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Stalk rot, a severe and widespread soil-borne disease in maize, globally reduces

yield and quality. Recent documentation reveals that Pythium aristosporum has

emerged as one of the dominant causal agents of maize stalk rot. However, a

previous study of maize stalk rot disease resistance mechanisms and breeding

had mainly focused on other pathogens, neglecting P. aristosporum. To mitigate

crop loss, resistance breeding is the most economical and effective strategy

against this disease. This study involved characterizing resistance in 295 inbred

lines using the drilling inoculation method and genotyping them via sequencing.

By combining with population structure, disease resistance phenotype, and

genome-wide association study (GWAS), we identified 39 significant single-

nucleotide polymorphisms (SNPs) associated with P. aristosporum stalk rot

resistance by utilizing six statistical methods. Bioinformatics analysis of these

SNPs revealed 69 potential resistance genes, among which Zm00001d051313

was finally evaluated for its roles in host defense response to P. aristosporum

infection. Through virus-induced gene silencing (VIGS) verification and

physiological index determination, we found that transient silencing of

Zm00001d051313 promoted P. aristosporum infection, indicating a positive

regulatory role of this gene in maize’s antifungal defense mechanism.

Therefore, these findings will help advance our current understanding of the

underlying mechanisms of maize defense to Pythium stalk rot.

KEYWORDS
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Introduction

Maize (Zea mays L.) is a vital crop in China with the highest

yields, surpassing wheat and rice in acreage. However, owing to the

limited arable land area, continuous cultivation of the same maize

variety leads to the accumulation of pathogenic microorganisms in

the soil. This results in numerous soil-borne diseases that seriously

affect the quality and yield, with stalk rot being a particularly

devastating and prevalent disease widespread in maize production

(Jackson et al., 2009; Yang et al., 2010; Duan et al., 2022). Although

stalk rot disease severities and accompanying yield losses vary

across different countries and regions, recent changes in climate

and cultivation methods have made it a major threat to maize

production (Duan et al., 2019). The primary fungal culprits

responsible for maize stalk rot are Fusarium spp. and Pythium

spp. (Song et al., 2015), among which Pythium aristosporum has

recently emerged as a highly aggressive pathogen (Liu et al., 2019;

Ding et al., 2021). Conventional control strategies using fungicides

or biological agents have shown limited success against the soil-

borne pathogens that cause stalk rot. Therefore, the most effective

and sustainable disease control approach is selective breeding of

Pythium stalk rot-resistant maize varieties (Duan et al., 2019).

The resistance to stalk rot in maize was considered to be a

quantitative trait and conferred by multiple genes or quantitative

trait loci (QTLs) (Pè et al., 1993; Toman and White, 1993; Yang

et al., 2010; Wang et al., 2017; Ye et al., 2019). To date, only a few of

Pythium stalk rot resistance genes have been mapped and

designated, including Rpi1 (Yang et al., 2005), RpiQI319-1 and

RpiQI319-2 (Song et al., 2015), and RpiX178-1 and RpiX178-2

(Duan et al., 2019). However, these genes are specific to maize

resistance to P. inflatum, and only limited information was available

to maize breeders regarding genetic and molecular analysis of

resistance to maize stalk rot caused by other Pythium spp.,

especially P. aristosporum.

Over the last decade, next-generation sequencing (NGS)

technologies have revolutionized crop breeding. NGS enables

rapid acquisition of a vast number of SNPs throughout the

genome, offering greater DNA variation compared to traditional

markers. Now, NGS has been widely used for linkage mapping,

genome-wide association study (GWAS), marker-assisted selection

(MAS), genomic selection (GS), domestication, and population

structure analysis in crops (Zhou et al., 2015; Bhat et al., 2016;

Varshney et al., 2016; Scheben et al., 2017; Wang et al., 2018; Jamil

et al., 2019). Using these technologies has facilitated the mapping

and cloning of numerous important genes/QTLs (Huang et al.,

2010; Sun et al., 2017; Lu et al., 2018), providing abundant

operational targets for molecular design breeding and gene

modification (Peleman and van der Voort, 2003).

GWAS has recently gained significant attention due to its ability

to analyze the genetic basis of complex traits using existing natural

populations, making it more time-efficient than traditional linkage

analysis. This approach has been successfully applied to crops like

rice, maize, and soybean (Zhao et al., 2011; Yang et al., 2014; Cao

et al., 2017). GWAS enables simultaneous association analysis of

multi-trait phenotype data across multiple environments and time

points, facilitating the detection of millions of SNPs at once.
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However, GWAS results can be easily influenced by population

structure and rare variants in natural populations. To enhance the

power of identifying phenotype–genotype associations, various

analytical models have been developed, including the Bayesian-

information and Linkage-disequilibrium Iteratively Nested Keyway

(Blink; Huang et al., 2019), Fixed and random model Circulating

Probability Unification (FarmCPU; Liu et al., 2016), General Linear

Model (GLM; Friston et al., 1994), Mixed Linear Model (MLM; Yu

and Buckler, 2006), Multiple Loci Mixed Model (MLMM; Segura

et al., 2012), and Settlement of MLMs Under Progressively

Exclusive Relationship (SUPER; Wang et al., 2014).

