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The quality of tropical fruits and vegetables and the expanding global interest in

eating healthy foods have resulted in the continual development of reliable,

quick, and cost-effective quality assurance methods. The present review

discusses the advancement of non-destructive spectral measurements for

evaluating the quality of major tropical fruits and vegetables. Fourier transform

infrared (FTIR), Near-infrared (NIR), Raman spectroscopy, and hyperspectral

imaging (HSI) were used to monitor the external and internal parameters of

papaya, pineapple, avocado, mango, and banana. The ability of HSI to detect

both spectral and spatial dimensions proved its efficiency in measuring external

qualities such as grading 516 bananas, and defects in 10 mangoes and 10

avocados with 98.45%, 97.95%, and 99.9%, respectively. All of the techniques

effectively assessed internal characteristics such as total soluble solids (TSS),

soluble solid content (SSC), and moisture content (MC), with the exception of

NIR, which was found to have limited penetration depth for fruits and vegetables

with thick rinds or skins, including avocado, pineapple, and banana. The

appropriate selection of NIR optical geometry and wavelength range can help

to improve the prediction accuracy of these crops. The advancement of spectral

measurements combined with machine learning and deep learning technologies

have increased the efficiency of estimating the six maturity stages of papaya fruit,

from the unripe to the overripe stages, with F1 scores of up to 0.90 by feature

concatenation of data developed by HSI and visible light. The presented findings

in the technological advancements of non-destructive spectral measurements

offer promising quality assurance for tropical fruits and vegetables.

KEYWORDS

non-destructive measurement, spectral measurements, quality parameters, tropical
fruits and vegetables, rapid measurement
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1 Introduction

Tropical fruits and vegetables are agricultural crops that are

typically grown in tropical regions where the climate is warm, with

temperatures ranging from 20 to 350C (Bahadur et al., 2020).

Tropical regions are found amidst the tropics of Cancer and

Capricorn, and encompass equatorial zones in Oceania, Asia,

Africa, Central and South America, and the Caribbean (Zakaria,

2023). Crops grown naturally in such weather conditions provide

essential minerals, water, fiber, and vitamins that contribute

significantly to the well-being of humans by safeguarding against

ailments such as diabetes, hypertension, and cancer (Emelike and

Akusu, 2019).

The agricultural revolution and the adaptation of numerous

tropical plants to regions outside of their natural range have

muddied their classification, and little is known about what

properly defines and distinguishes tropical fruits and vegetables

from their temperate counterparts (Indiarto, 2020). Fernandes et al.

(Fernandes et al., 2011) described crop classification according to

size, acidity, seed type, and bearing. Included among alkaline crops

are apples, bananas, peaches, cherries, persimmon, and litchi

(Fernandes et al., 2011). Acidic crops include strawberry, orange,

kiwi, pineapple, lemon, star fruit, and logan, whereas sub-acidic

examples are mango, pear, blackberry, papaya, blueberry,

cherimoya, and mulberry (Fernandes et al., 2011). Chakraborty

et al. (Chakraborty et al., 2014) agreed and structured the

classification of tropical fruits based on that of Fernandes. Sarkar

et al. (Sarkar et al., 2018) reported classification system according to

maturity stage by means of ethylene gas emission and respiration

rate, including both climacteric and non-climacteric tropical

produce (Sarkar et al., 2018). Tropical climacteric produce such

as avocado, apple, pear, mango, papaya, broccoli, banana, kiwi, and

tomato undergoes maturation in correlation with an escalation in

their respiration rate and the release of ethylene gas (Indiarto,

2020), whereas tropical non-climacteric crops such as grape, berry,

citrus, litchi, strawberry, raspberry, pumpkin, watermelon,

cucumber, and pineapple do not undergo an elevation in their

respiration rate as they reach maturity (Indiarto, 2020). The

contrasting report of Retamales et al. (Retamales, 2011) centers

around the production of temperate crops worldwide. In this report,

apple, raspberry, pear, peach, kiwi, blueberry, strawberry and plum

were considered as temperate fruits (Retamales, 2011). In addition,

Benichou et al. (Benichou et al., 2018) have also classified temperate

fruits as tree (apple, plum, pear and peach), vine (grape and kiwi),

and small fruits such as raspberry, blueberry and currant (Benichou

et al., 2018).

Papaya, pineapple, avocado, mango, and banana are considered

to be major tropical fruits globally (Mukhametzyanov et al., 2022).

According to a market review prediction for the years 2013 to 2022

by the Food and Agriculture Organization of the United Nations

(FAO), the most exported tropical fruits globally from Central

America and the Caribbean, South America and Asia, Africa, and

others in millions of tons were papaya, pineapple, avocado and

mango with 3.7, 3.2, 2.3, and 2.1, respectively (Altendorf, 2019). On

the other hand, recent data have shown that global vegetable

production increased by 68% between 2000 and 2021 (FAO,
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2022). Because of the continuous and emergent demand for

tropical fruits and vegetables worldwide, the present emphasis is

on quality assurance in relation to end-user inclinations and

commercial standards (Silva and Abud, 2017). The quality of

tropical fruits and vegetables is characterized by both external

and internal parameters (Jha and Matsuoka, 2000). External

parameters namely color, defects, size and shape depend on not

only the appearance of the product, but also on the standards set

(Cubero et al., 2016), whereas internal parameters such as

nutritional value, internal defects, flavor, and texture are

subjective to physicochemical composition and climate change

(Zainalabidin et al., 2019). The quality of fruits and vegetables

influences consumer preference and is directly or indirectly linked

with further value-addition and processing technologies (James et

al., 2010).

Several studies have identified postharvest losses as the most

prominent factor among the origins of crop quality deterioration

(Porat et al., 2018; Etana, 2019; Ahmad et al., 2021). Adding to that,

high temperature and relative humidity are mentioned in the

biological and chemical degradation of produce freshness, which

affects sweetness, flavor, weight, turgor, and nutritional value (Elik

et al., 2019). However, past reports indicated that low-temperature

cooling systems and edible coating materials can be used to

maintain and monitor the quality of these crops (Mendy et al.,

2019; Jodhani and Nataraj, 2021). Conventional methods relying on

the quantification of different quality traits such as dry matter

content, oil content, and moisture content have also been reported

in the study of quality parameters of fruits and vegetables; however,

these methods were found to be undesirable, destructive, time-

consuming, and labor-intensive (Magwaza and Tesfay, 2015;

Kyriacou and Rouphael, 2018). Therefore, the application of non-

destructive bio-sensing methods as a promising alternative for

evaluating the value of tropical produce has been adopted

(Ndlovu et al., 2022; Okere et al., 2022).

