principles of the

investigated ML and ensemble ML approaches (SVR, NB, RR, RF,

and CB) and present our proposed ensemble ML paradigm (KRR).

We select five benchmark ML models instead of all ML algorithms

in a strategy. ML algorithms can be classified based on architecture

and working procedure. We choose SVM as the representative of

the distance-based ML algorithm, RR from the group of

regularization ML algorithms, RF as the representative of the

bagging ensemble algorithm, NB as the member of the Bayes

theorem means probability-based ML algorithm, and CB as the

representative of boosting ensemble algorithm. We select those five

algorithms to represent all ML algorithms in our analysis, train

them individually using our dataset, and measure their

performances to compare with the proposed ensemble KRR.

SVR
SVR is a supervised ML algorithm that is a useful technique for

both data classification and regression (Somvanshi et al., 2016). In
tiers in Plant Science 07
regression, the data are separated into training and testing sets. Each

instance in the training set contains one target value (class label)

and several attributes named as the features (observed variables).

The goal of SVR is to produce a model (based on the training data)

that predicts the target values of the test data given only the test data

attributes (Shang et al., 2016). According to the characteristics of

our dataset, we use the linear SVR approach for predicting different

agricultural crop production rates.

NB
NB is one of the most efficient and effective inductive ML

algorithms (Ratanamahatana and Gunopulos, 2003) (Panda and

Patra, 2008). This uses the Bayes theorem to calculate the

probability and then form a prediction. The basic insight of

Bayes’ theorem is that when new data are introduced, the

probability of an event may be changed. The NB model is simple

to implement and it does not require sophisticated iterative

parameter estimation, making it perfect for large datasets

(Razzaghi et al., 2016).

RR
RR is a model optimization technique (Tavares et al., 2021). It

estimates the coefficients of multiple regression models under

conditions of high correlation between linearly independent

variables. This model is also known as a regularization model and

uses the L2 regularization process. It has been applied in various

disciplines, including agricultural data, engineering, chemistry, and

econometrics. RR creates a new matrix by adding a ridge parameter

(k) from the identity matrix to the cross-product matrix. The reason

it is known as ridge regression is that the correlation matrix’s

diagonal of one can be compared to a ridge. Overfitting is a

problem that RR solves since squared error regression by itself

can distinguish between significant and insignificant features, using

all of them instead, resulting in overfitting (Garriga et al., 2017). RR

introduces a small amount of bias in order to match the model to

the actual values of the data. However, it does not have the ability to

do feature selection and the final model includes all predictors. It

swaps variance for bias and decreases coefficients toward zero.

RF
RF is an ensemble ML classifier that uses randomness to create a

group of independent and non-identical DTs (Provost et al., 2016).

This algorithm is used for both classification and regression

purposes and it is a combination of tree predictors. Each DT has

a random vector as a parameter, determines the feature of samples

at random, and selects the training dataset from either a subset of

the dataset at random (Bradter et al., 2013). Whenever a random

selection of features is used to split each node, the error rates are

equivalent to Ad boost, but they are more robust in terms of

turbulence (Shakoor et al., 2017). RF is a highly flexible and easy-

to-use ML algorithm that produces, even without hyper-parameter

tuning, a great result most of the time. In this work, we use RF for

the regression aspect of this algorithm based on our necessity. We

successfully achieve a very high accuracy upon implementation of

our dataset using this RF regression. Python’s scikit-learn has a
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helpful tool for this that quantifies the relevance of a feature by

looking at how much inaccuracy is minimized across all trees in the

forest by tree nodes using that feature (Grange and Hand, 1987).

Deep DTs might suffer from overfitting but RF prevents overfitting

most of the time. It creates random subsets of the features and

builds smaller trees using these subsets, and afterward, it combines

the sub-trees.

CB
CB is an ML algorithm for gradient boosting on DTs. Gradient

boosted DTs are a powerful tool for classification and regression.

