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Mainstreaming production and
nutrient resilience of vegetable
crops in megacities: pre-
breeding for terrace cultivation

Kun Ma, Yuan Yuan and Caochuang Fang *

Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute,
Shanghai Academy of Agricultural Sciences, Shanghai, China
Modern megacities offer convenient lifestyles to their citizens. However,

agriculture is becoming increasingly vulnerable, especially during unexpected

public health emergencies such as pandemics. Fortunately, the adaptability of

terrace vegetables cultivation presents an opportunity to grow horticultural

crops in residential spaces, bringing numerous benefits to citizens, including

enhanced nutrition and recreational engagement in the cultivation process.

Although certain planting skills and equipment have been developed, the

citizens tend to sow some seeds with unknown pedigree, it is rare to find new

plant varieties specifically bred for cultivation as terrace vegetables. To expand

the genetic basis of new breeding materials, elite parents, and varieties (pre-

breeding) for terrace cultivation, this review not only discusses the molecular

breeding strategy for the identification, creation, and application of rational

alleles for improving horticultural characteristics including plant architecture,

flavor quality, and ornamental character, but also assesses the potential for

terrace cultivation of some representative vegetable crops. We conclude that the

process of pre-breeding specifically for terrace cultivation environments is vital

for generating a genetic basis for urban terrace vegetable crops.
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1 Introduction

Terrace cultivation had existed since the days of Babylon in 2300 BC (Udayan and

Sreedaya, 2018). While in modern societies, terraces/balconies are the only places that

citizens could cultivate their own vegetables with the expanding of megacities (Chitra,

2021), so local nutrient sources are rapidly depleting, consequently hindering food supplies.

Moreover, as the COVID-19 pandemic subsides, challenges to food supplies induced by

public health disturbances suggest that urban nutrient resilience may be crucial for meeting
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the needs of megacities (Langemeyer et al., 2021). Urban nutrient

resilience reflects the sustainability of cities, which is based on

resource availability and the need to enhance food supplies and

quality of life (Zeng et al., 2022). Fortunately, terrace cultivation of

vegetable crops plays a crucial role in urban nutrient resilience as it

not only strives to provide food daily or emergently, but also

enhances recreation in high-density cities. Additionally, in many

countries such as USA, India, China, and Korea, terrace cultivation

is becoming more and more popular among the citizens, and many

cultivations equipment or materials are sales good.

The terrace cultivation of vegetable crops is characterized by

utilizing edge/corner vacancies or installing box/shelf-shaped

equipment on terraces, balconies or roofs of high-density

residential buildings for the purpose of planting and growing

vegetables. For this, complete commercialized cultivation

substrates have been matched adequately for cultivation of

vegetables (Kader et al., 2022). Many planting modes can be

utilized on balconies or roofs, including placing pots along terrace

handrails, utilizing compact versions of vertical farming equipment,

employing light-emitting diode (LED) photon boxes, utilizing

hollowed walls, creating extended grooves, and using slope

shelves with aerosol cans. Thus, it is a half-open, half-protected,

half-controlled, flexible, and relatively cramped cultivating

environment. To adapt to this environment, three prerequisites

are required for the cultivated plants and surely for the germplasm:

First, adaptation to the limited planting space, which is a major

limiting factor. The plant architecture should be reduced to a size

that can be accommodated by terraces, balconies or roofs. Second,

to enhance nutrient supply to citizens, it is necessary to ensure high

levels of nutrient content and flavor quality. Terrace vegetables have

the potential to independently produce rare, fresh, more nutritional,

more flavorful, and higher value-added vegetable products. This

eliminates the need for logistics processes and helps address urgent

disruptions in nutrient supply caused by delays in vegetable

transportation due to a pandemic or other social reasons, i.e.,

terrace vegetable cultivation contributes to increasing urban

nutrient resilience. Third, being connected to the human

environment, the ornamental value of vegetable germplasms

should also be considered to complement the existing urban

landscape ecology and satisfy the preferences of citizens engaged

in terrace vegetable cultivation.