Computer vision and popular pre-trained convolutional neural

network (CNN) models have been used as recognition systems to

sort and grade different fruits and vegetables, especially in

supermarkets, regarding their variety and species (Dubey and

Jalal, 2012). However, computer vision can only assess external

quality attributes due to the lack of spectral information (Rahman

and Cho, 2016; Bhargava and Bansal, 2021). Acoustic emission

technology involves the mechanical destruction of produce when

subjected to mechanical or thermal stimulus (Aboonajmi et al.,

2015) and is not appropriate for all categories of fruits and

vegetables (Adedeji et al, 2020 ). Extensive works have been

published on the evaluation of fruits and vegetables by spectral

measurements such as Fourier transform infrared (FTIR)

spectroscopy (Egidio et al., 2009), Near-infrared (NIR), Raman

spectroscopy (Pandiselvam et al., 2022), and hyperspectral imaging

(HSI) (Wang and Zhai, 2018). Generally, these reports have

concentrated on the utilization of spectral measurements for

determining targeted quality parameters of a particular fruit or

vegetable variety. For instance, visible and near-infrared

spectroscopy was used to investigate the internal browning in

mango fruits (Gabriëls et al., 2020). Ali et al. (Ali et al., 2023)

investigated FTIR, NIR, and machine vision in the quality
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monitoring of pineapples. Metlenkin et al. (Metlenkin et al., 2022)

distinguished Hass avocado fruits by defects using hyperspectral

imaging (HSI). The question revolves around the practical

utilization of these approaches and the challenges associated with

improving data processing speed and in-line implementation

(Cortés et al., 2019; Si et al., 2022). Quick hardware and software

are required to fulfill the demands of swift analysis for extensive

hyperspectral datasets (Xu et al., 2023) and machine learning

algorithms, especially those relying on deep learning act as black

boxes rather than using interpretability models for high-stakes

decisions (Caceres-Hernandez et al., 2023).

The present review highlights the current advances in non-

destructive spectral measurements for quality assessment,

specifically for major tropical fruits and vegetables. The quality

parameters of these tropical produces are covered first. The

discussion on each of the spectral measurements, the tropical

crops used, and the specific findings obtained from various

studies, which are summarized in Table 1, follows and can deliver

valuable information on the capabilities and efficiency of these
Frontiers in Plant Science 03
techniques. In addition, the merits and demerits of each of these

spectral measurements, which are presented in Table 2, will guide

future researchers in selecting the proper evaluation method when

evaluating the quality of tropical produces. To facilitate

comprehension and quick understanding of key terminologies

involved, the list of abbreviations and definitions contained in the

paper is presented in Table 3.
2 Quality inspection of Tropical fruits
and vegetables

Quality inspection is the process of evaluating specific

parameters of fruits and vegetables to ensure required quality

standards (Phey et al., 2020). The intention of quality inspection

is to detect any internal or external characteristics that can aid in

identifying both standard quality parameters and defects or non-

conformities that can affect the safety of fruits and vegetables or
TABLE 1 A comparison of the application of various non-destructive spectral measurements in the quality assessment of tropical fruits and
vegetables.

Measurement Tropical
produce

Parameter Data
analysis

Performance
(Accuracy)

Reference

FTIR, FTNIR Pineapple SSC
TA
PH

PCA SD=0.17
SD=0.11
SD=0.13

(Egidio et al., 2009)

Vis–NIR, ML Mango Color PLS, ANN 80% (Gabriëls et al., 2020)

HSI Avocado Defects PCA, PLS-DA,
SIMCA

99.9% (Metlenkin et al., 2022)

NIR Mango Firmness PCA,MPLS R2 = 0.88
R2 = 0.85

(Flores et al., 2008)

NIR Papaya Starch
SSC

PLS R=0.90
R=0.90

(Purwanto et al., 2015)

Vis–NIR Pineapple Nitrates PLSR R=0.95 (Srivichien et al., 2015)

HSI Potato SSC PLSR R2p=0.963 (Su and Sun, 2019)

FTIR Banana Maturity PLS R2 = 0.83 (Zhang et al., 2021)

ATR-FTIR, ML Banana Ripening PCA 96.0% (Sinanoglou et al., 2023)

NIR Avocado Moisture content
Dry matter

PLS RPD= 2.00
RPD=2.13

(Olarewaju et al., 2016)

NIR Mango Maturity MLR, PLS Rc=0.74
Rv=0.68

(Jha et al., 2014)

NIR Banana TSS
PH

PLS R2 = 0.81
R2 = 0.69

(Ali et al., 2018)

NIR, HSI Sweet potatoes Variety identification PLSDA R2 = 0.893 (Su et al., 2019)

NIR Mango Firmness iPLSR R2c = 0.75
R2p = 0.75

(Mishra et al., 2020)

Raman Cassava Starch adulteration OC-SVM/SIMCA 86.9% (Cardoso and Jesus Poppi, 2021)

Vis–NIR Pineapple Nitrate PLSR R= 0.95 (Srivichien et al., 2015)

(Continued)
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their usability in particular functions such as diets, trade, and

industrial chains (Kirezieva et al., 2013).
2.1 External quality of tropical fruits
and vegetables

The appearance of fruits and vegetables is a sensory attribute

that directly influences the perceived worth of the produce for

consumers (Zhang et al., 2014). The external quality of tropical

crops is indicated by a number of factors, including size, shape,

color, and external defects, as shown in Table 4 (Ganiron, 2014).

The size and shape are two complementary factors that differ

depending on the variety of the plant and are both assessed in

relation to market grading standards (Abbaszadeh et al., 2013). The

size is determined by measuring area, perimeter, length, and width,

which is more complex due to the morphological irregularities of

tropical crops natural state (Cubero et al., 2011). Moreda et al.

(Moreda et al., 2009) described some non-invasive systems for

assessing the size of fruits and vegetables. The systems are based on

(1) measuring the volume of the gap between the fruit and the outer

casing of an embracing gauge; (2) measuring the distance between a

radiation source and the fruit contour, where this distance is

computed from the time of flight (TOF) of the propagated waves;

(3) light obstruction by barriers or blockades of light; (4) 2D and 3D

machine vision systems (Moreda et al., 2009).

Wang et al. (Wang et al., 2017) evaluated mango size by RGB–D

(depth) imaging and time-of-flight camera imaging system. The

camera-to-fruit distance was determined using three methods for

fruit sizing from images: stereo vision camera, RGB–D camera and

a time-of-flight laser rangefinder (Wang et al., 2017). The obtained

length and width values were good with RMSE of 4.9mm and
Frontiers in Plant Science 04
4.3mm respectively. It is cost-effective and simple to use; however, it

pertains non-occluded fruit only and cannot be utilized in direct

sunlight (Wang et al., 2017). Neupane et al. (Neupane et al., 2022)

replicated the work of Wang by suggesting the use of partly

occluded fruit. To obtain the linear length of the fruits, bounding

box dimensions of an instance segmentation model (Mask R-CNN)

was applied to canopy images (Neupane et al., 2022). The findings

were good with RMSE values of 4.7 mm and 5.1 mm for Honey

Gold and Keitt mango varieties, respectively (Neupane et al., 2022).