In this study, we investigated 295 maize inbred lines in two

environments for disease severity index (DSI) of stalk rot symptom

phenotypes. Genotyping-by-sequencing (GBS) technology was used

to genotype these inbred lines. Subsequently, we conducted GWAS

analysis to identify SNPs significantly associated with resistance to

P. aristosporum stalk rot (PASR). The detected significant loci were

subjected to bioinformatic analysis to identify candidate genes for

disease resistance. Finally, the expression of the candidate genes was

verified using quantitative real-time fluorescence PCR (qRT-PCR),

and their functions were verified through virus-induced gene

silencing (VIGS). Therefore, our study can deepen the

understanding of the genetic mechanisms underlying stalk rot

resistance in maize. Additionally, it provides valuable research

methods and candidate genes for future molecular breeding

strategies aimed at improving maize disease resistance.
Materials and methods

Plant materials and trail designs

A total of 295 maize inbred lines were assembled into a panel.

The panel included 134 China core germplasms and 161 expired US

plant variety protection inbred lines (provided by the China

National Modern Corn Industry Technology System). The test

materials of the associated panel were planted in Xinxiang (XX,

35.108°N,113.792°E) and Dancheng (DC, 33.646°N, 115.257°E)

experimental stations of Henan Academy of Agricultural

Sciences in 2021. The field experiment was arranged in a

randomized complete block design with two replicates. Each

inbred line was grown in two rows with 15 plants in each row,

0.60 m in row spacing, and 0.25 m in plant spacing. Resistant line

Qi319 and susceptible line Y478 served as phenotyping

controls, respectively.
Fungal inoculation and disease
symptoms evaluation

Pythium aristosporum strain T2 was preserved and propagated

in our laboratory and cultured on fresh potato dextrose agar (PDA)

plates (ca. 20 ml per plate) at 25°C in the darkness for 5–7 days. The

inoculum was achieved by homogenization of five plates of flourish

hyphal mats (approximately 125 ml) with kitchen blender,
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adjusting to a final volume of 200 ml with double-deionized sterile

water (ddH2O).

Artificial inoculation of maize seedling roots
Three to four leaf-stage maize seedlings were transferred into

250 ml of 1/2 MS media (Sigma, Saint Louis, MO, USA) poured in a

24 × 24-cm culture dish (BioSharp Life Sci, Beijing, China). Maize

roots were placed on the surface of the medium before the infection.

Then, the root tips were inoculated with 20 ml of the freshly

prepared inoculum, and mock-inoculated maize roots treated

with PDA plug served as the control. The root systems were

covered with a sheet of germination paper wetted with liquid 1/2

MS media and a piece of aluminum foil to maintain moisture and

avoid light exposure and contamination from other potential

organisms. Finally, the culture dish was covered with a zip lock

bag (BioSharp) and transferred into the growth cabinet for another

48 h at 25/20°C (day/night).

Roots of the inoculated seedlings were scored at the disease

regions at 24 hours post inoculation (hpi) or 48 hpi with a rating

grade of 1–5 as previously described (Ye et al., 2019).

Artificial infection of maize stalks
Maize plants at the flowering stage or fifth-leaf stage (for target

gene-silenced seedlings) were used for stalk inoculation based on a

previously described protocol (Zhang et al., 2016; Cao et al., 2021)

with modification. Maize plants were inoculated by punching a hole

in the stem at the second or third internode above the soil line,

followed by injection of 1 ml (50 ml for seedlings) of freshly prepared
P. aristosporum inoculum. The wounds were sealed with Vaseline

after inoculation. Then, the fields or the planting pots were fully

irrigated to mimic growth condition favoring fungal growth and

stalk rot disease development.

For the evaluation of stalk rot symptoms, 48 h (seedlings) or 40

days (adult plant) after inoculation, the inoculated internodes of the

individual maize plants were split and symptoms were observed

with scores of 0, 1, 3, 5, 7, and 9 according to a previously described

classification standard (Duan et al., 2022) with adjustment. Scale 0,

no detectable spread of the pathogen from inoculation site; scale 1,

1%–25% of inoculated internode is symptomatic; scale 3, 26%–50%

of inoculated internode is symptomatic; scale 5, 51%–75% of

inoculated internode is symptomatic; scale 7, 76%–100% of

inoculated internode is symptomatic; scale 9, 100% of inoculated

internode is symptomatic and the necrotic lesion spread to adjacent

internodes (Figure 1A).

