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and Ecological Restoration, Guizhou University, Guiyang, China
Introduction: The variation of organic carbon content in spoil heaps is closely

related to improving soil structure, maintaining soil fertility, and regulating soil

carbon cycling balance. Analyzing the soil organic carbon content and related

driving factors during the natural vegetation restoration process of spoil heaps is

of great significance for promoting the accumulation of soil organic carbon in

the spoil heaps.

Methods: we selected spoil heaps with the same number of years of restoration

to research the variations in soil organic carbon components under different

vegetation types (grassland: GL, shrubland: SL, secondary forest: SF) and

compared the results with those on bare land (BL).

Results: Our results showed that vegetation type and soil depth significantly

affect the content of soil organic carbon components. There was no difference in

soil organic carbon components between SF and SL, but both were considerably

superior to GL and BL (p<0.05), and the particulate organic carbon (POC) and

light fraction organic carbon (LFOC) contents of SL were the highest. A significant

positive linear correlation existed between SOC and active organic carbon

components. Pearson’s correlation and redundancy analysis showed that the

available potassium (AK) and total nitrogen (TN) contents and gravel content (GC)

in the BL soil significantly impacted soil organic carbon. When vegetation is

present, TN, total phosphorus (TP), and Fine root biomass (FRB) significantly

affect soil organic carbon. Structural equationmodelling (SEM) shows that AK and

soil moisture content (SMC) directly affect the organic carbon composition

content of BL, When there is vegetation cover, fine root biomass (FRB) had the

largest total effect in the SEM. Soil bulk density (BD) has a negative impact on soil

organic carbon, especially in the presence of vegetation.

Conclusion: These findings suggest that vegetation restoration can significantly

increase soil organic carbon content, FRB, AK, and TN play important roles in
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enhancing soil organic carbon. Supplementation with nitrogen and potassium

should be considered in the bare land stage, and shrubs nitrogen-fixing functions

and well-developed roots are more beneficial for the accumulation of soil

organic carbon.
KEYWORDS

vegetation type, soil organic carbon composition, spoil heaps, soil physical and
chemical factors, fine root biomass
1 Introduction

The soil organic carbon (SOC) pool is one of the most

important carbon pools in terrestrial ecosystems (Ahirwal et al.,

2022), accounting for more than 50% of the total soil carbon

(Dinakaran et al., 2022). Changes in soil organic carbon not only

affect the nutrient supply of soils and vegetation and the carbon

balance between soils and the atmosphere but also have a large

impact on the Earth’s carbon cycle and global climate change (Lan,

2021; Liu et al., 2021). Furthermore, A higher SOC determines the

structure and functionality of ecosystems, provides optimal soil

conditions for plant growth, and promotes soil nutrient cycling

(Schulte et al., 2014; Yang et al., 2020). It was found that vegetation

type has a significant effect on soil organic carbon, and different

vegetation types have different biomass accumulation and

decomposition rates, which affect the input and output of soil

organic carbon (Aliia et al., 2023; Angst et al., 2016).Therefore,

knowledge of the composition and distribution of soil organic

carbon under different vegetation types is important for assessing

their local ecological impacts, such as mitigating climate change and

enhancing ecosystem services and soil quality, especially in the

context of the large number of spoil heaps (unnatural formation)

generated by human activities in recent years.

With rapid economic development, population growth, and

urban expansion, national and local government agencies have

increased the construction of significant projects such as

expressways, hydrological project, and airports to promote the

rapid development of the economy (Xu et al., 2015; Xu and Liu,

2021). At the same time, these developments have brought on

severe challenges for the surface environment (Hou et al., 2019).

Infrastructure construction results in the production of many spoil

heaps (Zhang et al., 2015). Data show that a total of 2.63×104 soil

and water conservation schemes were approved in China for

production and construction from 2006 to 2015, and the

cumulative disturbed surface area reached 15.64×104 km2, among

which the amount of discarded soil and slag was as high as

484.51×108 m3 (Gao et al., 2018). The complex material

composition, loose soil structure, poor cohesion, and poor water

and fertilizer retention ability of construction spoil heaps readily

lead to severe soil and water loss during rainfall events (Kaufman,

2000). Spoil heaps strongly disturb the original environment and
02
restructure soils (Ahirwal and Maiti, 2018). Relevant studies have

shown that when a soil layer is disturbed, the CO2 stored in soil

pores is released into the atmosphere, which further exacerbates

climate change (Zhang et al., 2019; Siegwart et al., 2022). Soil

organic carbon is segregated into active organic carbon, slow

organic carbon, and recalcitrant organic carbon fractions based

on the turnover rate of soil carbon, among which active organic

carbon includes particulate organic carbon (POC), easily oxidized

organic carbon (EOC), microbial biomass carbon (MBC), light

fraction organic carbon (LFOC) and soluble organic carbon

(DOC) (Liu et al., 2021). Although it only accounts for a small

amount of the total organic carbon, reactive organic carbon is an

energy source for soil microbial activity and a driver of soil nutrient

cycles, and it can directly participate in plant nutrient

transformation and supply (Yu et al., 2017; Yang et al., 2020) and

responds more rapidly to environmental changes than total organic

carbon (Zhao et al., 2015). This has significant implications for

accurately quantifying soil reactive organic carbon fractions to gain

a deeper understanding of the soil carbon cycle (Wang and Wang,

2011). Therefore, carrying out research on soil organic carbon in

construction spoil heaps can facilitate the management of the soil

carbon pool and reduce carbon emissions from spoil heaps.