Sanchez et al. (Sanchez et al., 2020) investigated spectroscopic and

depth imaging techniques combined with machine vision to

estimate the length, width, thickness, and volume of sweet potato

and potato. When the correct size group was graded, the method

had a high accuracy of 90% (Sanchez et al., 2020).

Color is an external quality trait that depends on the maturity of

produce and is subjective to internal features such as taste,

perception, and pleasantness of fruits and vegetables (Yahaya

et al, 2017). Calorimeters evaluate color by measuring the typical

surface area of the product and detects the color space values L*, a*,

and b* which are based on the human color perception theory

(Aguilar-Hernández et al., 2021). The capability of infrared thermal

imaging approaches was investigated in the measurement of

pineapple color. In this investigation, the L*, a*, and b* mean

values for calorimeter increased by (P < 0.05) (Ali et al., 2022). The

optical fiber sensors mounted with RGB LEDs were also used to

evaluate the color of mangoes, giving R2 = 0.879 (Yahaya

et al., 2011).

External defects include the evidence of rot, bruising, crushing,

shriveling, and wilting due to water loss which impact market value

and the price of the fruits and vegetables (Raj and Suji, 2019). These

defects can be recognized and monitored through the appearance of

the crop by qualified personnel relying on subjective evaluation,
TABLE 1 Continued

Measurement Tropical
produce

Parameter Data
analysis

Performance
(Accuracy)

Reference

HSI Banana SSC
TA

PLS/iPLS/PLSDA R2 = 0.64
R2 = 0.59

(Chu et al., 2022)

NIR–HSI Pineapple Water activity PLSR Rp= 0.72 (Aozora et al., 2022)

HSI, ML, DL Papaya Maturity DCNN F1 = 0.91 (Garillos-Manliguez and Chiang, 2021)

Raman Sweet potato Moisture and
carotenoids

PLSR&PCA R2 = 0.90(hot air)
R2 = 0.88
(microwave)

(Sebben et al., 2018)

Raman Potato Grading PLSDA ≈100% (Morey et al., 2020)

HSI potato Bruises SVMM 87.88% (Ye et al., 2018)

SWIR–HSI Potato Black spot PLSDA 98.56% (López-Maestresalas et al.,
2016)

Raman Mango Carotenoids – R= 0.9618 (Bicanic et al., 2010)

Vis-NIR-HSI Avocado Nutrients (Fatty acids) PLSR R2 = 0.79(flesh)
R2 = 0.62(skin)

(Kämper et al., 2020)

NIR–HSI Mango Defects K-NN 97.95% (Rivera et al., 2014)

HSI Banana Grading CNN/MLP 98.45% (Mesa and Chiang, 2021)
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TABLE 2 Merits and demerits of non-destructive spectral measurements in the quality control of tropical fruits and vegetables.

Technique Merits Demerits References

FTIR No sample preparation. Single beam and double beam for scattering device. (Lan et al., 2020)

Fast and easy to perform. Difficulty in obtaining representative background.

Capability to measure many
parameters at the same time.

Hard to read the interferogram if the Fourier transform is not
performed first to generate the spectrum.

Good signal-to-noise ratio

Suitability for both quantitative and
qualitative analyses.

NIR Real-time analysis. Limited penetration depth. (Srivichien et al., 2015), (Arendse
et al., 2021)

Can evaluate multiple components
concurrently.

Time-consuming calibration procedure.

Fast acquisition of spectra. Complex signal interpretation

Minimal sample preparation required.

Raman Vibrational and complementary. Weak Raman scattering. (Wang et al., 2021), (Li et al., 2016)

Fast, Simple, sensitive, and selective
technique.

Fluorescence interference.

Capability to monitor water-rich
molecules.

Low reproducibility.

High spatial resolution. Redundant data set. Costly Raman system.

Detects the spatial distribution of the
molecules.

Relatively low operational speed

HSI Detect both spectral and spatial details. Costly and complex data. (Chandrasekaran et al., 2019),
(Rajkumar et al., 2012)

Concurrent assessment of many
parameters.

Advanced hardware and software required.

Available in different algorithms. Requires chemometrics techniques to extract relevant information.
F
rontiers in Plant
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TABLE 3 List of abbreviations and acronyms used in the paper.

Abbreviation Definition Abbreviation Definition

FTIR Fourier transform infrared CNN Convolutional Neural Network

NIR Near-infrared TOF Time of flight

HSI Hyperspectral imaging TSS Total soluble solids

SSC Soluble solid content RGB–D imaging Red, Green, Blue–Depth imaging

ASC Added sugar content PLS Partial least squares

0C Degrees Celsius RMSE Root mean square error

FAO Food and Agriculture Organization YOLO You Only Look Once

R-CNN Regions with convolutional neural networks ATR Attenuated total reflectance

L*, a*, and b*. Lightness, redness or greenness, and yellowness MLR Multivariate linear regression

LED Light-emitting diode IR Infrared region

R2 Determination coefficient iPLSR Interval partial least squares regression

TA Total acidity OC-SVM One-class support vector machine

Vis–NIR Visible–near-infrared spectroscopy SIMCA Soft independent modelling by class analogy

(Continued)
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which may result in human errors (Ali et al., 2023). Sahu et al. (Sahu

and Potdar, 2017) proposed a digital image analysis algorithm for

detecting exterior defects in mango fruit. Surface defects such as

scars and black patches were used to detect defective mango fruits,

and were recognized by extracting the contours of damaged areas

(Sahu and Potdar, 2017). The damaged area was then filled to

identify its location in the image as the basis for discrimination.

Sahu and colleagues achieved good accuracy but advocated the use

of optimal and adaptive threshold approaches for segmenting

mango fruits from image backgrounds (Sahu and Potdar, 2017).
2.2 Internal quality of tropical fruits
and vegetables

The internal qualities of fruits and vegetables are also termed

hidden qualities and are determined by texture, nutrients, internal

defects, and flavor, as presented in Table 5 (Shewfelt, 2014).

Different fruits and vegetables usually have different textures,

which are characterized by their firmness, crispness, and
Frontiers in Plant Science 06
crunchiness (Fillion and Kilcast, 2002). The assessment of fruit

and vegetable firmness, a vital quality characteristic related to

texture, can be achieved through sensory measurements

(Magwaza and Opara, 2015). The texture is measured with a

penetrometer by putting a probe tip installed on the texture

analyzer into fruit tissue at a specific speed and depth so as to

exert the most force (Ali et al., 2017). Uarrota et al. (Uarrota and

Pedreschi, 2022) used a non-destructive texture analyzer to

determine the firmness of avocado under different storage

conditions. Enough data were required to construct the best

model allowing an extension to the model firmness of avocado

(Uarrota and Pedreschi, 2022). Kasim et al. (Kasim et al., 2021)

compared laboratory-based (305-1713 nm) and portable-based

(740-1070 nm) NIR spectrometers to determine mango firmness

(Kasim et al., 2021). The results showed that portable and

laboratory-based NIR instruments performed similar in respect of

R2p. Compared to the laboratory-based instrument, the RMSEP of

the portable NIR was higher (Kasim et al., 2021).