Two parameters were used to evaluate the symptoms of roots or

stalks: the first one was SRSA (stalk rot score on average) =  on
1SRS

/n; the second one was [Disease severity index (%)] (DSI) = ∑ (grade

× number of plants in grade) × 100/(maximum grade × total

number of plants).
Statistical analysis of phenotypic data

Normal distribution analysis and correlation analysis of

phenotypic data were calculated by SPSS 20 statistical software
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(IBM Corp., Armonk, NY). QTL IciMapping software (Institute of

Crop Science, Chinese Academy of Agricultural Sciences, Beijing,

China) was used for variance analysis, best linear unbiased

prediction of combined phenotype data, and the evaluation of

broad-sense heritability (H2) (Li et al., 2008).
Genotyping, population structure, kinship,
and GWAS

Leaves of the seedling were collected and flash frozen in liquid

nitrogen. A modified CTAB procedure was followed for DNA

extraction in this study (Healey et al., 2014), and the DNA

quality and concentration were verified by 1% agarose gel-

electrophoresis and spectrophotometer before sequencing. The

high-quality DNA samples were used to construct sequencing

libraries as described in the previous study (Jia et al., 2019). All

inbred lines were genotyped using GBS. Sequencing was completed

using Illumina HiSeq 4000 (Illumina Inc., San Diego, CA, United

States). After data filtering, the obtained high-quality sequencing

data were aligned to the B73 reference genome (RefGen_V4). The

SNPs were identified using SAMtools (Li et al., 2009). Markers

with minor allele frequencies (MAF) less than 5%, missing rates

greater than 20%, and heterozygous rates more than 10% were

removed. Finally, the ANNOVAR software (https://www.open

bioinformatics.org/annovar/) (Wang et al., 2010) was employed to

annotate the identified SNPs.

The principal component analysis (PCA) was used to evaluate

the genetic structure using the software genome-wide complex trait

analysis (GCTA) (Yang et al., 2011).

GWAS is an effective approach for analyzing the genetic basis of

complex traits. In this study, we used the Blink, FarmCPU, GLM,

MLM, MLMM, and SUPER models implemented in GAPIT3 R

package (Wang and Zhang, 2021). In addition, p< 10−5 was used to

declare significant associations based on a previous study with

optimization (Li et al., 2019), and FDR<0.05 was used to identify

significant associations. Potential candidate SNPs were selected by

the significance of the association. In maize inbred lines, LD decay

may be slower and linkage blocks may extend more than 100 kb

based on a previous study, in which GWAS-identified genes were

identified based on the B73 genome sequence (Ching et al., 2002).

The 100-kb regions flanking the left and right sides of each

significant SNP were defined as QTL in this study. The genes

within this window size were identified in MaizeGDB and UniProt

according to the positions of the closest flanking significant SNPs or

supporting intervals.
Physiological and biochemical
characteristics measurement

To assay the physiological and biochemical characteristics

related to plant defense reaction post fungal infection, the

roots and leaves of the seedlings were harvested at different

time points post inoculation. The physiological and biochemical
frontiersin.org
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characteristics, including peroxidase (POD) activity (U/g),

catalase (CAT) activity (U/g), and superoxide dismutase (SOD)

activity (U/g), were measured with the assay kits of Comin

Biotechnology Co., Ltd (Suzhou, China) following the

manufacturer’s protocols.

H2O2 production in plants was spectrophotometrically

measured using xylenol orange assay (Bindschedler et al.,

2001) with the modified protocol described by Hwang and

Hwang (2010)
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Quantitative real-time fluorescence PCR

Total RNA was isolated from different samples using TRIzol

reagent (Invitrogen, Carlsbad CA, United States) and then treated

with RNase-free DNase I (TaKaRa, Dalian, China). The first-strand

cDNA was synthesized using 2.0 mg of total RNA per 20 ml reaction
and an oligo (dT) primer. Tenfold diluted cDNA, a set of gene-

specific primers (Supplementary Table S1), and TB Green® Premix
B C

D

A

FIGURE 1

Phenotypic descriptions and evaluation of maize Pythium stalk rot resistance. (A) Schematic diagram of the classification of different scales of stalk
rot symptoms. (B) The phenotypic characteristics of resistant (R), moderately resistant (MR), susceptible (S), and highly susceptible (HS) inbred lines.
Qi319 and Ye478 served as resistant and susceptible control. (C) Histogram statistics of the number of inbred lines with different resistance levels in
two environments, Xinxiang and Dancheng. (D) Histogram of phenotypic distribution of stalk rot in Xinxiang and Dancheng. The green curve
indicates the standard normal curve and the red one indicates the density curve fitted according to the phenotypic distribution.
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Ex Taq™ II mix (TaKaRa, Dalian, China) were mixed for qRT-PCR