This algorithm is developed by Yandex researchers and engineers

and it is the successor of the MatrixNet algorithm. It is widely used

for ranking tasks, forecasting, and making recommendations

(Hancock and Khoshgoftaar, 2020). This supervised algorithm is

used both for classification and regression purposes. CB is a special

type of boosting algorithm with much less prediction time for its

symmetric tree structure. However, it is sensitive to its

hyperparameter tuning.
The proposed ensemble ML approach
The main purpose of introducing an ensemble regressor is to

reduce the variance of the data during model training (Sagi and

Rokach, 2018). It helps to fit the data to the models, and the model

can predict more accurately. In the proposed KRR ensemble

method, we use a distance-based algorithm KNN, a regularization

method RR, and a tree-based ensemble RF. The KNN model is

simple to implement and works well with non-linear data. Because

it does not require calculating any fixed parameters or values, fitting

the model also takes little time. The KNN algorithm makes

predictions about the significance of new data points based on

their “feature similarity”. A score is given to the new point based on

how similar it is to the points used for training. RR is good for

preventing overfitting, which adds one additional element to the

cost function of linear regression. The primary reason these penalty

terms are included is to ensure regularization, or the reduction of

model weights to zero or close to zero so that the model does not

overfit the data. Nonlinear parameters do not affect the

performance of an RF, unlike curve-based techniques. As a result,

if the non-linearity between the independent variables is high, RF

may beat other curve-based methods. It is usually robust to outliers

and can handle them automatically. It does not require feature

scaling (standardization and normalization) because it employs a

rule-based method rather than distance calculation. That is the

reason for creating the new ensemble model using the algorithms

that can handle overfitting by themselves, with no need for extra

preprocessing when needed during training and testing. A second-

order ensemble strategy called blending is used to construct this

KRR regression method. Blending ensemble ML methods find the

best combination of the predictors from the three ML algorithms

(KNN, RR, and RF) and form an ensemble regressor for better

prediction (Farooq et al., 2021). The blending process is the same as

the stacking ensemble procedure, but it has some unique

differences. Stacking uses out-of-fold prediction for the training

set of the next layer in the meta-model. On the other hand, our
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blending uses a validation set (10%–15% of the training data) to

train the next layer in the meta-model. KRR combines the mapping

functions learned by the contributing members. Our proposed KRR

is the combination of the hyperplanes of KNN, RF, and RR. The

working procedure and function mapping of KRR are shown

in Figure 2.

The working principle of KRR is different from the KNN, RF,

and RR, which are the building blocks of the ensemble approach.

The proposed KRR and RF are both ensemble methods, where KRR

is a blending ensemble where the building blocks work individually

to find the main output. RF is a bagging ensemble where data are

mainly divided into several bags to train the individual tress to

formulate the result. The benchmark models sometimes fall into

overfitting problems, and due to the high variance of the data

points, the performance of the models falls in some cases, but the

proposed method outperforms in this case by its tolerance and

flexibility of learning from the dataset.

Our deployed KRR can be a solution to this type of regression

issue for better performance and the best fitting of datasets. The

criteria for adopting the proposed scheme KRR to another dataset

are very easy. As with the traditional ML training and testing

process, the training data must fit the KRR architecture and then

evaluated by the remaining testing data. The KRR architecture is

already described above. However, hyperparameter tuning of the

building block ML algorithms of KRR can bring a better result when

adopted with other datasets.

Complexity of proposed ensemble KRR

The complexity of KRR can be written into two steps. In the first

step, the complexity of stacking architecture forms and then the

individual algorithm’s complexity is added one by one in the next

step as follows: The complexity of the first step is O(B(C + R)),

where R represents the number of replacements, the number of bags

of the dataset is B, and C represents the number of classifiers in the

ensemble algorithm. In the second step:
1. Complexity KNN is O(nd), where n is the number of

training examples, and d is the number of features.

2. Complexity of RR is O(n3), where n is the number of data.

3. Random Forest of size T and maximum depth D (excluding

the root) is O(T.D).
Model evaluation

The classical and ensemble ML algorithms and our proposed

ensemble ML scheme are applied to predict crop production. The

training data train these approaches, and the model learns the data

sequences and then forms a prediction. The performance of the ML

models is calculated using four evaluation metrics, i.e., MAE, MSE,

RMSE, and R2. MSE can be defined as the absolute value of the

difference between the predicted and actual value. Using MSE in

regression will penalize large errors more than small ones if we

assume that the target follows a normal distribution. The MSE is
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calculated as:

MSE =
1
no

n

i=1
(Yi − Ŷ i)

2

MAE indicates how big of an error we may expect on average

from the prediction (Morales and Villalobos, 2023). MSE indicates

how close it is to a set of points. It accomplishes this by squaring the

distances between the points and the regression line (these distances

are the errors). Squaring is required to eliminate any negative signs.