Nutritional value, such as the sugar content related with

vitamins and minerals, comprises the main constituents of soluble
TABLE 3 Continued

Abbreviation Definition Abbreviation Definition

R Coefficient of correlation SERS Surface-Enhanced Raman Spectroscopy

PLSR Partial least squares regression RMSEP Root mean square error of prediction

R2P Correlation of prediction Rp Coefficient of prediction

MIR Mid-infrared DT Decision trees

FIR Far-infrared RNN Recurrent neural network

ANN Artificial neural network PLSDA Partial least square discriminant analysis

GA Genetic algorithm VGG Visual Geometry Group

FL Fuzzy logic ResNet Deep Residual Learning for Image Recognition

ANFIS Adaptive neuro-fuzzy inference system ResNeXt Aggregated Residual Transformations for Deep Neural Networks

ML Machine learning DCNN Deep convolutional neural network

DL Deep learning RPD Residual predictive deviation

LDA Linear discriminant analysis F1 scores Performance of Precision and recall

SVM Support vector machine MLP Multilayer Perception

K-NN K-nearest neighbors PCA: Principal component analysis

ELM Extreme learning machine MPLS: Modified partial least square

RMSEC Root mean square error of calibration SD: Standard deviation

Rc Correlation coefficient for calibration Rv Correlation coefficient for validation
TABLE 4 The external quality parameters of tropical fruits and vegetables.

External quality Indicators References

Size Area, perimeter, length, and width (Cubero et al., 2011), (Sanchez et al., 2020)

Shape Mass, volume, spherical coefficient, density, and geometric mean diameter (Cubero et al., 2011), (Golmohammadi and Afkari-Sayyah, 2013)

Color Maturity, uniformity, and intensity (Yahaya et al, 2017), (Ali et al., 2022)

External defects Bruising, crushing, shriveling, and wilting (Ali et al., 2023), (Raj and Suji, 2019)
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solids content (SSC), total soluble solids (TSS), and total acidity

(TA) (Leiva-Valenzuela et al., 2013). Aziz et al. (Aziz et al., 2021)

evaluated the relationship between TSS and the capacitance of

papaya using capacitance-sensing techniques (Aziz et al., 2021). A

refractometer was used as part of a destructive technique to predict

the reference values of moisture and TSS content. Capacitive

sensing was then tested as non-destructive approach for the

evaluation of output voltage and capacitance of papaya (Aziz

et al., 2021). Aziz observed a good correlation between destructive

and non-destructive techniques, with R2 of 0.9434 and 0.9177 for

moisture and TSS content, respectively (Aziz et al., 2021). The

usefulness of NIR spectroscopy was demonstrated in the

determination of starch and soluble solid contents of papaya

(Purwanto et al., 2015). Srivichien and colleagues tested the

nitrates in pineapples using Vis–NIR (600-1200 nm)

spectroscopy, yielding an R value of 0.95 (Srivichien et al., 2015).

However, due to the big size and the change in nitrate levels, many

scans were needed on different areas of pineapple (Srivichien et al.,

2015). In the study to predict starch content of sweet potatoes and

potatoes, hyperspectral imaging was applied by Su et al. (Su and

Sun, 2019). Su developed partial least squares regression (PLSR)

models at full-wavelength referring to spectral profiles and observed

reference values, resulting in a high accuracy and an R2P of 0.963

(Su and Sun, 2019).

Internal defects are detected as internal injury such as rot and

water core inside the flesh of the fruits and vegetables due to

postharvest problems(Ruiz-Altisent et al., 2010). Flavor or taste is

defined by the sugar (sweetness), acidity (sourness), bitterness, and

saltiness perceived by the tongue and nose (Zhu et al., 2020). It is,

therefore, measured subjectively through oral testing or smelling, or
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liquid and gas chromatography (Yahaya et al, 2017). Korean

universities conducted research on the taste and odor properties

of broccoli using electronic sensors (Hong et al., 2022). For

electronic tongue analysis, thermal processing boosted sourness

and umami tastes while decreasing saltiness, sweetness, and

bitterness (Hong et al., 2022). Therefore, the capability of non-

destructive spectral measurement methods to assess inside

parameters is important to maintain the flesh quality of tropical

fruits and vegetables.
3 Non-destructive spectral
measurements for the quality
evaluation of tropical fruits
and vegetables

Non-destructive techniques for qualitymonitoring of tropical fruits

and vegetables refer to the process of inspecting their external and

internal properties without causing damage or changing their physical

and internal status (El-Mesery et al., 2019). The potential for employing

spectral measurement approaches in the quality control of fruits and

vegetables is growing enormously (Escárate et al., 2022). The reason is

that these approaches are non-destructive, fast and accurate, capable

for both quantitative and qualitative analysis, thereby requiring

minimal sample preparation (Cozzolino, 2022). We divided non-

destructive spectral measurements into two categories: (1) spectral-

based approaches (FTIR, NIR, and Raman spectroscopy) and (2)

imaging-based approaches (HSI), as shown in Figure 1.
Non-destructive spectral 
measurements

Spectral based 
measurements

Fourrier transform 
infrared (FTIR)

Near infrared 
(NIR) Raman

Imaging based 
measurement

Hyperspectral 
imaging (HSI)

FIGURE 1

The schematic diagram of commonly used non-destructive spectral measurements.
TABLE 5 The internal quality parameters of tropical fruits and vegetables.

Internal quality Indicator References

Texture Firmness, crispness, and juiciness (Fillion and Kilcast, 2002), (Magwaza and Opara, 2015)

Nutrients Chemical compositions (vitamins, sugars, proteins, and functional properties) (Leiva-Valenzuela et al., 2013), (Aziz et al., 2021)

Internal defect Internal cavity, water core, and rot (Yahaya et al, 2017), (Ruiz-Altisent et al., 2010)

Flavor Sweetness, sourness, saltiness, and bitterness (Yahaya et al, 2017), (Zhu et al., 2020)
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3.1 Spectral-based approaches