to determine the transcriptional levels of the maize genes on the

CFX96™ real-time PCR detection system (Bio-Rad, Hercules, CA,

United States). The expression level of GAPDH mRNA was

determined and used as an internal control. The relative

expression level of each gene was calculated using the 2–DDCt

method (Livak and Schmittgen, 2001). Differences between the

treatments were then analyzed using Student’s t-tests. All

experiments were carried out at least three times.
Virus-induced gene silencing

An improved brome mosaic virus (BMV)-derived VIGS vector

(Ding et al., 2018) was used to knock down the target genes. A DNA

fragment of 253 bp, representing the Zm00001d051313 gene, was

amplified using specific primer pairs (Supplementary Table S1) to

construct the VIGS vector. To evaluate the genetic stability of

foreign inserts in the VIGS vector during RNA silencing in

plants, the folding structure formed by the full-length BMV

RNA3 sequence in pF3-13m of pBMV-CP5 vector or with gene

fragment inserts were predicted using a deep learning-based RNA

secondary structure prediction tool MXFold2 (Sato et al., 2021;

http://www.dna.bio.keio.ac.jp/mxfold2/). Only the vector

harboring foreign gene fragment inserts without changing the

stability of BMV RNA3 was chosen for subsequent analysis

(Supplementary Figure S1). The resulting constructs BMV-

d051313 and the control BMV-GFP were then transformed into

the Agrobacterium tumefaciens strain C58C1. The Nicotina

benthamiana leaves were infiltrated with A. tumefaciens cultures

and collected for BMV virion preparation, as described previously

(Zhu et al., 2014).

The third leaves of the three-leaf-stage Va35 plants were rub-

inoculated with approximately 20 mg of partially purified BMV

virion. More than 20 seedlings were used for each treatment, and

the inoculated plants were grown inside a growth chamber at 18/20°

C (day/night) for 7–10 days before being challenged with P.

aristosporum. Systemically infected maize leaves (or equivalent

maize leaves of mock-inoculated plants) from BMV-d051313 or

BMV-GFP inoculated plants were harvested from individual plants

at 7 and 10 days post inoculation (dpi) and subjected to qRT-PCR

to evaluate the efficiency of gene silencing.
Results

Phenotype descriptions and evaluation of
the resistance to maize stalk rot

To rapidly screen and evaluate the resistance of maize plants to

stalk rot, we planted 295 maize inbred lines collected in this study in

two environments for artificial inoculation. The inoculated plant

stalks were then scored for symptom development in the diseased

region using rating scales of 0, 1, 3, 5, 7, and 9 (Figure 1A). The data

indicated that none of the tested lines were fully immune to P.

aristosporum. Figure 1B shows the phenotypic characteristics of
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inbred lines PHT22, 6103, 4441, and A379, representing resistant,

moderately resistant, susceptible, and highly susceptible lines,

respectively. Additionally, symptomatic characteristics of Qi319

and Ye478, which served as resistant and susceptible control lines,

were also displayed. Although there were variations in the

phenotypic identification of resistance to P. aristosporum among

the 295 inbred lines in the two experimental environments, the

overall trend remained consistent. Furthermore, we observed

variations in performance between the inbred lines from China

and United States (Figure 1C).

In Xinxiang and Dancheng, a total of 42 (14.24%) and 141

(47.8%) accessions, respectively, showed moderate resistance,

resistance, or high resistance to stalk rot. In Xinxiang, 253

(85.76%) inbred lines were susceptible and highly susceptible, and

52 (17.63%) were highly susceptible. However, in Dancheng, these

percentages were 154 (52.2%) and 9 (3.05%), respectively

(Supplementary Table S2). Based on these results, we speculated

that the growing environment in Xinxiang is more conducive to the

survival and spread of stalk rot than that in Dancheng.

To determine the resistance level in 295 maize inbred lines, we

combined DSI values with disease resistance scores and plotted

histograms of phenotypic traits by calculating phenotypic disease

resistance data from both locations. The skewness and kurtosis of

the phenotypic distribution plots for both environments indicated a

normal distribution for the phenotypic data, and the combination

environment DSI (%) ranged from 16.67% to 100%, suggesting the

abundant phenotypic variation in this panel. In a single

environment, the broad-sense heritability of Xinxiang was the

highest (0.86), followed by Dancheng (0.84), and the combination

of both had the lowest (0.68). Regarding phenotype traits, the

heritability of a combination environment was lower than that of

a single environment. The experiment revealed significant

correlations (p< 0.01) among the environment (E), genotype

variation (G), and G*E (genotype-by-environment interaction),

suggesting that resistance traits to stalk rot are controlled by

multiple genes and can be localized for further analysis by GWAS

(Figure 1D; Supplementary Table S3).
Genotype by sequencing and analysis of
population structure