Vegetation not only serves as the main means of slope

management and ecological restoration in construction spoil

heaps (Cerqueira et al., 2012) but is also an important way to

improve soil carbon sequestration (Maczkowiack et al., 2012; Xie

et al., 2021). Vegetation affects and changes the content of soil

carbon components through specific input and output processes

based on organic matter input (Janna et al., 2017), plant root

distribution (Angst et al., 2016), soil factors (Wang et al., 2023),

and other environmental factors (Luo et al., 2022; Yu et al., 2021).

The results showed that SOC accumulation was significantly

different among vegetation types. The soil organic carbon in the

grass-shrub mixed pattern increased by 85.1% compared to bare

land (Wang et al., 2015). Liu et al. (2015) found in their research on

the southwestern karst region that the organic carbon content in

soil increased from 29.10 g·kg−1 in grassland to 73.92 g·kg−1 in

native forests. Through a study of Ohio mine reclamation areas,

Shrestha and Lal (2011) found that grassland is more conducive to

the accumulation of carbon and nitrogen pools than forestland. In

addition, through a study of a karst area in Southwest China, Liu
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et al. (2019) found that the content of soil organic carbon in a

natural restoration model was significantly higher than that in an

artificial restoration model and in cultivated land. However, since

spoil heaps are organic structures with particular forms and

functions that are different from those of natural ecosystems,

their soil organic carbon distribution and cycling processes are

also different from those of other ecosystems. Most studies on soil

organic carbon and its active fraction have focused on piles such as

those in coal mine drainage sites (Anderson et al., 2008; Ahirwal

and Maiti, 2018) or have only considered a limited number of soil

parameters involving topsoil. However, the soil organic carbon

fraction is influenced by multiple factors, such as soil and

vegetation (Luo et al., 2022), and cannot be analyzed based on

individual factors. By these methods, it is impossible to distinguish

between factors that play direct and indirect roles in determining

the carbon fraction content. Therefore, it is necessary to investigate

the changes that take place in the content of soil organic carbon

fractions and related factors during the revegetation of spoil heaps.

In summary, current studies have confirmed the influence of

vegetation on soil organic carbon fractions in spoil heaps. However,

studies on the effect of vegetation restoration of spoil heaps on soil

organic carbon fractions are still scarce. Therefore, our objectives

were to (1) Understand the variation trend of soil organic carbon

(SOC) content under different vegetation types in the spoil heaps. (2)

Determine the key parameters that influence SOC during vegetation

restoration process and explain how these parameters affect SOC. The

results of this study can also help screen vegetation types suitable for

the slope management of spoil heaps from the perspective of carbon

sequestration capacity and improve our understanding of soil carbon

sequestration during the vegetation restoration of spoil heaps.
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2 Materials and methods

2.1 Study area description

The study area is located in Baiyun District, Guiyang City,

Guizhou Province, Southwest China (106°35′E, 26°34′N) (Figure 1),
which is a low-medium hilly area with shallow-cut denudation-type

karst topography in the middle of the Guizhou Plateau. The annual

average temperature is 15.3°C, the annual precipitation is 1085.5

mm, the annual sunshine duration is 1062.0 h, and the annual frost-

free period is 270 days. The area has a subtropical humid monsoon

climate, and the vegetation type is mainly subtropical evergreen

broad-leaved forest. Due to the influence of human activities, the

original vegetation of the spoil heaps area was destroyed. Soils were

yellow soil developed from Quaternary red clay, which are classified

as Luvisols according to World Reference Base for Soil Resources

(Marquez et al., 1975). In addition, 103 construction spoil heaps

generated by highway construction in Guizhou Province were

investigated, and 35 of them were found to be slope-toppling

types. The slope of these types of piles is mostly 30°~45°, and the

proportion of soil and rock is between 25% and 40%. The elevation

of the sample plot in this study is between 1252.06 and 1282.49 m,

the slope is approximately 33°, and the gravel content is between

24.41% and 38.43%. We tried to ensure that the piles were

essentially similar in slope, slope length, altitude, and other

ecological factors to reduce influences from climate, topography,

and other factors. The four most common vegetation restoration

stages (BL, GL, SL, and SF) were selected for studying the

construction spoil heaps. Specific information on the samples is

listed in Table 1.
FIGURE 1

Geographical location map of the study area. BL represents bare land, GL represents grassland, SL represents shrubland and SF represents secondary forest.
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2.2 Experimental design and soil sampling

In September 2019, by using Google Earth historical image map,

we preliminarily determined the geographical location and area of

spoil heaps, and then determined the specific accumulation year of

each spoil heap by field investigation, and selected four vegetation

types in the same area, including bare land (BL), grassland (GL),

shrubland (SL), and secondary forest (SF). Five plots (20 ×20 m)

with representative structure and vegetation were selected for BL,

GL, and SL. In comparison, three plots were established for SF due

to the short recovery time of the pile and the limited number of

plots that met the requirements. In order to reduce the impact of

habitat heterogeneity on soil organic carbon components, the

distance between sampling points should not be less than 100

meters. Five sampling points were selected from the diagonal of

each plot. After litter was removed from the soil surface, a soil

sampler (5 cm diameter) was used to sample the 0~10 cm (S), 10~20

cm (U1), 20~40 cm (U2), 40~60 cm (U3), and 60–80 cm (U4)

layers. A total of 5 soil layers were collected, and a total of 450 soil

samples were taken. In addition, during the soil sampling in each

layer, soil was collected using a standard ring knife (200 cm3) for the

measurement of soil bulk density and soil moisture content. This

process was repeated three times per layer. During soil sampling,
Frontiers in Plant Science 04
after debris such as stones and stumps were removed, each sample

was divided into two parts. A portion of the fresh soil was stored in a

refrigerator at 4°C after it was passed through a 2-mm sieve. The

other portion of soil was naturally air-dried, placed in a marked bag

after it was passed through a 0.15-mm sieve, and stored in an

undisturbed and ventilated place (storage time was no more than

one year) for the determination of soil properties.