Spectral measurement refers to effective techniques used to

study the quality parameters of various agricultural materials

including tropical fruits and vegetables by investigating light,

sound, or particles that are emitted, absorbed, or scattered during

measurement (Pathare and Rahman, 2022). Spectroscopic

techniques based on FTIR, NIR, and Raman have been successful

and popular in the detection of quality parameters of fruits and

vegetables (Dasenaki and Thomaidis, 2019). Various research

works have used spectral techniques focusing on fruits and

vegetables, such as in the fast determination of the sugar and acid

composition of citrus (Clark, 2016), assessment of primary sugars

and amino acids in raw potato tubers (Ayvaz et al., 2015), and

determination of nutrients and moisture content of fruits and

vegetables (Sirisomboon, 2018). Quality parameters of tropical

crops can be assessed by one of—or a sequence of—the above

complementary techniques, which are distinguished depending on

the infrared region (IR) they occupy and the molecular vibrations

they detect (Bureau et al., 2019). The infrared region of the

electromagnetic spectrum, presented in Figure 2, is separated into

three sections, namely near-infrared (NIR), mid-infrared (MIR),

and far-infrared (FIR) (Yeap and Hirasawa, 2019). Mango maturity

has been predicted using the near-infrared (NIR) spectral region of

1200-2200 nm (Jha et al., 2014). The mid-infrared (MIR) spectral

range of from 2500 to 25000 nm has been used in the prediction of

banana maturity and geographical origin by Zhang et al. (Zhang

et al., 2021), and in the measurement of soluble solids, total acids,

and total anthocyanin in berries (Clark et al., 2018). Far-infrared

(FIR) ranges have often been reported to be between 25000 and

300000 nm (Larkin, 2017). However, FIR applications are not

clearly defined and are limited due to challenges in developing

FIR instrumentation; furthermore, the band assignments of low-

frequency vibrational modes are not straightforward (Ozaki, 2021).

These spectral ranges are based on their relationship to the visible

spectrum, which falls between 380 and 780 nm (Su and Sun, 2018).

3.1.1 Fourier transform infrared spectroscopy
FTIR is a form of vibrational spectroscopy that uses light

interference to identify the chemical composition of scanned
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samples by producing infrared absorption or emission spectra

(Larkin, 2017). On the electromagnetic spectrum, FTIR operates

in the MIR region (2500 to 25000nm) and generates fruit or

vegetable chemical profile by capturing the principle vibrational

and rotational stretching modes of molecules (Lohumi et al., 2015).

FTIR spectroscopy comprises of an infrared light source,

interferometer, sample, and detector, shown in Figure 3. The

principal part is the interferometer which is made up of three

components: the beam splitter, collimator, and the two mirror

(fixed and movable mirror) (Patrizi and Cumis, 2019). When the

radiation from the light source passes through the collimator,

strikes the beam splitter which ideally divide it into two beams.

The first beam hits the static mirror, and is reflected back; while the

second hits the movable mirror where it enters through the sample

toward the detector (Blum and Harald, 2012).

The FTIR associated with attenuated total reflection (ATR-

FTIR) has recently gained importance (Chan and Kazarian, 2016).

The ATR works under the principle of total internal reflectance

where infrared light interacts with the sample of high refractive

index only at the point where infrared light is reflected (Ryu et al.,

2021). Unlike transmission methods, the ATR-FTIR technique can

be used to study solid, liquid, and paste samples with minimal

sample preparation (Glassford et al., 2013).The combination of

ATR-FTIR and chemometrics was promising in the assessment of

added sugar content, (ASC), total soluble solids (TSS) and real juice

content (RJC) of fresh and commercial mango juice (Jha and

Gunasekaran, 2010). PLS and MLR models resulted into accuracy

of 0.99 and 0.98 respectively (Jha and Gunasekaran, 2010). Canteri

et al. (Canteri et al., 2019) have used ATR-FTIR to evaluate the cell

wall compositions of 29 species of fruits and vegetables as freeze-

dried powders and alcohol-insoluble solids. The results were

accurate, with determination coefficient R2 ≥ 0.9 (Canteri et al.,

2019). Recently, Sinanoglou et al. (Sinanoglou et al., 2023)

conducted the evaluation of both peel and fresh banana ripening

stage by ATR-FTIR, along with image analysis, discriminant and

statistical analysis (Sinanoglou et al., 2023). The computed features

were accurate enough to separate ripening stages; however,

monitoring of the banana ripening process was highly reliant on

the instrument employed for image analysis such as digital cameras,

smartphones, and electronic noses (Sinanoglou et al., 2023).
FIGURE 2

Modified diagram showing the infrared regions of the electromagnetic spectrum (Yeap and Hirasawa, 2019), (Aboud et al., 2019).
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3.1.2 Near-Infrared spectroscopy
NIR is used to rapidly ascertain the chemical constitution of

materials according to overtones and harmonic or combination

bands of specific functional groups (Kusumaningrum et al., 2018).

Those overtones and combinations of vibrational bands

characterized by C–H, O–H, and N–H are gained by NIR in the

wavelength region of 780-2500nm (Ozaki et al., 2006). Tsuchikawa

et al. (Tsuchikawa et al., 2022) described NIR as a spectroscopic

method that is suitable for samples of high water content, including

fruits and vegetables (Tsuchikawa et al., 2022). NIR spectroscopy

consists of a light source, sample accessory, monochromator

(grating), detector, and optical components such as lenses and

optical fibers, as shown in Figure 4 (Lee et al., 2011).

The illumination of NIR light to the sample occurs in three

ways: reflectance, interactance and transmittance (Wang et al.,

2014). According to Hong and colleagues, reflectance employs

high light energy, has no contact with the fruit surface, and the

source and sensor are placed at a specified angle (Hong and Chia,

2021). Specular reflectance and diffuse reflectance are two types of

reflectance measurement. Specular reflectance, which occurs when

the incident and reflected angles are same, detects nothing from the

inside part of the fruit (Hong and Chia, 2021); While the capacity of
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diffuse reflectance to constrain light dispersion into solid samples

allows the acquisition of interior fruit information (Tang et al.,

2022). Mango TSS, firmness, TA, and ripeness index (RPI) were

effectively measured by NIR diffuse reflectance, with R2 of 0.9; 0.82;

0.74; and 0.8, respectively. The effect of changes in physicochemical

properties of mango during ripening, on the other hand was

highlighted (Rungpichayapichet et al., 2016). Kusumiyati et al.

(Kusumiyati and Suhandy, 2021) also evaluated TSS and Vitamin

C using the same fruit and NIR spectra acquisition mode. The

diffuse reflectance spectra were documented and found to be in

relation with TSS, vitamin C (Kusumiyati and Suhandy, 2021).

Delwiche et al. (Delwiche et al., 2008) demonstrated the use of

near infrared interactance (750-1088nm) to determine mango

ripeness, SSC and other sugars. The mango sample was placed in

contact with the probe in which the top of mango upwardly points

the probe. The R2 was 0.77; 0.75; 0.67; and 0.70 for SSC, sucrose,

glucose, and fructose, respectively. Sugars such as sucrose indicates

mango sweetness, fructose and glucose increases during ripening

while acidity decreases (Delwiche et al., 2008). Transmission mode

in which the light source and sensor are opposite to each other,

employs low light intensity to reflect the inner parameters and is

performed with no contact on the fruit (Nicolaï et al., 2007).
FIGURE 4

Modified diagram of NIR spectroscopy, taking avocado as sample (Chandrasekaran et al., 2019).
FIGURE 3

Modified diagram of FTIR spectroscopy taking banana as sample (Patrizi and Cumis, 2019).
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Transmission might be done partially or fully. Though, the

difference between partial transmission and diffuse reflectance

remains undetermined since both evaluate the radiation that

partly enters the sample and diffusely reproduced to the sensor

(Hong and Chia, 2021). The fruit with large seed such as mango was

reported to be hard to measure in the full transmission due the low

signal to noise ratio (Greensill and Walsh, 2000). Subedi at al.