In this study, we obtained a total of 201.18 Gb of data from 295

maize inbred lines using GBS, with an average of 0.68197 Gb per

sample. The sequencing quality was high, with Q20 ≥ 91.16% and

Q30 ≥ 86.22%. The population showed an average alignment rate of

98.88%, and an average genome sequencing depth of 12.07×. From

the sequencing data, we identified a total of 4,138,215 SNPs in the

295 inbred maize lines. Finally, we obtained a total of 217,933 SNPs

for subsequent GWAS analysis after filtering SNPs with MAF > 0.05

and a missing rate< 0.20, as reported in previous studies (Jia et al.,

2020). Among these SNPs, most (160,874) were located in the

intergenic region, 18,553 in the intronic and non-coding regions,

whereas 3,221 synonymous SNPs, 3,801 nonsynonymous SNPs, 150

stop-gain, and 21 stop-loss mutations were found in the exonic

regions (Supplementary Table S4).
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We performed PCA based on the genotype data of 295 inbred

lines. The results of PCA showed that the population could be

divided into three subgroups, similar to the results of a previous

study (Jia et al., 2020) (Supplementary Figure S2). Although the

same analysis tool was used, the population structure in this study

differed from two other reports, where more representative

germplasms were collected for population composition analysis

(Wang et al., 2020; Li et al., 2022).
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Significant loci in association mapping

To minimize population structure-related false positives, we

employed six models (Blink, FarmCPU, GLM, MLM, MLMM, and

SUPER models) for GWAS analysis. Figures 2 and 3 show the

Manhattan chart and Quantile–Quantile plot (Q–Q plot) of GWAS

analysis at two locations, Xinxiang and Dancheng. After several

tests, setting -log10 (P) > 5 as the screening threshold for the best
B

C

D

E

F

A

FIGURE 2

Manhattan and Quantile–Quantile plots of SNPs significantly associated with stalk rot resistance using different models in Xinxiang. (A) Bayesian-
information and Linkage-disequilibrium Iteratively Nested Keyway (Blink). (B) Fixed and random model Circulating Probability Unification (FarmCPU).
(C) General Linear Model (GLM). (D) Mixed Linear Model (MLM). (E) Multiple Locus Mixed linear Model (MLMM). (F) Settlement of MLM Under
Progressively Exclusive Relationship (SUPER). Different colors in the Manhattan plots represent different chromosomes in maize.
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significantly associated SNPs, we identified a total of 39 significantly

associated SNPs in two environments using the six models

(Supplementary Table S5). Among them, 15 SNPs were

significantly associated with stalk rot at the experimental site in

Xinxiang, with the highest number of significant SNPs (six SNPs)

found on chromosome 4. In contrast, we detected 24 significant

SNPs in Dancheng, with the highest number (9 SNPs) on

chromosome 6.
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Among the 39 significantly associated SNPs, the SUPER model

identified the most significant SNPs (28), followed by the GLM

model (17), then MLMM, MLM, Blink, and FarmCPU with eight,

five, two, and two SNPs, respectively (Figure 4). Interestingly, we

found that only one SNP (S4_153228905) was jointly detected by

Blink (p = 9.67E-06), FarmCPU (p = 9.67E-06), GLM (p = 3.61E-

06), MLM (p = 3.36E-06), MLMM (p = 1.42E-06), and SUPER (p =

1.60E-06) models. Additionally, we detected another SNP
B

C

D

E

F

A

FIGURE 3

Manhattan and Quantile–Quantile plots of SNPs significantly associated with stalk rot resistance using different models in Dancheng. (A) Blink. (B)
FarmCPU. (C) GLM. (D) MLM. (E) MLMM. (F) SUPER. Different colors in the Manhattan plots represent different chromosomes in maize.
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(S6_121809944) under the remaining five models, except

the SUPER.
Candidate genes analysis

Subsequently, we screened candidate genes within a 200-kb

region encompassing the significantly associated SNPs (100 kb

upstream and 100 kb downstream). We performed functional

annotation of the candidate genes using the UniProt database

(Supplementary Table S6). The results showed that 69 genes were

associated with 39 significantly associated SNPs. Besides the
Frontiers in Plant Science 08
uncharacterized protein, the GWAS predicted genes encoding

LRR-RLKs (leucine-rich repeat receptor-like kinase), L-type

LecRLKs (lectin receptor-like kinase), PR (pathogenesis-related)

proteins, hormone-responsive proteins, signal transduction

elements, structural components of plant cell walls (membranes),

transcriptional factors, ubiquitin ligase family proteins, secondary

metabolites associated with plant defense regulators, and others

(Supplementary Table S6). Among these, three genes

(Zm00001d051313, Zm00001d051314, and Zm00001d051315)

associated with S4_153228905 were jointly detected by six models

and the MAF value is 0.095 (Supplementary Table S5).