Additionally, five points were randomly selected in every

sample plot, and fine root samples were collected from the 0~10

cm, 10~20 cm, 20-40 cm, 40-60 cm, and 60-80 cm layers using a soil

drill with an inner diameter of 7 cm. The collected samples were

separately packaged and labeled and taken to the laboratory.
2.3 Soil analysis methods

The soil bulk density (BD) was sampled using a standard ring knife

(200 cm3), and then the soil inside the ring knife was dried to constant

weight at a high temperature of 105 °C (for at least 24 hours) and

weighed, and the soil bulk density and soil moisture content (SMC) was

calculated. The gravel content (GC)(>2 mm) was determined by sieve

method (Zhan et al., 2020). The soil pH value was measured using the

electrode method (soil water ratio 2.5:1) (Burgos et al., 2023). The total
TABLE 1 Basic information of study plots.

Study
sites

BL GL SL SF

Coordinates
106°36′0.77″E
26°34′29.89″N

106°36′0.30″E
26°34′37.18″N

106°35′59.38″E
26°34′43.95″N

106°35′47.29″E
26°34′58.15″N

Average
altitude (m)

1297.01 1297.01 1294.1 1282.49

Vegetation
cover (%)

2 50-85 55-70 22-40

Average
gravel
content (%)

38.43 37.53 33.72 31.41

Average
slope (°)

33 32 33 34.5

Slope aspect NS NS NS NS

Average
slope length
(m)

14.8 14.8 15 22

Soil type yellow soil yellow soil yellow soil yellow soil

Vegetation
restoration
mode

natural recovery natural recovery natural recovery natural recovery

Vegetation
features

Basically no vegetation growth

Oxalis corniculate, Artemisia
lavandulaefolia, Lolium perenne
and Setaria viridis are dominant
species

Coriaria nepalensis, Sophora
flavescens, Rubus reflexus Ker are
dominant species, mixed with
some herbs

Robinia pseudoacacia L. and Populus L.
are the dominant species, while Platanus
acerifolia and Zelkova serrata (Thunb.)
Makino are partially distributed.

Disturbance
history

The accumulation body was formed in 2010 and recovered naturally
BL, bare land; GL, grassland; SL, shrubland; SF, secondary forest.
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nitrogen (TN) content in soil was measured using the semi-micro

Kelvin flow injection method. The total phosphorus (TP) content in

soil was measured using NaOH melting molybdenum–antimony anti-

chromogenic UV spectrophotometry. The total potassium (TK)

content in the soil was determined using the NaOH melting atomic

absorption method. The content of soil alkali hydrolyzed nitrogen

(AN) was measured using the alkali hydrolyzed diffusion method. The

content of soil available phosphorus (AP) was determined by NaHCO3

extraction–molybdenum–antimony anti-chromogenic ultraviolet

spectrophotometry using 0.5 mol·L-1 NaHCO3 (Wu et al., 2018). The

content of soil available potassium (AK) was determined by NH4Ac

extraction atomic absorption spectrometry. Some indicator

determination steps refer to the Chemistry Analysis of Agricultural

Soil (Lu, 2000).

The root segments were immersed and rinsed in deionized water

in the laboratory to remove soil and impurities attached to the root

segments and the roots with diameter ≤ 2 mm (plant fine roots) were

carefully picked up. At the same time, dead and living fine roots were

distinguished according to the shape, epidermal color, elasticity and

bending angle of fine roots. The main morphological parameters,

such as root mean diameter, total length, total surface area, and total

volume mean diameter, were obtained use the software WINRHIZO

combined with EPSON Expression root analysis software (Paganová

and Jureková, 2014). The scanned roots were dried at 70°C to a

constant weight. The dry weight of fine roots was measured, and the

biomass of fine roots per unit area was calculated (FRB, g·m−2). The

following root parameters were determined: specific root length,

(SRL, m·g−1) = root length/root dry mass; specific surface area

(SSA, m2·g−1) = root surface area/root dry mass; root length

density (RLD, m·m−3) = root length/soil core volume.
2.4 Soil carbon composition determination

Soil organic carbon (SOC) was determined using the potassium

dichromate redox method (Bao, 2000).

For the determination of soil dissolved organic carbon (DOC),

and 12.5 g soil was obtained by weighing appropriate amount of air-

dried soil and passing through a 1 mm sieve. 50 mL K2SO4(0.5 mol/

L) solution was added for leaching, and the filtrate was filtered after

oscillating at 180 r/min on an oscillating machine for 30 min. The

organic carbon in the filtrate was determined as DOC by TOC-

VcpH organic carbon analyzer (Wang et al., 2019).

Soil particulate organic carbon (POC) was determined with

reference to Wang et al. (2012) by modifying the method described

by Cambardella and Elliott (1992). Firstly, an appropriate amount

of air dried soil was weighed and sieved through a 2mm sieve to

obtain 20.00 g of soil. 100 mL of sodium hexametaphosphate

solution (5g/L) was added, and the soil suspension was obtained

after shaking for 18 hours (90 rpm/min). The soil suspension was

sieved through a 0.053mm sieve and repeatedly rinsed with distilled

water. Then collect all the substances left in the sieve and bake at 60

°C for 48 hours to constant weight. Finally, the percentage of its

content in the soil was calculated.