(Subedi and Walsh, 2011) detected the TSS and DM of mesocarp

tissue of banana and mango by partial transmittance. Mango DM

gave R2cv =0.75 while banana performance negatively influenced by

the thickness of the peel. The TSS results on mango was good in ripe

and poor in ripening stage with R2cv > 0.75 and R2p < 0.75

respectively. The results were consistent with those of

Rungpichayapichet et al. (Rungpichayapichet et al., 2016) and

were found to be caused by the physiological factors of Mango,

banana, and other tropical fruits which can change their starch

content as they ripe (Subedi and Walsh, 2011).

Several studies have highlighted the potentials of NIR

spectroscopy to monitor the internal and external characteristics

of tropical fruits and vegetables, including the following: maturity

prediction of avocado and mango (Olarewaju et al., 2016; S. N. Jha

et al., 2014), total soluble solids and pH of banana (Ali et al., 2018),

and variety identification in sweet potatoes (Su et al., 2019).

However, the irregular thick skin of pineapple and chemical

complexity of large seeded mango was the main difficulty to

Guthrie et al. (Guthrie and Walsh, 1997) in the measurement of

SSC by NIR reflectance (760-2500nm). The penetration depth of

NIR light into a thick-rind avocado 38 mm in diameter and 10 mm

in thickness was investigated for the maturity evaluation of avocado

using an NIR spectrometer (800–2400 nm) (Olarewaju et al., 2016).

The models for estimating oil content, were acceptable, however

were not accurate, with an RPD value of less than 1.0 and an R2

value of 0.58 (Olarewaju et al., 2016). Arendse et al. (Arendse et al.,

2018) informed the limited accuracy of NIR for internal quality

assessment of fruits and vegetables with thick rinds such as banana,

avocado and pineapple due to inadequate penetration depth

(Arendse et al., 2018). Therefore, future studies can consider the

appropriate selection of NIR optical geometry and wavelength
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range to improve the prediction accuracy of thick rind tropical

crops (Pratiwi et al., 2023).

NIR spectral data inevitably holds overlay information of

numerous organic compounds at global wavelengths, making the

use of global spectroscopic regions problematic rather than specific

wave bands (Lin and Yibin, 2009). Therefore, a combination of

algorithms and chemometrics with NIR spectroscopy is now being

used to meet this demand, balance data redundancy and

complexity, and collect spectral information (Guan et al., 2019;

Yang et al., 2021). Portable NIR spectroscopy was used to assess

mango firmness during ripening (400–1130 nm) (Mishra et al.,

2020). Pre-processing was done Savitzky–Golay filter, and iPLSR

model was found to provide better predictive modeling, with an R2p

of 0.75 and an RMSEC of 5.92 Hz2g2/3 compared to the standard

PLSR model, which had an R2p of 0.67 and an RMSEC of 6.88

Hz2g2/3. For the firmness in mango fruit, spectral intervals 743-770

nm and 870-905 nm were found to be the accurate predictors

(Mishra et al., 2020).

3.1.3 Raman spectroscopy
Raman is another form of vibrational spectroscopy that uses

laser beams to interact with materials and operates in the infrared

region of the electromagnetic spectrum from 2500 to 25000 nm

(Siesler et al., 2008). Though Raman and MIR spectroscopy

methods use high levels of energy to detect molecular vibrations,

Raman spectroscopy excels at equal vibrations of nonpolar sets,

while MIR spectroscopy excels at the unequal vibrations of polar

sets (Campanella et al., 2021). Raman spectroscopy consists of a

monochromatic laser, wavelength separator, and a detector, as

presented in Figure 5 (Qin et al., 2019). When the laser beam

illuminates the sample, the photons that constitute the light are

absorbed, transmitted, or scattered by the sample in different

directions before reaching the detector (Larkin, 2017). Absorption

and transmission are linked with the infrared spectra (IR), while

scattering is associated with the Raman spectra (Jones et al., 2019).

Rostron et al. (Rostron et al., 2016) defined scattered photons in two

different ways namely Rayleigh (elastic) scattering and Raman

(inelastic) scattering (Larkin, 2017). Rayleigh (elastic) scattering
FIGURE 5

Modified diagram of Raman spectroscopy, taking mango as sample (Lohumi et al., 2015).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1240361
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Aline et al. 10.3389/fpls.2023.1240361
occurs when the photons scattered are equal to those illuminated to

the sample; while Raman (inelastic) scattering is due to the transfer

of energy between photons and the sample under testing (Lu, 2017).

Raman spectroscopy is suitable for investigating carotenoids in

various plants, including carrots (Lawaetz et al., 2016), tomatoes

(Hara et al., 2018), plant cells (Baranska et al., 2011), and mango

(Bicanic et al., 2010). Furthermore, Raman has been applied as a

clean and fast approach to assess cassava starch adulteration

(Cardoso and Jesus Poppi, 2021). Two chemometrics models,

namely one-class support vector machines (OC-SVMs) and soft

independent modelling by class analogy (SIMCA), were used and

compared statistically. The OC-SVM results outperform those of

SIMCA, with an accuracy of 86.9% (Cardoso and Jesus Poppi,

2021). Surface-enhanced Raman spectroscopy (SERS) was used as a

method that applies Raman spectroscopy in conjunction with

nanotechnology for the fast analysis of pesticide residues in

mango (Pham et al., 2022). SERS results were good indicating

that the residues in mango sample were in the suitable range (Pham

et al., 2022). Morey et al. (Morey et al., 2020) used spatially offset

Raman spectroscopy for potato varieties quality categorization and

prediction of tuber cultivation source. This approach is fast since it

can be used directly after potato harvesting (Morey et al., 2020).
3.2 Imaging-based approaches

Spectral imaging techniques are among the most effective

detection methods because of their potential to obtain both

spectral and spatial dimensions of produce simultaneously during

measurement (Liu et al., 2017). Regarding spatial dimensions,

external attributes such as size, shape, appearance, and color can

be evaluated, while with spectral analysis, internal features such as

chemical composition can be measured (Pu et al., 2015). A number

of imaging techniques use two-dimensional geometry according to

the fusion and luminance of color maps (Lu et al., 2014), while

others involve the use of three-dimensional sensors such as RGB

and hyperspectral images (Barnea et al., 2016) to provide a high

fruit and vegetable recognition accuracy (Nyarko et al., 2018).
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In agriculture and food systems, hyperspectral imaging is a

powerful system that joins two aspects of imaging and spectroscopy

to attain a three-dimensional (3D) hypercube data form and

analyzes a broad spectrum at each pixel instead of assigning only

main RGB colors (red, green, and blue) (Khan et al., 2021). The

hypercube consists of 3D images characterized by 2D spatial and 1D

spectral dimension or wavelength (Tang et al., 2022). Hyperspectral

imaging employs more than ten contiguous wavelengths or narrow

bands in which each pixel has a full continuous spectrum (Elmasry

et al., 2019). To take sample images, the hyperspectral imaging set

up can be in the reflectance, transmittance, and interactance which

differs in their lighting configuration during crops measurements

(Pan et al., 2017). The reflectance geometry is appropriate for

assessing the external quality of products, whereas the

transmittance performs better in measuring the internal

components in relatively translucent membranes (Li et al., 2018).