The MAE is calculated as:

MSE =
1
no

n

i=1
Yi − Ŷ i

�� ��
RMSE is the standard deviation of the residuals (prediction

errors) (Glennie and Lichti, 2010). Residuals are a measure of how
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far the data points are from the regression line; RMSE is a measure

of how to spread out these residuals. In other words, it reveals how

strongly the data are aggregated around the line of best fit. The

RMSE is calculated as:

MSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(Yi − Ŷ i)

2

s

R2 is a statistical measure of how much variation in a dependent

variable can be explained by variation in the independent variables.

The main objective of this score is to predict future results based on

existing data. The extent to which the model can reproduce

observed results is quantified by this measure, which is based on

the fraction of the total variation in outcomes that can be attributed

to the model. R2 is calculated as:
FIGURE 2

Block diagram of the proposed KRR approach. KRR is built with the three mostly used ML algorithms: KNN, RF, and RR, using the blending
ensemble strategy.
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R2 = 1 −o(Yi − Ŷ i)
2

o(Yi − Yi)
2

In the above equations, the Yi indicates the actual value, Yˆ
i

indicates the predicted value, Y¯ indicates the means of the Y values,

and n is the total number of samples.
Experiment and result analysis

Experimental setting

We use Python’s scikit-learn tool to construct the proposed

ensemble ML scheme (KRR) as well as the investigated classical and

ensemble ML models (SVR, NB, RR, RF, and CB). We consider the

actual vs. predicted curve and error metrics (MAE, MSE, RMSE,

and R2) as the evaluation parameters of the trained ML models. We

use supervised methods to predict crop production, where the

dataset contains eight features and the target is the amount of

crop production in a certain area. We take the average results of

experiments in three phases, such as 80:20, 50:50, and 30:70 training

and testing ratio, where each phase has 10 trials.

To get better performance, we tune the hyperparameters of the

proposed ensemble ML scheme as well as the investigated classical

and ensemble ML models. The same hyperparameters give a better

result for almost all experiments. In particular, SVR gives better

results with the linear kernel when c = 100 and gamma is auto while

we use 10-fold cross-validation to find the value of gamma and c.

Gaussian NB achieves a better result in all cases with the

hyperparameters i.e., estimator = model , param_grid =

params_nb, and cv = cv_methods. RF finds n_estimator = 20, and

random_state = 42 in all cases for better performance. For all

experiments, RR gives maximum performance when alpha = 0.01.

CB model gives a better result when estimator = model_cvr, cv = 2

n_jobs = −1, and learningrate = 0.05. Our proposed model KRR

achieves high accuracy with a low error rate with the

hyperparameters alpha = 0.01, n_estimator = 10, and

random_state = 42 for almost all experiments.
Result analysis on Aus rice production

Aus is considered one of the major crops in Bangladesh. This

type of rice is closely related to indica-type rice but it has a distinct

genetic group (Chakravarthi and Naravaneni, 2006). Still, this

variety is cultivated under environmental stress conditions in

Bangladesh and India (Berger et al., 2004). The value of Aus

production varies according to the environment and the region of

cultivation. Figure 3A represents the actual vs. predicted rice

production in every fiscal year from 2015 to 2021 in the Dinajpur

zone of Bangladesh. The x-axis symbolizes the fiscal year, while the

y-axis reflects rice production (both actual and predicted). It clearly

indicates that our proposed algorithm outperforms the other

traditional ML and ensemble ML algorithms. We also evaluate

MAE, MSE, RMSE, and R2 to measure the model’s goodness offit in

predicting rice production in Figure 3B, which demonstrates that
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the KRR model fits better than the other models we investigate.

Table 5 illustrates that KKR has less mistakes, such as 9.11% MAE,

approximately 1% MSE, and 9.17% RMSE, than the others.