To obtain germplasms with the specialized attributes required

for terrace vegetable systems, we propose the use of pre-breeding

strategy as a bridge to connect genetic variations with breeding

programs (Akkenapally and Kumar, 2022). Pre-breeding refers to

all activities designed to identify desirable characteristics and/or

genes from unadopted (exotic or semi-exotic) materials, including

those that, although adapted have been subjected to any kind of

selection for improvement (Akkenapally and Kumar, 2022). This

strategy allows for the combination of valuable artificial or natural

alleles into the recipient material, resulting in the development of

highly beneficial germplasms. The aim of this review is to

summarize an integrated pre-breeding strategy for expanding

terrace vegetable germplasms by means of showing some

examples of vegetable crops.
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2 General breeding traits and breeding
methods for terrace vegetables

Compact plant architecture is the highest priority breeding

target for terrace vegetables. Under this premise, lots of vegetable

crops have the potential for use in terrace vegetable systems, while

certain plants do not possess traits that align with the three

prerequisites. For instance, the size of most fruit vegetable crops

exceeds the available space on a terrace. Meanwhile, although some

germplasms exhibit a compact plant architecture, they may not

yield as highly or adapt well to continuous harvest which might be

eliminated. While for most leafy vegetables and root vegetables,

their plant heights naturally suitable for terrace environments, so

the flavor quality, nutrient quality, and ornamental value should be

more concerned in pre-breeding programs. The evaluation of

adaptability and deficiency of different vegetables for terrace

cultivation were listed in Supplementary Table 1 as examples

for reference.

The 5G breeding is an approach that fully reflects the newest

modern molecular breeding spirits; these 5Gs are 1st G Genome

assembly, 2nd G Germplasm characterization, 3rd G Gene function

identification, 4th G Genomic breeding (GB), and 5th G Gene

editing (GE) (Varshney et al., 2020). Combining the concepts of

pre-breeding, the clustered regularly interspaced short palindromic

repeats (CRISPR) is included by the 5th G, the quantitative trait

locus (QTL) mapping is included by the 2nd, 3rd and 4th G, the

genome-wide associated study (GWAS) is included by the 2nd G,

and the marker assisted selection (MAS) is included by the 4th G,

which are all commonly used molecular breeding technologies that

can be employed to improve specific characteristics of crops,

according to the purpose of pre-breeding.
3 Tomatoes genetic
improvement exhibits a representative
of pre-breeding strategy for
terrace cultivation

Tomato is one of the most popular fruit vegetable crops around

the world in a long history (Razifard et al., 2020). However, the

plant architecture of most tomato cultivars is relatively taller for

terrace cultivation. In tomatoes, three main effective genes are

useful for molding compactness in the plant architecture (Kwon

et al., 2019): SISP, SISP5G, and SLER. The gene SlSP has been found

to delay flowering time and promote indeterminate growth, SlSP5G

delays flowering time especially under long-day conditions, and

SLER promotes the elongation of internodes (Torii et al., 1996;

Pnueli et al., 1998; Xu et al., 2015; Soyk et al., 2016). Mutations in

SlSP, whether naturally occurring or induced by CRISPR, result in a

determinate growth habit without yield loss, while mutating of

SlSP5G accelerates flowering in long-day conditions (Pnueli et al.,

1998; Soyk et al., 2016). Additionally, the natural Sler, mutant shows

shortened internodes and extremely compact inflorescences,

forming tight fruit clusters (Kwon et al., 2019). The double-
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mutated genotype Slsp/Slsp5g exhibits rapid cycling and compacts

the plants without affecting fruit number or yield when cultivated in

high-density planting spaces (Soyk et al., 2016). The triple mutant

Slsp/Sp5g/Sler is the most compact and exhibits significantly

decreased fruit weight and yield than the sp mutant in the Mo82

background. Fortunately, the triple mutant has similar fruit

numbers per plant, Brix content, and yield when planted in high-

density LED-assisted photon greenhouse fields compared with

those exhibited by the sp mutant in the Sweet100 background,

indicating that the triple mutated genotype is most suitable for

tomato terrace planting (Kwon et al., 2019).