Soil microbial biomass carbon (MBC) was determined by

chloroform fumigation-extraction method (Lin et al., 1999).Soil
Frontiers in Plant Science 05
microbial biomass carbon was calculated by the difference between

the fumigation sample and the control sample, MBC: Bc = Ec/Kec,

where Ec is the difference between the fumigation and unfumigated

soil, Kec is the conversion coefficient, and the value is 0.45.

Soil easily oxidized organic carbon (EOC) content was

determined using the method of Blair et al. (1995). According to

the volume ratio and concentration conversion relationship

between the sample and the potassium permanganate solution,

the content of easily oxidized organic carbon was calculated.

Soil light fraction organic carbon (LFOC) was determined by

the modified density fractionation method (Jia et al., 2017).
2.5 Statistical analysis

The Tukey−Kramer method was used to analyze significant

differences in soil carbon content and environmental factors under

different vegetation restoration types. Multivariate analysis of

variance (ANOVA) was used to analyze the effects of vegetation

type and soil depth on soil organic carbon fractions. Pearson’s

correlation analysis was used to analyze the correlation between soil

organic carbon components, soil physical and chemical

characterization, and fine root morphology. Partial correlation

analysis was used to explore the relationship between soil

physicochemical properties, vegetation roots, and soil organic

carbon components. Redundancy analysis (RDA) was used to

determine the relationship between soil physicochemical factors,

fine root morphology, and soil organic carbon components. The

forward screening method and Monte Carlo test were used to rank

environmental factors to visually show the degree of contribution of

explanatory variables to soil organic carbon components.

We used structural equation models (SEMs) to analyze the direct,

indirect, and total effects of soil factors and vegetation roots on soil

organic carbon composition. To increase degrees of freedom, we

performed a Pearson correlation analysis between all predicted values

in the model and removed indicators that weakly correlated with the

SOC variable. The fitness of the final model was assessed using the

model chi-squared test, root mean square error, and AIC. The SEM

analyses were conducted using AMOS 21.0 (Amos Development

Corporation, Chicago, IL, USA). RDA was performed using

CANOCO5.0, and graphing was performed using Origin 2021.
3 Results

3.1 Changes in soil organic carbon
components under different
vegetation types

During the vegetation restoration of spoil heaps, the SOC, DOC,

EOC, and MBC of GL, SL and SF were significantly different from

those of bare soil (p<0.05), but the difference in organic carbon

components between SL and SF was not significant (Figure 2). The

SOC content increased significantly from BL to SF (Figure 2A), with

mean values of 14.17 g·kg-1, 29.70 g·kg-1, 37.89 g·kg-1, and 44.03

g·kg-1, respectively. There were significant differences in EOC and
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POC among SL, SF, BL, and GL (p<0.05) (Figures 2B, E). The EOC

content of SF was five times that of BL, and the POC content of SL

was 1.9 times that of GL. Compared with BL, the DOC of SF

increased by 1.99 g·kg-1, and that of MBC increased by 200 mg·kg-1

(Figures 2C, D). The difference in the LFOC content among the

three vegetation types was not noticeable (Figure 2F), but that of SL

was the highest. The EOC content increased linearly with vegetation

restoration (R2 = 0.987 and p<0.01; Figure 2B), but the content of

each organic carbon component increased with the progress of

vegetation restoration in a logarithmic function (Figure 2).

The effect of soil depth on the content of various organic carbon

components is shown in Figure 3. The soil organic carbon

components showed apparent surface enrichment, and not all soil

layers in SF had the highest content. When the soil layer depth

exceeded that of the U2 (20~40 cm) layer, the MBC, DOC, POC, and

LFOC of SL were higher. Linear fitting between soil organic carbon

and its active components is shown in Figure 4. There was a

significant positive correlation between the SOC of different

vegetation types and DOC, MBC, LFOC, EOC, and POC (p<0.01).

Among them, the SOC content was significantly positively correlated

with that of DOC and POC (p<0.001). Two-way ANOVA showed
Frontiers in Plant Science 06
significant associations between soil depth, vegetation type, and

organic carbon components (EOC, DOC, MBC, POC, LFOC, and

SOC) in all measured samples (Table 2). In addition, the content of

each organic carbon component increased as a logarithmic function

of the progress of vegetation restoration (Figure 2).
3.2 Effects of vegetation types
on soil physicochemical factors and
root characteristics

3.2.1 Changes in soil physicochemical factors
under different vegetation types

Vegetation type significantly impacted soil factors, and the

changes in soil physical and chemical factors under different

vegetation types are shown in Figure 5. In general, BD decreased

with vegetation restoration (Figure 5A) and that of BL was

significantly higher than that of the other vegetation types

(p<0.05). SMC showed an upward trend with vegetation

restoration (R2 = 0.922, p<0.05; Figure 5B). The GC content was

significantly and negatively correlated with vegetation restoration
A B

D E F

C

FIGURE 2

Changes in soil organic carbon components under different vegetation types. SOC, soil organic carbon; POC, particulate organic carbon; EOC, easily
oxidized carbon; MBC, microbial biomass carbon; DOC, dissolved organic carbon; LFOC, light fraction organic carbon. The different letters on the
boxplots indicate significant differences between different vegetation types (p<0.05).
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(R2 = 0.990 and p<0.05; Figure 5C), and the GC content of SF

decreased by 24.37% compared with that of bare land. Soil TN, TP,

and AK all showed an increasing trend with vegetation restoration

(Figures 5D, E, F), and vegetation restoration had a significant effect

on all three factors (p<0.05). However, there was no difference

between the TN and TP of GL and SL; AK content was the highest

in GL, and pH was lowest in SF (Figure 5H).