Additionally, the genes Zm00001d037332 and Zm00001d037333
B

A

FIGURE 4

Statistical analysis of maize stalk rot resistance significantly associated SNPs identified by different models. (A) Venn plots of significant SNPs for
Pythium stalk rot resistance identified by six methods. (B) Statistics of the number of significant SNPs using six different models (P > 10-5).
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were jointly detected by the five models and were related to

S6_121809944. Because of the lack of functional annotation of

Zm00001d051315 in the database, it was excluded from the

subsequent qRT-PCR experiments. To verify their expression

levels, we performed qRT-PCR for the remaining four candidate

genes in Ye478 and Qi319 seedlings. The results showed similar

expression patterns of the four candidate genes in the resistant

inbred line Qi319, exhibiting significantly higher expression

abundance at different time points compared to the mock group.

Conversely, in the susceptible line Ye478, we observed no

s ign ificant d i ff e r ences or even oppos i t e t r ends for

Zm00001d037332 and Zm00001d037333 in the expression profiles

(Supplementary Figure S3).

Based on the above-mentioned results, we finally selected

S4_153228905-related candidate genes identified by all six models

simultaneously for subsequent validation experiments. The candidate

genes Zm00001d051313 and Zm00001d051314 were annotated as

“leucine-rich repeat (LRR) family protein” and “putative receptor-like

protein kinase” in the functional database, respectively. Both genes

were potentially associated with plant response to pathogenic

microbe infestation. The LRR family encodes LRR-RLKs that were

directly related to disease resistance in various crops (Dievart et al.,

2020; Si et al., 2021; Chen et al., 2023). The LRR-RLKs are key

membrane receptor proteins in plants, which play critical roles in

signal recognition, intercellular communication, and cellular

responses to environment stress. Moreover, subcellular localization

prediction for Zm00001d051313 indicated its presence in the cell

membrane. Finally, we predicted the signal peptide using the SignalP-

5.0 Server (https://services.healthtech.dtu.dk/service.php?SignalP-

5.0) and found that the Signal peptide (Sec/SPI) value of this

protein is 0.9847. This indicates that the signal peptide is very

likely to be present with a cleavage site at position 26–27 and a

probability of 80.74% (Supplementary Figure S4). Therefore, we

determined Zm00001d051313 as the final candidate gene for

further investigation of its function.
Transient silencing of the LRR-RLK gene
facilitates Pythium aristosporum infection
in maize plants

Among the differentially expressed candidate genes identified

by GWAS, Zm00001d051313 (d051313) encodes a potential LRR-

RLK protein, which is a major class of PRRs modulating plant

defense mechanism positively or negatively depending on the

interaction (DeFalco and Zipfel, 2021). To test the potential roles

of Zm00001d051313 in regulating maize defense response against

fungal infection, we examined the development of typical maize

stalk rot symptoms in the roots and stalks of Zm00001d051313

transient-silenced plants. We used an improved BMV-based gene

silencing vector (Ding et al., 2018) to knock down Zm00001d051313

expression through VIGS. Here, we introduced the VIGS vector

BMV-d051313, harboring a Zm00001d051313 gene-specific insert

and control plasmid BMV-GFP into Nicotina benthamiana leaves

for BMV virion proliferation. Then, we systemically infected the
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maize cv. Va35 seedlings with the partially purified BMV virion to

transiently silence Zm00001d051313 as previously described (Cao

et al., 2012; Zhu et al., 2014). The qRT-PCR data demonstrated

successful silencing of Zm00001d051313, with its expression in

BMV-d051313 inoculated plants being ~21.5%–33% of that in the

control plants (Figure 5A).

At 7 dpi, we challenged the root tips of BMV-GFP- and BMV-

d051313-pre-inoculated maize Va35 seedlings with P. aristosporum.

The Zm00001d051313-silenced roots exhibited more severe

symptoms compared to the control plants at 48 hpi (Figure 5B), as

confirmed by the SRSA and DSI. Silencing Zm00001d051313 in Va35

seedlings through VIGS led to a ~1.45-fold change of SRSA and a

32.30% increase in DSI compared to the controls (Figure 5C). A

parallel test also evaluated the effect of Zm00001d051313 on the P.

aristosporum infection inside maize stalks. After artificially

challenging the stalks of the Zm00001d051313-silenced plants with

P. aristosporum at 10 dpi, we split the internodes of the inoculated

stalks to observe the stalk symptoms at 48 hpi. Similarly to the disease

progression observed in the cv. Va35 seedling roots, transient

silencing of Zm00001d051313 also facilitated the infection of P.

aristosporum inside the maize stalks (Figures 5D, E).

The enhanced susceptibility of Zm00001d051313-silenced

maize seedlings to fungal infection prompted us to assess

whether silencing affects the expression of maize defense-related

genes. We analyzed the expression of pathogenesis-related (PR)

genes like ZmPR3, ZmPR4, ZmPR10, and ZmPR10 via qRT-PCR.