From Figure 3A, it can also be observed that there is no linear

relationship between the area and environmental data, and Aus rice

production. The weather conditions in Bangladesh vary from year

to year, and natural disasters may occur. In August 2017, during the

Kharif harvest season, an uncertain flood occurred in Dinajpur zone

(Das and Rahman, 2018). It damaged the crops and interrupted the

production cycle. Our proposed KRR performs effectively during

this period, which demonstrates its adaptability to the uncertainty

in the environmental data. Owing to a lack of soil fertility and

improper management of soil carbon, the post-flood effects on Aus

production continue throughout the subsequent growing seasons

(Siddique et al., 2022). In this uncertain situation, the proposed

KRR performs better than other models. This type of prediction is

critical for farmers as well as individuals who depend on harvesting

for a living. Such future production prediction aids in the care of

alternative solutions to ensure food and industrial raw materials.
Result analysis on Aman rice production

Aman rice is grown in Bangladesh during the winter (rabi)

season. The cultivation of Aman rice is strongly linked to the

environment. Figure 4A illustrates the actual and predicted values

using the investigated and proposed ML algorithms. The

performance of our proposed algorithm KRR reaches maximum

accuracy for each fiscal year. In terms of error measurement

parameters, both our proposed KRR and the RF models have the

same R2 score. However, our KRR obtains better MAE, MSE, and

RMSE than RF and other models, as shown in Table 6. Figure 4B

indicates that our KRR is the best-fit model compared to others.

Changes in maximum temperatures have had a significant impact

on crop yield in Bangladesh. However, temperature changes

confirm that maximum temperature raises the risk for Aman rice

while minimum temperature reduces yield variability. Rainfall has

increased the risk of Aman rice (Sarker et al., 2019). The great news

is that environmental factors in Bangladesh are now changing

within a range that allows Aman rice to adapt to the

environment. In recent years, Aman rice has been consistently

produced because of its versatility (Chakrobarty et al., 2021).

Figure 4A shows the consistency of Aman rice production, and in

most of the cases, the proposed KRR performs better. The authority

can benefit from this method in their long and short plan for food

supply in the future.
Result analysis on Boro rice production

Boro rice is cultivated in the Kharif season, which has a vital

impact on the total rice production in Bangladesh. Figure 5A

illustrates the actual vs. predicted bar chart for the Boro

production from 2015 to 2021, while Figure 5B indicates that

KRR is the best-fit model compared to others. Table 7 indicates

that the performance using RF is better than KRR in respect of MAE
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TABLE 5 Error ratings using the investigated and proposed ML approaches for predicting Aus rice production using different metrics and R2 score.

Model MAE MSE RMSE R2

SVR 0.107 0.016 0.125 0.980

NB 0.104 0.019 0.136 0.980

RF 0.098 0.010 0.101 0.990

RR 0.091 0.018 0.135 0.980

CB 0.115 0.026 0.161 0.970

KRR 0.091 0.009 0.099 0.990
F
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FIGURE 3

Comparison of the actual and predicted values of Aus rice production and error rating of the investigated and proposed ML models (SVR, NB, RF, RR,
CB, and KRR) in each fiscal year from 2015 to 2021. (A) Actual vs Predicted bar chart for Aus. (B) Line chart for the error rating of Aus production
prediction.
A B

FIGURE 4

Comparison of the actual and predicted values of Aman rice production and error rating of the investigated and proposed ML models (SVR, NB, RF,
RR, CB, and KRR) in each fiscal year from 2015 to 2021. (A) Actual vs Predicted bar chart for Aman. (B) Line chart for the error rating of Aman
production prediction.
TABLE 6 Error ratings using the investigated and proposed ML approaches for predicting Aman rice production using different metrics and R2 score.

Model MAE MSE RMSE R2

SVR 1.055 1.510 1.233 0.790

NB 0.757 1.326 1.152 0.860

RF 0.736 0.962 0.981 0.900

RR 0.759 1.050 1.025 0.890

CB 0.778 1.196 1.093 0.870

KRR 0.709 0.921 0.959 0.900
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and MSE. However, RMSE and R2 are good in KRR. In summary,

the average performance of KRR is better than the other models.