From the perspective of soil thickness, the physical and

chemical indexes of the surface and deep soils showed relative

changes. Among the soil physical indicators, the GC content

decreased with increasing soil depth (Figure 6A), which may be

related to the pores in the spoil heaps. The surface soil moves

downward through the internal pores in the pile; as a result, the soil

content is higher at the bottom than on the surface. Both BD and

SMC increased with soil depth. The changes in soil TN, TP, and AK

were roughly the same as those in the physical indicators, and all of

these factors decreased significantly with increasing soil

depth (Figure 6B).

3.2.2 Root characteristics in different
vegetation types

Fine roots serve as the primary path for carbon to enter

underground ecosystems. The vertical distribution pattern of fine

roots largely determines the vertical distribution characteristics of

soil organic carbon. The fine root biomass (FRB) of different

vegetation types increased with the progress of vegetation

restoration (Figure 7A) (p<0.05), and the lowest FRB was found
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in GL (128.76 g·m-2), followed by SL (134.55 g·m-2), and the highest

was observed in SF (146.36 g·m-2). The FRB decreased significantly

with increasing soil depth (p<0.05). The FRB of GL in the 0~20 cm

soil layer accounted for 78.48% of the total soil biomass, that of SL

for 72.76%, and that of SF for 68.64%. Among the different soil

layers, the FRB of the surface (S) layer was dominant, showing

apparent surface enrichment. In addition, plants may adapt to the

nutrient and water supply patterns of spoil heaps by changing fine

root distribution, morphology, and configuration. The results

showed that there was no significant difference in SRL and SSA

between SL and GL, but they were significantly higher than SF

(p<0.05) (Figures 7B, D). SRL and SSA showed an upward trend

with the increase of soil depth, and RLD gradually decreased with

the increase of soil depth (Figure 7C). The decrease of GL content

was the most obvious, with a decrease of 82.6%.
3.3 Correlation analysis of soil organic
carbon components and related factors

Pearson’s correlation analysis showed that before the

establishment of vegetation (Figure 8A), the soil organic carbon

content was significantly and positively correlated with soil TN, AP,

AK, and GC and negatively correlated with soil TK, SMC, and AN,

among which AN was significantly and negatively correlated

(p<0.01). When vegetation cover was present (Figure 8B), soil

organic carbon was significantly and positively correlated with the
A B

D E F

C

FIGURE 3

Changes in soil organic carbon content with soil depth. S: 0~10 cm; U1: 10~20 cm; U2: 20~40 cm; U3: 40~60 cm; U4: 60~80 cm. Different letters
indicate that there are significant differences between vegetation types with different soil depths at the 0.05 level.
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active organic carbon fractions, and the carbon fraction content was

significantly and positively correlated with TP, TN, and FRB

(p<0.01); negatively correlated with AP, GC, SMC and BD; and

significantly and positively correlated with TK and AN (p<0.05).

In addition, redundancy analysis was performed by screening

out the indicators that were strongly correlated with the content of
Frontiers in Plant Science 08
soil organic carbon components. RDA axis 1 (RDA1) and axis 2

(RDA2) explained 84.92% and 11.3% of the variation in soil organic

carbon content without vegetation cover and 79.53% and 20.42% of

the variation in soil organic carbon content with vegetation cover,

respectively (Figure 9). The results showed that the contents of AK,

TN, and GC in the bare soil significantly impacted soil organic
A B

D

E

C

FIGURE 4

Simple linear regression analysis between soil SOC and various organic carbon components; the regression coefficients (R2) and p values are shown
in the graphs. The red area represents the 95% confidence interval for the fit. SOC, soil organic carbon; POC, particulate organic carbon; EOC, easily
oxidized carbon; MBC, microbial biomass carbon; DOC, dissolved organic carbon; LFOC, light fraction organic carbon.
TABLE 2 Two-factor ANOVA testing the differences in soil organic carbon components.

Factor
SOC POC EOC

df F p df F p df F p

VT 3 294.235 0 3 443.89 0 3 658.754 0

SD 4 44.574 0 4 495.84 0 4 553.67 0

VT×SD 12 5.582 0 12 47.443 0 12 79.971 0

Factor
MBC DOC LFOC

df F p df F p df F p

VT 3 1236.75 0 3 756.15 0 3 189.207 0

SD 4 1982.06 0 4 450.64 0 4 1158.12 0

VT×SD 12 168.764 0 12 22.654 0 12 68.683 0
VT, vegetation type, SD, soil depth; SOC, soil organic carbon; POC, particulate organic carbon; EOC, easily oxidized carbon; MBC, microbial biomass carbon; DOC, dissolved organic carbon;
LFOC, light fraction organic carbon.
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carbon (Figure 9A). FRB, TN, and TP had significant effects on the

organic carbon content when the soil−rock piles were covered by

vegetation (Figure 9B). To more intuitively express the impact of

explanatory variables on plant species diversity, the forward

screening method and Monte Carlo test were used to rank

environmental factors. Environmental factors with cumulative

contribution rates greater than 80% were selected, and it was

assumed that these factors played a significant role in influencing

the content of soil organic carbon components under the conditions
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of each site (Table 3). The contribution rate of AK to the content of

each organic carbon component in the bare land was the greatest,

which was 64.1%, followed by the contribution rates of SMC, BD,

and TP, which were 13.4%, 11.3%, and 9.7%, respectively. When

vegetation cover was present, the contribution rate of FRB was the

greatest (69.1%), and the cumulative contribution rate of TN, BD,

and RLD reached 29.5%.