Flavor quality, being the foundation of edibility, represents

crucial targets for pre-breeding efforts (Bomgardner, 2017). The

utilization of CRISPR mutants of SlINVINH1 and SlVPE5 resulted

in increased glucose, fructose, and Brix values, raising levels of

40.82%, 42.76%, and 32.76, as well as 35.83%, 43.0%, and 32.43%

than the parental lines, respectively (Wang B et al., 2021). These

improvements were achieved without any significant alteration in

fruit weight (Wang B et al., 2021; Kawaguchi et al., 2021). A

genome-wide association study (GWAS) identified a main effect

quantitative trait locus (QTL) located on chromosome 9 at position

62.64 M, which was found to explain 28.73% of the phenotypical

variation observed during a 3-year test (Kim et al., 2021).

Additionally, conditional QTL for taste quality should be

explored and used as modern terrace -cropping often uses photon

suppliers such as HPS and LED lamps. In a QTL mapping analysis

of Brix values, two QTL regions have been identified; the first QTL

was located on chromosome 2 at 43.5 - 50.5 Mb under both HPS

and LED conditions, explaining 20% of the phenotypic variance;

and the second QTL was found on chromosome 6 at 43.7 - 47.1 Mb

only under the LED condition, explaining 26% of the phenotypic

variance (Prinzenberg et al., 2021). The additive effect of these QTLs

suggests that stacking high flavor quality alleles could lead to

continuous improvement in Brix values in elite breeding lines.

For example, a triple Brix-value-QTL pyramided isogenic

introgression line showed a 145% higher Brix yield compared to

the original M82 tomato line, providing valuable material for

breeding (Gur and Zamir, 2015; Prinzenberg et al., 2021; Wang Z

et al., 2022).

Aroma is also an essential component of flavor quality. In a

previous study, QTL mapping indicated that SlFLORAL4 was the

candidate gene for the phenylalanine-derived volatile locus on

chromosome 4 in tomato, and the contents of 2-phenylethanol,

phenylacetaldehyde, and volatile 1-nitro-2-phenylethane were

significantly reduced in the CRISPR mutant of SlFLORAL4

(Tikunov et al., 2020). This finding highlights the importance of

utilizing natural variations for high aroma quality. Due to the

relatively rich genetic basis of aroma, many elite lines with aroma

have been developed (Tzin et al., 2015); thus, reverse genetic

strategies, such as CRISPR, may offer a faster approach than

forward genetic strategies (e.g., QTL mapping) for the production

of high-quality breeding materials.

Regarding ornamental value, color is an important component

of the traits which contributes to the ornamental value of terrace

mini-horticultural landscapes. Since some painting pigments are

extracted from natural plants, the potential exists to match colors
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artificially in living plants. The synthesis of some plant pigments has

been genetically dissected and can be used in breeding procedures.

As reported for tomatoes, CRISPR interruption of SlPSY1,

SlMYB12, and SlSGR1 interrupts the synthesis of carotenoids,

naringenin chalcone, and chlorophyll, respectively, resulting in

fruit color changes from red to yellow, pink, and brown (Yang

et al., 2022). Triple mutants, with mutations in all three genes,

exhibit a light green color; while double mutants, depending on the

genes mutated, display light yellow, pink-brown, and yellow-green

colors (Yang et al., 2022), thus demonstrating the ability to match

new colors using basic pigments and genes (allelic variations)

extracted from plant organs (Ye et al., 2022).
4 Pre-breeding for other types of
terrace vegetables

4.1 Liana and fruit vegetables

For most liana and fruit vegetables, relatively taller plant

architecture is the limitation factor which need to be improved

for terrace cultivation.