To this end, we investigate three major rice variations in this

part to predict their production concerning the environmental

conditions. Given the analyses, we can deduce that our proposed

model KRR performs better in predicting different rice production

in Bangladesh. Boro rice needs extra irrigation for cultivation. The

average production of Boro rice is expected to decrease by over 20%

in 2050 and by 50% in 2070 as a result of climate change (Basak

et al., 2010). It has been determined that an increase in both the

maximum and minimum temperatures is the primary cause of a

reduction in yield. Rainfall pattern changes during the growing

season have also been observed to impact rice production and

irrigation needs. Using the proposed KRR, researchers can track

environmental factor changes and then take the necessary steps to

select an alternative rice variety or predict the production of the

new variety.
Result analysis on potato production

In Bangladesh, potato farming takes place throughout the

winter season. Sandy loam soils can produce more potatoes than

other types of soil (Faraji et al., 2017). In terms of productivity and

internal demand, potatoes are a popular crop in Bangladesh. As a
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result, predicting potato production has a significant influence on

the economy. Figure 6A demonstrates a comparison among the

actual and predicted values using the investigated and proposed ML

approaches, which shows that our proposed KRR approach offers

superior prediction in almost all cases. According to Table 8, our

proposed approach KRR outperforms the other investigated ML

algorithms in all error measures. In particular, KRR predicts potato

production with a minimumMSE of 6.3%. Figure 6B illustrates that

KRR is the best-fit model to predict potato production. Potato

production in Bangladesh is still at a satisfactory level but it swings

to change of environment (Hossain and Abdulla, 2016). In some

consecutive years, the production goes down due to heavy cold and

attack of unexpected diseases on potato (Islam et al., 2022). To

predict production in this kind of uncertain situation, the proposed

KRR can be a good solution for the agriculture domain people.
Result analysis on wheat production

In Bangladesh, the production of wheat is decreasing on average

by 0.44% each year. People are cultivating different crops instead of

wheat for more benefits and a higher production rate. The prediction

of the production of wheat can improve the production rate of wheat.

We use the same ML and ensemble ML algorithms to predict wheat

production in the Dinajpur zone of Bangladesh.
A B

FIGURE 5

Comparison of the actual and predicted values of Boro rice production and error rating of the investigated and proposed ML models (SVR, NB, RF,
RR, CB, and KRR) in each fiscal year from 2015 to 2021. (A) Actual vs Predicted bar chart for Boro. (B) Line chart for the error rating of Boro
production prediction.
TABLE 7 Error rating representation using the investigated and proposed ML approaches for predicting Boro rice production using different metrics
and R2 score.

Model MAE MSE RMSE R2

SVR 0.535 0.553 0.744 0.960

NB 0.489 0.478 0.422 0.960

RF 0.285 0.222 0.471 0.980

RR 0.447 0.312 0.559 0.970

CB 0.453 0.259 0.399 0.980

KRR 0.446 0.246 0.376 0.990
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Figure 7A indicates a comparison among the actual and

predicted values of wheat rice production using the investigated

(SVR, NB, RF, RR, and CB) and proposed (KRR) ML models in

each fiscal year from 2015 to 2021. It demonstrates that the

performance of our proposed KRR is better than other ML

models. In terms of other error metrics, KRR achieves the best

result than the other investigated ML approaches, as illustrated in

Table 9 and Figure 7B. Wheat production in South Asia climbed

from 15 million tons in the 1960s to 95.5 million tons in 2004–2005.

It still needs to increase at a rate of 2%–2.5% every year till the

middle of the 21st century (Chatrath et al., 2007). Because there is

little scope for growing wheat field areas, the main task will be to

crack the yield barrier utilizing practical genetic and morphological

techniques. Other issues are unique to the highly productive rice–

wheat farming system prevalent in the Indo-Gangetic plains.

Though the production is at a low level, the 2017–2078 and

2018–2019 time periods have broken records. Previously, we

discussed that the damage of the Aus rice due to flood plays a

vital role in this segment (Das and Rahman, 2018). People engaged

more in cultivating wheat to recover the damage to the economy in

the period. It indicates that cultivating more wheat can be a solution

to increase the amount of wheat production, which leads the

agricultural economy in another direction.

To summarize, we can state that, on average, our proposed

model KRR outperforms the others in predicting crop production
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for all crops considered in this work. Regarding MSE, MAE, RMSE,

and R2, the proposed KRR performs better. From Tables 5 to 9, we

can clearly differentiate the performance of each model for

prediction. In almost all cases, the MSE, MAE, and RMSE values

of KRR are smaller than those of the other models, which indicates

that KRR shows minimum error in the case of prediction compared

to other MLmodels. However, the R2 value of the KRR is larger than

the other models in the above-mentioned tables. It also creates a

comparison among the models that KRR is a better fit to the dataset

than existing benchmark ML models. To find the superiority of

KNN, the DM significant test is also performed below.
Significant test on the superiority of the
proposed ensemble ML model