To further explore how soil indicators and roots affect soil

organic carbon fractions, we selected the top three contributing
A B

FIGURE 6

Soil physical and chemical properties at different depths. BL, bare land; GL, grassland; SL, shrubland; SF, secondary forest. S: 0~10 cm; U1: 10~20
cm; U2: 20~40 cm; U3: 40~60 cm; U4: 60~80 cm.
A B D

E F G H

C

FIGURE 5

Soil physicochemical characteristics under different vegetation types. BL, bare land; GL, grassland; SL, shrubland; SF, secondary forest; BD, bulk
density; SMC, soil moisture content; GC, gravel content (particle size>2 mm); TN, total nitrogen; TP, total phosphorus; AK, available potassium; TK,
total potassium. The same notation is used in subsequent figures. The different letters on the boxplots indicate significant differences between
different vegetation types (p<0.05).
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A B

FIGURE 8

Pearson’s correlation analysis. * p < 0.05; ** p < 0.01; *** p < 0.001. SOC, soil organic carbon; POC, particulate organic carbon; EOC, easily oxidized
carbon; MBC, microbial biomass carbon; DOC, dissolved organic carbon; LFOC, light fraction organic carbon; TN, total nitrogen; TP, total
phosphorus; TK, total potassium; AN, available nitrogen; AP, available phosphorus; AK, available potassium. GC, gravel content; SMC, soil moisture
content; BD, bulk density; FRB, fine root biomass; SRL, specific root length; SSA, specific surface area; RLD, root length density. Circle: the larger the
correlation coefficient is, the larger the circle. The smaller the correlation coefficient is, the smaller the circle. Blue: the correlation coefficient is
positive, and the more saturated the blue color is, the closer it is to 1.0. Red: the correlation coefficient is negative, and the more saturated the red
color is, the closer it is to –1.0.
A B

DC

FIGURE 7

Fine root biomass and morphological characteristics. Different lowercase letters indicate significant differences between different soil depths for the
same vegetation type (p<0.05).
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factors and used a structural equation model to explore the

mechanism by which the factors affected soil organic carbon

fractions. SEM analysis showed that in bare soil (Figure 10A),

AK, the single and direct controlling factor that emerged from the

final model, had a strong positive impact on soil active carbon

content (standardized direct impact was 0.63), while BD and SMC

both had adverse effects, and the standardized coefficients of direct

impact were 0.03 and 0.26, respectively. After the establishment of

vegetation (Figure 10B), TN and FRB directly affected the content of

organic carbon (the direct effects of standardization were 0.54 and

0.35, respectively), and FRB also indirectly affected the content of

organic carbon by affecting TN content. BD had a negative effect on

the content of organic carbon components and indirectly affected

the content of organic carbon components by affecting FRB. The

total effect of SEM showed that in the absence of vegetation, AK and

SMC had a significant positive effect on soil organic carbon

components, and the effect of AK was higher than that of SMC.
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FRB had the most considerable total effect when vegetation was

present, followed by TN. BD was negatively related to soil organic

carbon components with and without vegetation on the spoil heaps,

and the effect was more significant when there was vegetation.
4 Discussion

4.1 Effects of vegetation types on soil
organic carbon and its components

Soil organic carbon content results from a net balance between

the organic matter input rate and organic carbon mineralization

rate (Sheng et al., 2015), and organic matter input is mainly

determined by vegetation cover and plant roots (Yzab et al.,

2021). A shift in vegetation type can significantly affect the

balance between soil carbon input and output, changing the soil
A B

FIGURE 9

Redundancy analysis (RDA) ranking of soil physicochemical factors, root characteristics, and soil organic carbon components. (A) is for bare land,
(B) is for soil with vegetation cover, and the meaning of the abbreviations is the same as that in Figure 8.
TABLE 3 Preliminary selection of environmental factors in RDA.

Type Factor Explains % Contribution % pseudo-F P

Bare land

AK 49.7 64.1 12.8 0.002

SMC 10.4 13.4 3.1 0.048

BD 8.8 11.3 3.1 0.082

TP 7.5 9.7 3.2 0.102

GC 0.7 0.9 0.3 0.608

TN 0.5 0.6 0.2 0.712

Vegetation

FRB 68.6 69.1 28.4 0.002

TN 12 12.1 7.5 0.004

BD 10.5 10.6 13 0.008

RLD 3.5 3.5 6.5 0.014

TP 3.3 3.3 14.1 0.004

AK 0.5 0.5 2.7 0.126
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organic carbon content (Luo et al., 2022). With the gradual

restoration of vegetation on mixed soil and rock construction

piles, the apoplastic and plant root inputs under each vegetation

type were significantly higher than those of bare ground, and SL and

SF were significantly better than GL at increasing the content of the

soil organic carbon fraction, which is consistent with the results of

Zhang et al. (2019) but somewhat different from the results of Liu

et al. (2021) for the Haidaigou coal mine drainage site. The latter

study showed that the soil organic carbon content was in the order

grassland > shrubland > secondary forest, which may have been

caused by the fact that the restoration time of the pile selected in the

present study was 9 years, while the study by Liu et al. was

conducted on a coal mine drainage site with a restoration time of

15 years. The accumulation of soil organic carbon in the

underground soil of arbor forests can be divided into two stages:

the first stage is when the organic carbon content increases with the

growth of plants. In this stage, many extraneous substances are

returned to the surface soil every year, which provides energy

sources for microorganisms, can accelerate the decomposition

rate of humus, and increases the input of soil organic carbon

(Zechmeister-Boltenstern et al., 2015; Ghimire et al., 2019).