For example, the ER orthologs CmER, CsER, and CmoER

regulate internode length in melon, cucumber, and pumpkin,

respectively (Torii et al., 1996; Xin et al., 2022). As predicted, the

internode lengths of CRISPR-mutated genotypes Cmer, Cser, and

Cmoer were 40%, 34%, and 60% shorter, respectively, compared to

their parallel wild genotypes (Xin et al., 2022). The rare natural

variation in the 5’ UTR of CmoYABBY1, known as the genetic

essence of the Bu locus, results in a bushy architecture with clustered

leaves and highly compressed internodes in the CRISPR mutant

genotype Cmoyabby1/bu. This mutant genotype exhibits similar

yield per plant to CmoYABBY1 but significantly higher yield per

square meter under high plant density conditions (Wang S et al.,

2022). The suppression of stem length by CmoYABBY1 variation is

dose-dependent (Wang S et al., 2022), suggesting the potential value

of Cmoyabby1/bu in adapting to different types of terraces

structures. In the case of CsTFL1 in cucumber, a non-

synonymous SNP disrupts the interaction between CsTFL1 and

CsNOT2a, resulting in a loss of its ability to delay flowering (Wen

et al., 2019). CsTFL1 is expressed in the subapical regions of the

shoot apical meristem, lateral meristem, and young stems,

indicating its multiple effects on plant architecture. Knockdown

of CsTFL1 through RNAi leads to determinate growth and the

formation of terminal flowers, resulting in a significant reduction in

plant size, while flowering time remains unaffected (Wen et al.,

2019). Although CsTFL1 does not possess a CRISPR mutation, the

natural non-synonymous allele can be utilized for breeding dwarf

cucumbers using marker-assisted selection (MAS). Recent

advancements in Agrobacterium-mediated transgenic and CRISPR

technologies have enabled the genetic modification of an increasing

number of Cucurbitaceae crops to achieve a compact plant size.

Kiwifruit, a newly domesticated climbing woody perennial liana

crop, utilizes CEN-like genes as flowering time repressors

(Varkonyi-Gasic et al., 2013; Voogd et al., 2017). CRISPR-

induced bi-allelic mutations of AcCEN4 and AcCEN in kiwifruit
frontiersin.org
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result in a compact annual plant with axillary inflorescences and

rapid terminal flower and fruit development, making it suitable for

terrace vegetable cultivation (Varkonyi-Gasic et al., 2018).

Furthermore, a QTL on chromosome 26 increases vitamin C

content in kiwifruit (McCallum et al., 2019), which help kiwifruit

to a high nutrient food source for citizens.

For groundcherry, a related fruit vegetable crop of tomato, PgER

is a member of the ER gene family that regulates stem length (Zhang

et al., 2018; Kwon et al., 2019). The phenotype of the mutant Pger is

more severely condensed compared to that of the tomato Sler

mutant and resembles the Slsp/Sp5g/Sler triple mutant, while

maintaining a similar fruit number and Brix content (Kwon et al.,

2019). While, as for fruit crops like capsicum, the so-called chilli, the

plant architecture is very suitable for terrace environment, and its

flavor quality and nutrient quality has also been fit the scope of

consumption of citizens, they could be adopted directly, the genetic

improvement of capsicum in other traits is a kind of “add flowers to

the brocade” for terrace cultivation.
4.2 Leafy vegetables

Leafy vegetables are very suitable for terrace cultivation for their

dwarf or cramped architecture which fit the volume of terrace and

cultivating facilities accordantly, including but not limited to

lettuce, kale, broccoli, and bolt used rapeseed. The ornamental

value and nutrient quality will become bonuses for these species if

they could.

Rll1 is a gene that induce the synthesis of anthocyanins,

resulting in the red color of lettuce leaves (Su et al., 2019).

Chlorophyll can also influence external traits, as observed in

lettuce, where LsVAR2 induces the formation of green speckles in

the albino cotyledon (Nguyen et al., 2021). In kale, the CRISPR

knockdown of BoaCRTISO results in the simultaneous reduction of

chlorophyll and carotenoid concentrations. As a result, the leaf

color changes from green to yellow, which weakens the color-

masking effect of chlorophyll (Sun et al., 2020). In broccoli, a QTL

mapping study indicates that two QTLs named Pur7.1 and Pur9.1

facilitate the biosynthesis of anthocyanin, and induce the purple

cauliflower phenotype (Liu et al., 2022). Further, the CRISPR

mutation of BolMYB28 increases glucoraphanin content in the

leaves (Kim et al., 2022), which induces a healthcare usage of

broccoli. For rapeseed, the edible value is reflected through

bolting, and the ornamental value is reflected through flowering.