The HSI system comprises of four main components: (1) an

imaging unit, (2) illumination (light source), (3) a sample stage,

and (4) a computer, as presented in Figure 6 (Pu et al., 2015). The

light source is divided into illumination and excitation sources for

spectral imaging applications. Broadband lights are commonly used

as an illumination source for reflectance and transmittance, whereas

narrowband lights are for the excitation source (Qin et al., 2013).

The lighting devices produce light that illuminates the sample. The

camera transports chemical information as well as light from the

light source. The wavelength dispersion device, which can be a

grating or a prism, divides the light into different wavelengths and

directs the dispersed light to the sensor (Wu and Sun, 2013). Aozora

et al. (Aozora et al., 2022) studied the efficiency of hyperspectral

imaging (935–1720 nm) in the evaluation of water activity in

dehydrated pineapple. The accuracy of the tested model showed

good accuracy, with 0.72 and 0.0054 for Rp of and RMSEP

respectively (Aozora et al., 2022).

3.2.1.1 Hyperspectral imaging Image generation modes

HSI generates image in three ways: whisk broom (point

scanner), push broom (line scanner), and tunable filter (area
FIGURE 6

Modified diagram of Hyperspectral imaging, taking pineapple as sample (Li et al., 2018).
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scanner) (ElMasry and Sun, 2010). The point scan excites only a

single spot on the object’s surface and the single pixel is recorded.

The spectrum is taken at both positions by moving the sample

symmetrically in two spatial dimensions, in order to get the full HSI

image (Qin, 2012). However, to obtain good results this technique

involves double scanning of the sample and hardware relocation

which takes a lot of time to complete the measurement (Qin, 2012).

The line scanner excites a line on the object and records the whole

line of an image using a 2D dispersing element and 2D detector

array. The object is moved line by line and the whole set of spatial–

spectral data is gained. This approach has a higher acquisition rate

but lower sectioning ability (Qin, 2010). The area scan employs

spectral scanning techniques to stimulate the broad area on the

surface of the fruit or vegetable, which is held fixed and a scan with

full spatial information is achieved consecutively across the entire

spectral range. This method is appropriate for applications where

sample mobility is not necessary (Lu et al., 2017).

The hyperspectral imaging together with chemometrics models

is an appealing option for dealing with large sets of complex, high-

dimensional data (Lorente et al., 2012). Chu et al. (Chu et al., 2022)

confirmed the efficacy of the HSI reflectance (386-1016 nm)

wavelength region in combination with variable selection

algorithms and chemometrics for predicting green banana

maturity level and characterization of banana quality during

maturation (Chu et al., 2022). The line scanning approach was

adopted and the calibration models used were partial least squares

(PLS) and interval PLS methods (Chu et al., 2022). These models

obtained acceptable values R2 = 0.64 and 0.59 for SSC and TA,

respectively, whereas the models for chlorophyll and DE* were

suitable only for sample screening with R2 = 0.34 and 0.30,

respectively (Chu et al., 2022). Chu reported the inclusion of

more samples and different cultivars of banana for model

improvement (Chu et al., 2022). Kämper et al. (Kämper et al.,

2020) used Vis–NIR–HSI to measure nutrients in avocado fruit.

PLSR was used to obtain the ratio of unsaturated to saturated fatty

acids in avocado fruit with (R2 = 0.79, RPD = 2.06) and (R2 = 0.62,

RPD = 1.48) for flesh images and skin images respectively (Kämper

et al., 2020). The robust models for flesh images were R2 = 0.67; 0.61;

and 0.53, of oleic-to-linoleic acid ratio, boron (B) and calcium

concentration (Ca) respectively, while for skin images was R2 = 0.60

of boron (Kämper et al., 2020).
4 Advancement in non-destructive
spectral measurements for tropical
fruit and vegetable quality assessment

The rapid advancement of technology in the agricultural field

has resulted in the combination of artificial intelligence with non-

destructive spectral measurements for fruits and vegetables quality

measurement (Hasanzadeh et al., 2022). Artificial intelligence

models such as artificial neural networks (ANNs), genetic

algorithms (GAs), fuzzy logic (FL), and adaptive neuro-fuzzy

inference system (ANFIS) can assess multiple characteristics

simultaneously (Homayoonfal et al., 2022). Salehi reviewed
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development of models used in the determination of fruits and

vegetables quality (Salehi, 2020). ANNs, GAs, FL, and ANFIS

detected defects, moisture content, and chilling injury of oranges,

cherries, pomegranates, apples, peaches, avocados, button

mushrooms, tomatoes, and potatoes (Salehi, 2020). Despite the

fact that these models are typically constrained by normality,

linearity, homogeneity, and variable independence, the ANFIS

model outperforms others and can be successfully used in

relevant research (Salehi, 2020).

Machine learning (ML) is a branch of artificial intelligence and

an integral part of the development of many sensing technologies

that are responsible for information retrieval, signal processing, and

data analysis (Li et al., 2021). In recent decades, traditional

algorithms such as linear discriminant analysis (LDA), support

vector machines (SVMs), K-nearest neighbors (K-NN), naïve Bayes,

extreme learning machines (ELMs), decision trees (DTs), and K-

means clustering have been deployed (Fadchar and Dela Cruz,

2020). For instance, Rivera et al. (Rivera et al., 2014) used NIR–HSI

and machine learning for the early detection of mechanical damage

in mango. LDA, K-NN, naïve Bayes, ELMs, and DTs were used for

categorization. Bayes failed, however (K-NN, ELM, DT, and LDA

Title altered) results was more than 90%. The highest performance,

achieved by K-NN, was 97.9% (Rivera et al., 2014).