Therefore, the average soil organic carbon content of secondary

forest was higher; however, the content of POC was the highest in

SL. The dominant species in SL was mulberry, and the leaves of
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mulberry wither quickly, the thickness of the surface apoplast is

higher and the surface layer is wetter compared to that of SF and BL,

and a large amount of plant residues are formed, which contribute

semidecomposable material; as a result, the agglomerated

particulate matter increases, and the organic carbon embedded in

the particulate matter increases accordingly (Xiao et al., 2021; Yuan

et al., 2022). In bare land, due to the absence of vegetation cover, the

soil remains exposed for long periods, soil particles are separated

due to sunlight exposure, the soil aggregate structure is destroyed,

soil organic carbon remains unprotected (Yang et al., 2020), the soil

is loosened due to anthropogenic disturbance, and a breakdown in

aggregates may lead to the loss of unstable POC and EOC, which are

mineralized to CO2.

In this study, during vegetation restoration, soil organic carbon

recovery in the S layer was much greater than that in the other soil

layers because organic carbon inputs from arbor forests and shrubs

mainly contributed to the aboveground litter (Ghimire et al., 2019;

Blackburn et al., 2022). The surface layer of the soil of the spoil

heaps had large amounts of plant apoplasts, and the humus formed

from apoplast decomposition mostly remained in the surface soil.

The surface soil structure facilitated water permeability and

aeration, which accelerated the decomposition rate of apoplasts

and reduced the loss of soil nutrients while increasing the

accumulation of organic carbon (King and Hofmockel, 2017).
FIGURE 10

Structural equation model analysis of soil organic carbon variables. To make the model diagram more concise, the path coefficient from the control
variable to the dependent variable is directly presented in the graph. Solid arrows indicate a significant effect (p<0.05), and a dashed arrow indicates
a nonsignificant effect (p>0.05). The width of an arrow is proportional to the intensity.
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However, the organic carbon content of the bare land surface layer

was not the highest. The survey showed that SL and SF average

vegetation covered 30% to 60%, and bare land was not covered by

vegetation (Table 1). Rainfall leads to the mechanical removal of soil

organic carbon due to runoff on slope surfaces, and the erosive force

of rainfall impact causes large soil agglomerates to break apart,

causing the organic carbon that was originally protected by the

agglomerates to be decomposed and used by microorganisms,

leading to a loss of soil organic carbon in the surface layer of bare

land. This is consistent with Mma et al. (2020), who showed that

changes in vegetation type resulted in an average loss of 7% in soil

carbon, with the loss concentrated in the topsoil, and the deep soil

organic carbon content was less affected, which is consistent with

the results of this study. Subsoil organic carbon is mainly derived

from root secretions, soluble organic carbon leaching, soil

fragmentation, and particulate organic carbon transport, and the

carbon input generated is limited (Lv and Liang, 2012). Most of the

root biomass is concentrated in the 0-40 cm soil layer, and plant

roots and their secretions decrease with increasing soil layer depth

(Luo et al., 2022). The soil environment becomes closed, the input

of organic matter and microbial activity diminish, and the effect of

vegetation on SOC gradually decreases. This also explains the

nonsignificant difference in organic carbon content under the

vegetation types in the U3 and U4 layers.
4.2 Response of soil vegetation factors to
vegetation types

Vegetation affects soil carbon distribution by changing soil

physical and chemical properties and microbial activities. Soil

physical and chemical indexes are significantly different under

different vegetation types (Bakker et al., 2019; Zhou et al., 2022).

The soil BD and GC gradually decreased with positive vegetation

succession. As succession progresses, the biological activity of

vegetation increases, leading to accelerated accumulation and

decomposition of organic matter (Yan et al., 2019). In addition,

penetration, extinction and biological activities of root systems help

to stabilize soil particles, reduce soil looseness, and improve soil

pore characteristics, which make soil more loose and are conducive

to the growth of roots and microorganisms (Bengough et al., 2011),

thereby reducing soil bulk density and gravel content. This is

consistent with the findings of Bengough et al. (2011) and Lu et

al. (2014). Nevertheless, soil SMC was lower in SF than in GL and

SL (Figure 6) because these vegetation types had shallower root

systems and smaller canopies relative to SF, allowing for less

transpiration and water consumption. Moreover, the average litter

thickness of GL and SL (2.5 cm) was higher than that of SF (2 cm),

and the accumulation of litter also reduced water loss to a certain

extent (Lee et al., 2014). Soil TN and TP showed an increasing trend

with the restoration of vegetation (Figure 6), indicating a significant

effect of vegetation on soil quality improvement.

Vegetation returns to the soil during growth, development and

death, forming soil organic matter through humification and

providing a source of nutrients after mineralization and

decomposition (Tanner et al., 2016; Yang et al., 2020). Soil BD, GC,
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and SMC all showed a downward trend with increasing soil depth

(Figure 7), consistent with the results of Zhang et al. (2019). The

surface soil was more strongly affected, the evaporation of soil water

on the surface was more significant, and the water content was lower.

