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Effects of nitrogen stress and
nitrogen form ratios on the
bacterial community and
diversity in the root surface and
rhizosphere of Cunninghamia
lanceolata and Schima superba

Yanru Wang, Xiaoyu Li, Xiaoqiang Quan, Haiyan Liang,
Lidong Wang and Xiaoli Yan*

College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
Background: The bacterial communities of the root surface and rhizosphere play

a crucial role in the decomposition and transformation of soil nitrogen (N) and

are also affected by soil N levels and distribution, especially the composition and

diversity, which are sensitive to changes in the environment with high spatial and

temporal heterogeneity of ammonium N (NH4
+-N) and nitrate N (NO3

--N).

Methods: One-year-old seedlings of Cunninghamia lanceolata and Schima

superba were subjected to N stress (0.5 mmol L-1) and normal N supply (2

mmol L-1), and five different N form ratios (NH4
+-N to NO3

--N ratio of 10:0, 0:10,

8:2, 2:8, and 5:5) were created. We analyze the changes in composition and

diversity of bacteria in the root surface and rhizosphere of two tree species by

high-throughput sequencing.

Results: Differences in the composition of the major bacteria in the root surface

and rhizosphere of C.lanceolata and S. superba under N stress and N form ratios

were not significant. The dominant bacterial phyla shared by two tree species

included Proteobacteria and Bacteroidota. Compared to normal N supply, the

patterns of diversity in the root surface and rhizosphere of two tree species under

N stress were distinct for each at five N form ratios. Under N stress, the bacterial

diversity in the root surface was highest at NH4
+-N to NO3

--N ratio of 10:0 of C.

lanceolata, whereas in the root surface, it was highest at the NH4
+-N to NO3

--N

ratio of 0:10 of S. superba. The NH4
+-N to NO3

--N ratio of 5:5 reduced the

bacterial diversity in the rhizosphere of two tree species, and the stability of the

bacterial community in the rhizosphere was decreased in C. lanceolata. In

addition, the bacterial diversity in the root surface was higher than in the

rhizosphere under the N stress of two tree species.

Conclusion: The bacterial compositions were relatively conserved, but

abundance and diversity changed in the root surface and rhizosphere of C.
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lanceolata and S. superba under N stress and different N form ratios. The

heterogeneity of ammonium and nitrate N addition should be considered for

N-stressed environments to improve bacterial diversity in the rhizosphere of two

tree species.
KEYWORDS

nitrogen stress, nitrogen form ratio, root surface and rhizosphere, bacterial community,
Cunninghamia lanceolata, Schima superba
Introduction

Nitrogen (N) is one of the nutrient elements necessary for the

normal functioning of the plant organism, and it can affect the

metabolism and resource allocation of plants. It has become the

main factor restricting plant growth in terrestrial ecosystems

(Veresoglou et al., 2012). The main inorganic N that can be directly

absorbed and utilized by plants are ammonium nitrogen (NH4
+-N)

and nitrate nitrogen (NO3
−-N), which have strong temporal

fluctuations and spatial heterogeneity in forest soils. In particular, the

soil N conversion process makes their content and distribution highly

heterogeneous (Zhou et al., 2013; Carvalho et al., 2015; Xiao et al.,

2017). As N deficiency and heterogeneous distribution environments

are prevalent in nature, plants have developed a variety of adaptive

mechanisms to respond to N stress and regulatory strategies for the

uptake and utilization of different N forms during long-term evolution

(Nacry et al., 2013; Kiba and Krapp, 2016). One of the most important

response strategies is to coordinate the microorganisms in the plant

rhizosphere to adapt to the N-deficient environment to promote plant

growth (Choudhary et al., 2016). In addition, an important study has

shown that the root compartment consists mainly of the inner root

layer, the root surface, and the rhizosphere. Different root

compartments have different microbiomes (Edgar, 2013; Zgadzaj

et al., 2016). Therefore, studying the differences in bacterial

communities between the root surface and rhizosphere under

different N supply levels and N form ratios is helpful to reveal the

responses of core bacteria in the root compartment to N deficiency and

heterogeneous distribution environments.