PAP2 induces the synthesis of anthocyanins, resulting in the pink

color of rapeseed petals, and CCD4 induces carotenoid synthesis,

resulting in yellow coloration in rapeseed petals (Ye et al., 2022).

The combination of anthocyanins and carotenoids forms a new

color, i.e., apricot flower petal in rapeseed via the co-expression of

CCD4 and PAP2 (Ye et al., 2022). By the way, early bolting could be

accomplished by MAS (Fang et al., 2022), which makes the citizens

could harvest the bolts earlier.

Compared to other types of vegetable crops, the current

deficiency is the lack of reported genetic research of flavor

quality for leafy vegetables, and most researchers use
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cultivation skills, fertilizers, and equipment to enhance flavor

quality (Silva and Zorzeto, 2019; Gangathilaka et al., 2022).

However, the anticipated carbon peak in 2050 (Zheng et al.,

2022) means that enhanced genetic strategies may be a more

efficient means of saving energy and resources, thereby improving

megacity sustainability. We believe that the development of pan-

genomes will allow the discovery of more alleles for pre-breeding

using CRISPR or MAS for terrace vegetables (Fei, 2019; Gao

et al., 2019).
4.3 Root vegetables

Root vegetables are also very suitable for terrace cultivation,

including but not limited to carrots, onions, or turnip. Taking

carrots as an example, the plant height and width of carrot is perfect

for terrace environment, and its nutrient quality is also excellent,

and its ornamentally proper for terraces. In spite of this, carrots

could be genetically improved for higher nutrient content and

ornamental value. For instance, DcMYB7 induces the synthesis of

anthocyanin, resulting in the purple color of taproot (Xu et al.,

2019). While the heterologous expression of CYP76AD1, DODA1,

and DOPA5GT induces betalain in carrot, resulting in a red-violet

color in the taproot (Deng et al., 2023). These genes not only

increase the ornamental value of carrots, but also enhance

medicinal and edible homologous functions. Generally, root

vegetables expand the range of options available for terrace

cultivation. Although some marker-free alleles of the mentioned

genes above have yet to be identified, they hold the potential to serve

as valuable pre-breeding resources.
4.4 Cereal crops

Flexibly consider, some cereal crops also suitable for terrace

cultivation for their special identities of flavor or nutrient.

For instance, fresh maize can be eaten as vegetable in diets. In

maize, the flavor compound 2-acetyl-1-pyrroline (2AP) is regulated

by the activity of betaine aldehyde dehydrogenase 2 (BADH2).

Natural maize varieties do not produce 2AP, but CRISPR-generated

double mutants of ZmBADH2a and ZmBADH2b can produce 2AP

in fresh and dry maize seeds, enhancing the aroma profile (Wang Y.

et al., 2021).

Natural disasters, sudden epidemics, or uncertainties in human

society can disrupt vegetable supply, leading to potential nutrient

deficiencies. In such situations, nutrient enhancement or

“biofortification” becomes crucial to ensure an adequate supply of

important nutrients such as chlorophyll, cellulose, and vitamins

from plants (Vlčko and Ohnoutková, 2019; Bhambhani et al., 2021),

which is an important part of the resilience of megacities (Junior,

2017; Langemeyer et al., 2021). Just as the CRISPR mutation of

OsHOL1 increases iodine content (Carlessi et al., 2021), the

CRISPR-mediated marker-free double insertion of SSU-crtI and

ZmPsy has been shown to increase carotene content in rice (Dong

et al., 2020). Further, as the CRISPR mutation of TaIPK1 improves
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iron and zinc accumulation in wheat (Ibrahim et al., 2021), and the