FRB was the highest in SF and low in GL, which is consistent with the

findings of most studies (Hishi et al., 2015; Wang et al., 2020), but

surface FRB dominated total fine root biomass, and FRB was

significantly higher in GL than in SL and SF (Figure 8). Because the

roots of herbs such as Lolium perenne and Setaria viridis in this study

are primarily shallow root–fibrous root systems, the proportion offine

surface roots was relatively large. In the deep layer (U3 and U4), the

FRB of SF was higher than that of GL and SL because to absorb more

water and nutrient sources for their growth and development, the

roots of tree species such as Robinia pseudoacacia had to extend

downward. Hence, the root biomass in the deep soil was higher.
4.3 Analysis of factors influencing soil
carbon components

The organic carbon content of soil is influenced by various

external factors, such as microbial decomposition, soil acidity and

alkalinity, and soil erosion, and is closely related to the internal

carbon content of soil (Wei et al., 2019; Ferro and Nicosia, 2020). In

addition, research results have shown that soil organic carbon is the

main determinant of active organic carbon, and there is a highly

significant positive correlation between different active organic

carbon components, indicating that they are closely related and

jointly affect the turnover of soil organic carbon as similar active

carbon pools (Wang et al., 2020). However, in this study, there was

no significant correlation between soil SOC and POC under bare

ground conditions (Figure 9A), which differs from the results of

previous studies, potentially due to the external damage sustained

by the bare ground soils of the spoil heaps and due to the

destruction of agglomerates during soil separation, dissipation,

and fragmentation, which allows the organic carbon within

agglomerates to be exposed, accelerating POC decomposition

(Wu et al., 2023). In addition to directly affecting the content and

distribution of SOC, vegetation also affects SOC indirectly by

influencing environmental factors related to SOC formation and

transformation. We investigated the effects of soil factors and

vegetation roots on the organic carbon fraction under two site

conditions—with and without vegetation cover species—on the soil

surface of soil–rock construction spoil heaps. It was found that soil

organic carbon and active carbon fractions were significantly and

positively correlated with TN in both bare ground and soils with

vegetation cover because most of the N in the soil is stored in

organic matter (Xie et al., 2020), and increased nitrogen in soil may

inhibit soil respiration and thereby reduce the amount of CO2

released from soil (Andrew et al., 2018). However, abundant

nitrogen supply can enhance microbial activity, promote the

decomposition by surface microorganisms, and increase the

content of organic carbon and its active carbon fraction (Liu

et al., 2021; Xu et al., 2020), which explains the significant

positive correlation between the soil organic carbon fraction and

total nitrogen content in construction spoil heaps.
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Soil texture is considered to be an important factor affecting soil

organic carbon accumulation (Sebastian et al., 2023), and studies have

shown that clay has a greater SOC storage potential than sandy soil

(Wiesmeier et al., 2019; Kgel-Knabner and Amelung, 2021), which

ascribe to the physical chemistry adsorption of SOC on soil clay

mineral surfaces, SOC is chemically stabilized (Cai et al., 2016; Ji et al.,

2020). In this study, due to the loose soil, large sand particles, small

relative surface area and strong water permeability, organic carbon in

the sand is easily decomposed or lost by microorganisms. Due to the

high gravel content in bare land, Water-soluble potassium is released

from minerals within the mound in the presence of bacteria and

various acids that can further increase organic carbon content by

influencing microbial activity (Bakken et al., 1997). When vegetation

was present, FRB was the most influential factor on the content of

organic carbon and its components, with a contribution of 69.1%.

Guo and Gifford (2002) and Davidson et al. (2011) suggested that

root distribution and quality are key determinants of soil organic

carbon response to vegetation type because plants transport organic

matter to the subsurface through root secretion and abscission, can

use their own biomass inputs to modify organic carbon content

(Zhou et al., 2022), and can also increase inputs to soil organic carbon

sources through their interactions with certain symbiotic bacteria

(Wei et al., 2019). Roots can either directly affect SOC or affect SOC

and its components by affecting TN content, showing the highest

total effect in the structural equation model (Figure 10B), which also

confirms the root contribution to soil SOC. Studies have shown that

the same factors contribute differently to organic carbon under

different environmental conditions, and the dominant factors

affecting organic carbon accumulation change according to the

prevalent conditions. In addition, plant-derived carbon input is an

important factor affecting soil organic carbon and its components.

Although deadfall is an important supplemental channel for

supplying carbon, it also leads to microorganism proliferation; as a

result, a large amount of soil enzymes are produced, which accelerate

the decomposition rate of soil organic carbon, resulting in a decrease

in organic carbon content (Wang et al., 2020; Erdel et al., 2023).

Therefore, the effect of plant-derived carbon such as litter on soil

organic carbon and its components needs to be studied in depth.

Therefore, according to the results of this study, nitrogen and

potassium supplementation should be considered during the bare

land stage to enhance organic carbon accumulation in spoil heaps.

From the perspective of carbon sequestration efficiency and

prevegetation investment, it is reasonable to prioritize the

planting of shrubs with nitrogen fixation functions and well-

developed root systems on spoil heaps.
5 Conclusions

Vegetation not only increased soil organic carbon content but

also improved soil physical and chemical properties during the

restoration process in spoil heaps. There was no significant

difference in the content of soil organic carbon between secondary

forest and shrubland, and some of them were higher in shrubland

(POC and LFOC), indicating that in the early stage of formation of

the spoil heaps, the selection of secondary forest may not be able to
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better improve the content of soil organic carbon components. The

content of the soil organic carbon fraction in the 0-20 cm layer under

each vegetation type was significantly higher than that in the other

soil layers. There was a significant positive correlation between soil

organic carbon and active carbon components under various

vegetation types, indicating that active organic carbon, which has a

short turnover time, can be used as an indicator to evaluate the

impact of vegetation type changes on the soil organic carbon pool.

FRB, AK and TN played important roles in increasing soil organic

carbon, and nitrogen and potassium supplementation should be

considered in the bare land stage. Prioritizing the planting of

shrubs with nitrogen fixation functions and well-developed roots is

beneficial for soil organic carbon accumulation.
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