DM test
The DM test is one of the most used significant test procedures to

compare the robustness of the best method in prediction. This is an

asymptotic z-test of the hypothesis that calculates the loss difference

(Diebold, 2015). In this study, we consider the null hypothesis as H0,

i.e., the loss difference of model A is lower than or equal to that of

model B. Note that the hypothesis rejection means model B is

significantly more accurate than model A. In every hypothesis,

testing model B is our proposed KRR ensemble model.
A B

FIGURE 6

Comparison of the actual and predicted values of potato production and error rating of the investigated and proposed ML models (SVR, NB, RF, RR,
CB, and KRR) in each fiscal year from 2015 to 2021. (A) Actual vs Predicted bar chart for Potato. (B) Line chart for the error rating of Potato
production prediction.
TABLE 8 Error ratings using the investigated and proposed ML approaches for predicting potato production using different metrics and R2 score.

Model MAE MSE RMSE R2

SVR 0.416 0.474 0.688 0.960

NB 0.735 0.275 0.525 0.970

RF 0.299 0.284 0.533 0.980

RR 0.735 0.873 0.934 0.930

CB 0.787 2.144 1.464 0.840

KRR 0.134 0.062 0.250 0.990
frontiersin.org

https://doi.org/10.3389/fpls.2023.1234555
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hasan et al. 10.3389/fpls.2023.1234555
Significant test result
We use the DM test to find the significance of our proposed

ensemble algorithm KRR compared to the other investigated ML

models. We evaluate this test for the Aus rice, Aman rice, Boro rice,

wheat, and potato data.

Table 10 illustrates the DM values of different models compared

to our proposed KRR. For almost all of the cases, our proposed KRR

shows 5% significance over other ML models.
Crop recommender system

Besides crop production forecasting, crop recommendation is a

vital part of such a study. Suitable crops in suitable land can boost the

production of any crop (Bhullar et al., 2023). Finding the best crops

for the appropriate land is a challenging task. A complex analysis of

the environmental variables and production rate is required to

recommend a land for production (Van Ittersum et al., 2013).

Every area has a unique value of environmental variables.

Considering the standard variables as threshold values (collected

from expert agriculturists), we propose to recommend crops for any

specific area. We provide the block diagram in Figure 8. First, the

model is trained on the environmental and area data, and then, based

on the environment and area data of the current year, the estimated

production is predicted for each crop. Next, the production of the

individual crops is compared with the threshold value of the crop for

any specific area. If the production satisfies the criteria, then the crop
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will go to the list of recommendations. The threshold value is to be

estimated by the associated local authority, which can be changed

according to changes in the status of the area, demand, policy, and

also environmental conditions. Comparing the crops of the same

harvesting period, the model will recommend the right crops for the

right place. We also introduce the pseudocode to recommend the

crops for the land in Algorithm 2. We now discuss every step in

the recommender system as follows.
Dataset creation

Dataset is one of the significant components of the recommendation

system (Zhang et al., 2018). A dataset should train the model used for

prediction and recommendation to understand the nature of the system.

Then, it can predict and recommend the outcome. In this

recommendation system, environmental, area, and production data of

the crops are taken into consideration. Five main crops of Bangladesh

are considered here as the source of data. The data collection procedure

and preprocessing are discussed in detail in the Methods and

measurements section.
Model development and prediction

This stage is one of the crucial parts of the crop

recommendation system. The preprocessed dataset is used to
A B

FIGURE 7

Comparison of the actual and predicted values of wheat production and error rating of the investigated and proposed ML models (SVR, NB, RF, RR,
CB, and KRR) in each fiscal year from 2015 to 2021. (A) Actual vs Predicted bar chart for Wheat. (B) Line chart for the error rating of Wheat
production prediction.
TABLE 9 Error ratings using the investigated and proposed ML approaches for predicting wheat production using different metrics and R2 score.