The data showed a ~61%–84% reduction in the expression levels of

ZmPR3, ZmPR4, ZmPR5, and ZmPR10 in the Zm00001d051313-

silenced seedlings compared to the BMV-GFP controls (Figure 5F).

To determine the role of reactive oxygen species (ROS) in

Zm00001d051313-mediated Pythium stalk rot resistance, we

investigated H2O2 accumulation differences in Zm00001d051313-

silenced and control maize seedlings post P. aristosporum infection.

Generally, Zm00001d051313-silenced seedlings showed lower

H2O2 levels upon P. aristosporum infection, while control

seedlings showed higher activities of antioxidant enzymes such as

CAT (catalase), POD (peroxidase), and SOD (superoxide

dismutase) (Figure 5G).
Discussion

Identification of maize stalk rot resistance

Identification of disease resistance phenotypes is essential for

selecting resistant maize varieties. The current methods for

identifying maize stalk rot resistance can be divided into two main

types: natural disease identification in the field and artificial

inoculation identification. Compared to manual inoculation

identification, natural pathogen identification methods in the field

are associated with uncertainties, including the inability to guarantee

consistent pathogen infection across batches of material, the possible

existence of different species of pathogens in different environments,

and the resulting influence of other potential pathogens on the

phenotype (Li et al., 2001; Jiang et al., 2020). To solve these
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problems, we established and improved the stalk base drilling

inoculation method for accurate identification of maize germplasm

resistance to stalk rot (Duan et al., 2022). This method involves

injecting a quantitative inoculum directly into the basal stalk of

maize, ensuring consistent and adequate pathogen inoculation for

each plant material. During the survey, the stalk of each plant is

dissected to determine the area of disease incidence and grade

according to the spread of necrotic lesion. This approach improves

the resistance evaluation accuracy, prevents contamination from

other potential organisms in the soil, and yields reliable results for
Frontiers in Plant Science 10
resistance identification and evaluation of germplasm resources.

Importantly, this method effectively reduces the false-positive SNPs

due to different environments. Pythium stalk rot infection thrives in

extended periods of hot (>32°C), wet, and humid weather, with the

disease occurrence being particularly worse in fields with poor soil

(Freije and Wise, 2016). In late July and early August 2021, Xinxiang

experienced heavy rainfall-induced flooding, the highest ever figure

recorded since 1951. We speculated that the flooding and

accompanying high temperatures at the Xinxiang experimental

station might favor the aggressiveness of P. aristosporum, leading to
B C

D

E F

G

A

FIGURE 5

Transient silencing of LRR-RLK gene Zm00001d051313 facilitates Pythium aristosporum infection in maize plants. (A) Silencing efficiency
Zm00001d051313 in the BMV-d051313 inoculated seedlings was evaluated by measuring the transcript levels of Zm00001d051313 at 7 days post
inoculation (dpi) with BMV-d051313, and 10 dpi, respectively. (B) At 7 dpi, the BMV-GFP and BMV-d051313 pre-inoculated cv. Va35 seedlings were
challenged with P. aristosporum, and the inoculated seedling roots were recorded for symptoms in the diseased region at 48 h post inoculation
(hpi). (C) The measurement of stalk rot score on average (SRSA) and stalk rot disease severity index (DSI) of P. aristosporum-inoculated maize
seedling roots. (D) At 10 dpi, the stalks of BMV-GFP and BMV-d051313 pre-inoculated cv. Va35 plants used for parallel test were challenged with P.
aristosporum, and the symptoms inside the stalks were recorded in the split internodes at 72 hpi. (E) The measurement of stalk rot score on average
(SRSA) and stalk rot disease severity index (DSI) for P. aristosporum-inoculated maize stalks. (F) The expression profiles of pathogenesis-related (PR)
genes, ZmPR3, ZmPR4, ZmPR5, and ZmPR10 in the Zm00001d051313-silenced plants. (G) Quantification of CAT (catalase), H2O2, POD (peroxidase),
and SOD (superoxide dismutase) levels in maize Va35 leaves of BMV-GFP controls and Zm00001d051313 silencing plants at 24 h and 48 h after
inoculation (hai) with P. aristosporum. Scale bars = 4 cm (B) and 2 cm (D). Values are shown as the means ± SD. *P< 0.05, **P< 0.01, ***P< 0.001
(according to a paired Student’s t-test).
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higher incidences of PASR in maize accessions planted in Xinxiang

compared to those planted in Dancheng, despite using the same

artificial inoculation protocols and grading standard in both

experimental fields.
Identification of SNPs significantly
associated with stalk rot by GWAS

In maize disease resistance studies, GWAS has been successfully

applied to identify QTL or genomic regions associated with

resistance to vital maize diseases, including Fusarium ear rot (Yao

et al., 2020), common rust (Olukolu et al., 2016), gray leaf spot

(Kuki et al., 2018), northern corn leaf blight (Ding et al., 2015),

southern corn leaf blight (Kump et al., 2011), rough dwarf (Chen

et al., 2015), maize dwarf mosaic disease caused by sugarcane

mosaic virus (Tao et al., 2013), and Fusarium stalk rot (Liu et al.,

2021; Rashid et al., 2022). However, literature on application of

GWAS in Pythium stalk rot disease resistance identification is

currently unavailable.