CRISPR mutation of FtMYB45 promotes flavonoid biosynthesis in

buckwheat (Wen et al., 2022).
5 Hybrid vegetable seeds are
encouraged for terrace cultivation

Although the basic three prerequisites are the basic

requirements of the cultivars, sufficient yield is also need to be

noted, especially for the smaller architecture plants. Sometime, it is

not realistic to expect smaller plants modified for cramped

conditions to produce comparable yields to those of stronger,

taller plants grown in larger spaces. To address this issue, on one

hand, the existed heterotic patterns should be insisted; on the other

hand, we propose a single-gene advantageous stacking strategy to

increase fruit yield in cramped plants (Fang et al., 2022). For

instance, several gene families, including IAA7, FLC, TFL, SFT,

and SSP, have been shown to have significant effects on plant

architecture and exhibit strong single-gene heterosis, leading to

increased yield (Krieger et al., 2010; Guo et al., 2014; Park et al.,

2014; Li et al., 2019; Fang et al., 2022). Heterozygous genotypes of

these genes can be stacked using polycistronic CRISPR or QTL

pyramiding in hybrid breeding systems (Fang et al., 2022).

Conversely, some high-yield-related alleles are effective in the

homozygous state and can be stacked in elite lines to compensate
Frontiers in Plant Science 05
for the reduced yields of smaller plants (Gur and Zamir, 2015; Song

et al., 2021; Wang S et al., 2022).
6 Summary and expectation

In conclusion, the terrace vegetable system is a broad concept,

and traditional food and oil crops, vegetables, and fruits are likely to

become specialized commercial varieties for terrace vegetable

systems after genetic improvement, provided that the plant

materials meet the three main requirements described in this

review (Figure 1; Supplementary Table 2) i.e., the breeders and

citizens could choose their own vegetable crops following the

information including but not limited to Supplementary Table 1.

Furthermore, we recognize that the terrace vegetable system can

provide several benefits. It offers flexibility in the supply of fresh

vegetables, ensuring the availability of high-quality and nutritious

food for urban populations. Additionally, it contributes to

improving the microecological environment of urban residents,

enhancing their well-being. Moreover, it increases the ornamental

value of fruits and vegetables, adding to the aesthetic appeal of

urban landscapes. Finally, it provides opportunities for citizen

recreation, which can be considered a luxury in megacities.

A major constraint is that parts of the citizens tend to get access

to the seeds free of cost, even when the seeds are unknown pedigrees

or segregating individuals of hybrids. To solve this problem which
B

A

FIGURE 1

The thumbnail of pre-breeding. (A) Mind mapping of pre-breeding for terrace vegetables. (B) Subsequent steps after pre-breeding.
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might hinder the development of the seed industry for terrace

cultivation, on one hand, the breeders could enhance the level of

breeding procedures and produce high performance seeds to attract

citizens to buy; on the other hand, breeders could host some public

activities to donate some seeds to the citizens as welfares. Our pre-

breeding work strategy is a pivotal step to produce elite parental lines

not only for commercialized breeding but also for welfare breeding.

In spring 2021, the vegetable garden owned by the first author of

this review received attention from the public and media at the 10th

China Flower EXPO and won a prize for scientific and technological

innovation. This highlights that the selection and breeding of

vegetable varieties suitable for special urban planting environments

meet the current demand for urban green sustainable development

and the needs of people living in cities. Thus, pre-breeding of terrace

vegetables have forward-thinking and commercial application value.

Only a few vegetable types have been genetically dissected, and no

commercial varieties have been specifically bred for terrace

vegetables. However, pre-breeding programs provide several

breeding lines for subsequent steps, showing potential for yielding

the most suitable vegetable varieties in the near future and informing

important future research on gene function.With the development of

5G breeding (Varshney et al., 2020), more horticultural crops and

even field crops could be genetically improved to fulfill the scope of

terrace cultivation of vegetable crops. Thus, genetic improvement and

the use of pre-breeding will not only support a promising

industry but also enhance the nutrient resilience of megacities

(Supplementary Figure 1).
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