Model MAE MSE RMSE R2

SVR 0.139 0.031 0.177 0.960

NB 0.086 0.019 0.137 0.970

RF 0.067 0.019 0.099 0.980

RR 0.129 0.026 0.162 0.960

CB 0.079 0.017 0.129 0.980

KRR 0.023 0.016 0.013 0.990
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train the ML models, and the model predicts the production of

different crops. The model makes specific crop predictions based on

the area, previous production, and environmental data related to

the specific crop production period. Our proposed high-

performance model KRR described in the Proposed paradigm

section is considered as the potential ML model in the

recommendation system.
Fron
Input: θ (Train model); ξ (Environmental

data); α (Land area); ν (Crops’ names); τ

(Threshold value)
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Output: Recommended crop
1: procedure CropRecommendation (θ, ξ, α, ν, τ)

2: for each ν do
3: Pν ← Predict(θ,ξ,α); [Pν Predicted

production amount of ν]

4: end for

5: if Pν ≥ τ then
6: return ν

7: end if
8: end procedure
ALGORITHM 2
Crop recommendation
TABLE 10 DM value with significance for each investigated ML model compared to our proposed KRR ensemble model in terms of DM and p-values.

Investigated
Model

Aus Rice (DM
Value)

Aman Rice (DM
Value)

Boro Rice (DM
Value)

Potato (DM
Value)

Wheat (DM
Value)

SVR 23.041* 16.323* 17.554* 12.253* 13.862*

NB 22.060* 15.542* 5.884** 13.870* 11.960**

RF 2.561*** 2.870*** 22.021* 10.530** 9.532**

RR 4.292*** 4.454*** 0.460*** 11.984** 12.933**

CB 6.160** 5.920** 14.744* 10.953** 8.192**
Observation represents the algorithm’s DM value of Aus rice, Aman rice, Boro rice, wheat, and potato while *, **, *** represent the significance level according to the p-values of the test. *
represents 1% significance, ** represents 5% significance, and *** represents 10% significance of our proposed model against the investigated algorithms.
FIGURE 8

Block diagram of the proposed crop recommender system. This recommender system employs our proposed pre-trained KRR ML model to predict
the production values of the test samples of different crops. After that, a suitable crop to grow is recommended using the predicted production
values and the expert-defined threshold.
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Threshold value selection

We consider the standard environmental data as a threshold for

the recommendation. In a specific area, crop production depends

on environmental properties like temperature, rainfall, wind speed,

and sunshine. The environmental variables can be predicted by our

proposed model besides the crop production prediction. Threshold

values are taken from the local agriculture office and set to our

model for the recommendation.
Crop recommendation

It is the final step of the recommender system. The model

predicts the production for an area, and we set the threshold for this

system. The threshold is compared with the predicted

environmental data, and the crops’ production is considered the

main element of recommendation. The recommendation is reached

by comparing the threshold with the predicted data for each

season’s crop. The top match is the recommended crop for the

season in the area. The input of this system is the season and the list

of crops, and the output is the recommended crop among the

selected crops. As an extension of this work, in the future, a mobile

application will be developed that will help farmers gain easy access

to this system. However, in this current state, they can use it with

the help of experts with a technical knowledge of putting the inputs

and synchronizing with this system.
Conclusion

In this work, we have focused on designing a learnable dataset on

agricultural crop production prediction from different agricultural

research organizations as well as the meteorological department of

Bangladesh. The analysis is first performed using five popular

classical ML algorithms as well as ensemble ML algorithms. Then,

we proposed an ensemble algorithm, called KRR, to better predict

crop production. After evaluating all the algorithms, we have found

that our proposed ensemble method KRR outperforms the

investigated traditional ML and ensemble ML algorithms. In

particular, KRR shows minimum errors and a maximum R2 score

compared to that of the investigated ML approaches. We have also

provided a DM test to demonstrate the superiority of our proposed

KRR approach over the existing ML approaches. The final result also

indicates that the production of rice is increasing day by day, and the

production of potatoes is also increasing at a significant rate while the

production of wheat is decreasing every year.We have also provided a

crop recommender system that recommends the most suitable crops

to be cultivated on a particular land in the upcoming season.
Limitations

This work focused on predicting major crops than the minor

crops due to the lack of available data in the study area. Some factors

such as soil properties, production cost, and market price, the data
Frontiers in Plant Science 16
collection process of which is difficult and time-consuming, were

not considered.
Future work

In the future, we will gather more data related to this study and

analyze deep learning methodology that can help to select the

appropriate crops for the right land more correctly. Local market

and wholesale market price analysis will also be performed to select

the crops for a specific region. For a more complete picture,

researchers plan to include both modern and traditional crops in

their future analyses and selections. Additionally, a system based on

mobile applications can be created to guarantee that farmers have

easy access to the system’s information.
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