The evolution of deep learning (DL) as a breakthrough machine

learning method has been trending since 2017 due to the manual

feature extraction of traditional machine learning methods (Yang

and Xu, 2021) and limited performance of chemometrics models,

such as spectral variability caused by sample and spectrometer

heterogeneity, changing environmental conditions, and infrared

spectral data with high noise, which hinder feature extraction

using chemometrics models (Zhang et al., 2021). Deep learning is

a subset of machine learning that use many neural network layers to

extract complex feature representations with numerous levels of

abstraction (Lecun et al., 2015). According to Kamilaris et al.

(Kamilaris and Prenafeta-Boldú, 2018), convolutional neural

network (CNN) and recurrent neural network (RNN) have been

implemented for crop-type classification, counting produces, and

locating their placement in the image using bounding boxes

(Kamilaris and Prenafeta-Boldú, 2018). However, the RNN was

found to perform better than the CNN because it considers not only

space but also the time which helps to capture the time dimension

(Kamilaris and Prenafeta-Boldú, 2018). Deep learning and machine

learning technology-based spectral analysis has been used in the

classification of three types of fruits (apple, lemon, and mango) by

type of damage, type of goods, and whether the sample is raw in

market, supermarket, wholesaler, and retailer applications (Bobde

et al., 2021).

Garillos-Manliguez et al. (Garillos-Manliguez and Chiang,

2021) estimated six maturity stages of papaya fruit, from the

unripe stage to the overripe stage, by feature concatenation of

data obtained from visible light and HSI imaging (Garillos-

Manliguez and Chiang, 2021). AlexNet, VGG16, VGG19,

ResNet50, ResNeXt50, MobileNet, and MobileNetV2 architectures

was then modified to apply multimodal data cubes made of RGB

and hyperspectral data (Garillos-Manliguez and Chiang, 2021).

Regarding classification of the six stages, these multimodal
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variations can reach F1 scores of up to 0.90 and a 1.45% top-2 error

rate. However, due to the small size of the images and the great

depth of the CNNs, resulting in highly tightly tuned training

variables, overfitting may arise. On the other hand, increasing

image size results in insufficient memory faults (Garillos-

Manliguez and Chiang, 2021).

Banana fruit was graded by Mesa et al. (Mesa and Chiang, 2021)

using multi-input deep learning model with RGB and HSI. These

models were able to categorize tier-based bananas by 98.45% and an

F1 score of 0.97 with only few samples (Mesa and Chiang, 2021).

However, this technique is expensive and time consuming due to

the use of two cameras. The next studies instead, should consider

the use of more improved camera systems with features that can

extract both RGB and HSI simultaneously (Mesa and Chiang,

2021). Another study by Ucat and Cruz explored the use of image

processing with a deep learning to grade banana according to their

specifications (Ucat and Dela Cruz, 2019). The trained, validated,

and test data by CNN model was more than 90% in all four classes

of bananas (). The suggested CNN grading system in the tensor flow

model can be commercially developed (Ucat and Dela Cruz, 2019).

Portable spectrometers and real-time online detection devices

have recently developed for fruits and vegetables quality assessment.

Portable devices are handheld, light weight, compact size and they

are applied for in-field measurements (Sohaib et al., 2020). The

combination of portable NIR device with MSC-PCA+LDA model

was used to evaluate pineapple quality. These models were

recommended to be developed in mobile phone while PLS

regression model provided 85% accuracy (Amuah et al., 2019).

Subedi et al. (Subedi and Walsh, 2020) evaluated three hand held

portable near infrared spectroscopy (F750, Micro NIR and Scio

v1.2) in the detection of dry matter content (DMC) in avocado fruit.

The second derivative spectra were recorded for the intact and skin

removed avocado fruit for reflectance and interactance optical

geometry. The best results of prediction obtained from the F750

instrument using the interactance mode at 720-975 nm with R2p of

0.71 and 0.88 for intact and skin removed fruits respectively (Subedi

and Walsh, 2020). Real time monitoring device was designed as

sensor which can function in all post-harvesting states to control the

shelf life of fruits and vegetables such as lettuce. The device found to

be the feasible for controlling the behavior of the crop during the

post handling chain (Torres-Sánchez et al., 2020). Fruits and

vegetables including banana, orange and apple were well sorted

according to their external appearance by using real time online

system with artificial intelligence (Tata et al., 2022). For quality

categorization, machine learning models such as CNN and image

processing were performed. This real time system was created in

android and can be deployed in market robots where checking of

huge number of products is required (Tata et al., 2022).
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5 Conclusion and future prospects

Non-destructive spectral measurement has emerged as a

prominent solution in the agricultural sector. With the

introduction of spectral measurements, there has been rapid

progress in analyzing both the internal and external

characteristics of tropical fruits and vegetables in a low-cost,

accurate, real-time, and fast manner (Ali et al., 2017). Techniques

based on FTIR, NIR, and Raman spectroscopy require simple steps

to prepare samples prior to analysis (Abbas et al., 2020). In contrast

to other imaging techniques such as computer vision, acoustic

approaches, electric noses, and fluorescence, HSI uses spectral

and spatial data to assess different parameters concurrently (Lu

et al., 2020). The spectral measurements presented in this review

have shown potential applications for a diverse range of tropical

fruits and vegetables for the monitoring and detection of quality

attributes such as SSC, TSS, TA, color, size, defects, and texture,

which is particularly important for fruit and vegetable processors,

food safety agencies, and consumer demands.

Significant advancements in non-destructive spectral measurement

technology have occurred recently, including the development of

portable spectrometers for real-time and field applications. The

combination of spectral measurements and chemometric techniques

is a powerful tool for multivariate data analysis, mainly in the

improvement of models needed for classification and estimation of

quality. A practical case study of Metlenkin et al. (Metlenkin et al.,

2022) in the identification and classification of Hass avocado defects

before and after storage by HSI and chemometrics. The PLSDA and

SIMCA were selected as chemometric methods for multivariate data

discrimination and classification. To increase the final model accuracy

the calibration was performed by selecting the region of interest. The

results revealed the high potential of SIMCA during both modelling

and test validation with 100% accuracy. Furthermore, the integration of

spectral measurements with deep learning and machine learning

technology is rapidly expanding in order to improve quality control

accuracy while overcoming the challenges associated with

chemometrics such as spectral variability, spectrometer heterogeneity,

changing environmental conditions, and infrared spectral data with

high noise. The revolution in agriculture and the adaptation of

numerous tropical plants to regions outside of their natural range

have muddied their classification, and little is known about what

properly defines and distinguishes tropical fruits and vegetables from

their temperate counterparts. Therefore, there is confusion associated

with those studies that reported the classification of tropical fruits and

vegetables as an important factor to consider when examining the

distinctive quality indicators of these crops. Taking into accounts all of

the merits and demerits of non-destructive spectral measurements for

the quality monitoring of tropical fruits and vegetables, the use of an
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adequate number of samples, different cultivars of the fruit and

increasing the quality attributes to predict can help to develop robust

models that emphasize the variability of tropical fruits and vegetables in

terms of size and shape, skin thickness, and growing conditions.
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