We conducted a GWAS with 295 inbred maize lines to identify

and validate genomic regions associated with PASR resistance. The

panel was screened for PASR resistance in two environments using

artificial inoculation methodology. To minimize false associations,

we used six models (Blink, FarmCPU, GLM, MLM, MLMM, and

SUPER) to identify significant SNPs associated with stalk rot

resistance. We identified four SNPs (S4_ 153228905, S4_

153228676, S4_ 153270388, and S4_ 153270407) associated with

maize resistance to P. aristosporum in bin 4.06, consistent with the

location range of stalk rot resistance genes Rpi1 and RpiX178-2

against P. inflatum (Yang et al., 2005; Duan et al., 2019). A previous

study indicated that a key genomic region at 168 Mb on

chromosome 6 was associated with Fusarium stalk rot resistance

using GWAS and haplotype regression (Rashid et al., 2022). In this

study, we identified a significantly associated SNP (S6_121809944)

for PASR resistance in five models on chromosome 6 at 121 Mb.

These crucial genomic regions warrant further investigation as

potential candidate genes for controlling broad-spectrum

resistance for stalk rot, pending future validation.
Analysis of candidate gene
Zm00001d051313 associated with plant
disease resistance

In plants, plasma membrane-associated pattern recognition

receptors (PRRs) are deployed to sense conserved molecules

derived from microbes, called pattern-associated molecular

patterns (PAMPs), and molecules released by plant cells upon

pathogen invasion (Chisholm et al., 2006). The recognition

initiates a defense response known as pattern-triggered immunity

(PTI) (Bigeard et al., 2015), which encompasses various cellular

events like membrane ion flux changes, ROS and nitric oxide (NO)

bursts, deposition of defense-related metabolites, modification of

phytohormone concentrations, localized cell death, transcriptional

changes, and others (Dodds and Rathjen, 2010). Most PRRs are
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receptor kinases (RKs) (Zipfel, 2014). LRR-RKs, a large family of

several hundred proteins in most plant species, function as PRRs

localized in the cell membrane, with the LRR domain in the

extracellular space and the kinase domain located intracellularly

(Bigeard et al., 2015). Maize plants possess LRR-RK genes in 16

clades (Man et al., 2020). Recently, an LRR-RK gene was linked to

quantitative susceptibility to maize southern leaf blight (Chen et al.,

2023); however, for the rest of the maize LRR-RK genes, their

involvement in disease resistance is elusive. In this study, the

functional annotation of Zm00001d051313 revealed it as an

encoded LRR family protein and localized to the cell membrane

with a signal peptide structure (Supplementary Figure S4).

Additionally, we found that silencing the expression of

Zm00001d051313 effectively reduced maize resistance to stalk rot

(Figures 5B, C) . Our recent findings indicated that

Zm00001d051313 was differentially expressed post infection with

F. verticillioides, one of the most aggressive fungal pathogens

causing maize stalk rot (Zhang et al., 2023). Jasmonic acid plays

an important role in regulating biotic and abiotic stress responses,

including plant responses to herbivorous arthropods, pathogenic

bacteria, UV light, and ozone. ZmJAZ2 (Zm00001d027901), one of

the important regulators of jasmonate signaling, was induced

significantly in response to Puccinia polysora Underw (Sun et al.,

2021; Wang et al., 2022). Analysis of ChIP-seq data revealed the

binding of ZmJAZ2 (ZIM16) to the promoter region of

Zm00001d051313 (Tu et a l . , 2020) , sugges t ing that

Zm00001d051313 may regulate maize’s antifungal defense

response through the JAZ2-mediated jasmonate pathway.

In summary , we success fu l ly ident ified the gene

Zm00001d051313 that is located on chromosome 4 and

significantly associated with stalk rot resistance by GWAS

analysis. We used VIGS to knock down the expression of

Zm00001d051313 in maize, verifying its function as a stalk rot

tolerance gene. Our results demonstrated that Zm00001d051313 is

an LRR-RK gene that positively regulates stalk rot resistance in

maize plants. Although it has important reference value for

breeding resistant varieties in the future, the molecular

mechanism by which this happens remains obscure; thus, the

identification of the direct interaction of Zm00001d051313 with

its dimerization partners will help elucidate the underlying

mechanism of its function.
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