Soil microorganisms play an important role in converting insoluble

minerals into forms available to roots due to their rapid reproduction,

large numbers, and high metabolic capacity. Moreover, they are also

extensively involved with the soil N cycle and have an important

influence on biogeochemical cycles (Jing et al., 2015; Dini-Andreote

et al., 2016). Bacteria are one of the most essential taxa of soil

microorganisms. They are extremely sensitive to changes in the

nutrient environment, especially the N content of the soil around

roots, which is one of the most important factors influencing soil

microbial diversity and community structure (Kavamura et al., 2018;

Chen et al., 2019; Li et al., 2020). Excessive N addition significantly

suppressed the abundance and diversity of the bacterial community,

especially the abundance of N-fixing bacteria (Berthrong et al., 2014;

Zeng et al., 2016; Zhang, 2003). Simultaneously, the rhizosphere

bacteria help plants uptake N and indirectly contribute to the
02
maintenance of mineral–nutrient balance (Bai et al., 2022). In

addition, it has been found that soil ammonium N effectiveness may

also lead to changes in bacterial richness. The bacterial communities are

significantly correlated with soil nitrate N content under N deficiency in

wheat, and N deficiency significantly inhibited the propagation of

ammonia-oxidizing microorganisms such as the Nitrospirae phylum

(Xiong et al., 2022). Acidic bacteria had different response

characteristics to NH4
+-N and NO3

−-N. The abundance of acidic

bacteria under the NH4
+-N treatment was higher than that under the

NO3
−-N treatment, but their abundance decreased with the increase of

NH4
+-N (Zhao et al., 2015; Guo J. et al., 2021). Therefore, exploring the

effects of different N form ratios of ammonium and nitrate on bacterial

communities is key to understanding soil microbial diversity.

As the main silvicultural species in the subtropical region of

China, Cunninghamia lanceolata and Schima superba occupy an

important position in China’s southern forestry. More than 20

million ha of forest plantations are made of the fast-growing

conifers of C. lanceolata in southern China. In recent years, the

problems of pure forestation and multi-generational succession of

C. lanceolata have resulted in decreasing soil fertility, lower stand

yield, and low ecological service function, which have seriously

affected their sustainable management and development (Tian et al.,

2011; Liu et al., 2018; Suo et al., 2019; Fei et al., 2020). NH4
+-N and

NO3
−-N deficiency is one of the major factors limiting the

productivity of C. lanceolata and S. superba plantations. It is

particularly important to optimize planting under N deficiency

and heterogeneous distribution environments to balance the

economic and ecological benefits of forest plantations. Studies

have shown that C. lanceolata preferred the uptake of ammonium

N, while S. superba preferred the uptake of nitrate N (Yan et al.,

2020). Selecting broadleaf species with different ecological strategies

to create mixed forests can reduce the negative effects of planting

artificial coniferous forests and pure forests of fast-growing species.

Research on the microbial communities in the root surface and

rhizosphere of different tree species needs to be intensified, although

the importance of appropriate mixing is widely recognized.

At present, there are few reports on the effects of N stress and

form ratios on bacterial communities in the root surface and

rhizosphere of C. lanceolata and S. superba, especially because the

effects of different N form ratios on bacterial communities are

relatively scarce. Most of the previous studies on bacterial

communities have focused on the rhizosphere and ignored the

role of the root surface at the critical interface between the plant and
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the soil. In addition, the relationship between the composition and

diversity of bacterial communities in the root surface and

rhizosphere in response to different N form ratios under N stress

is not clear. In summary, under the background of increased soil N

stress and a highly heterogeneous distribution environment, we

investigated the similarities and differences in the composition and

diversity of bacteria in the root surface and rhizosphere of C.

lanceolata and S. superba. The aim is to provide comprehensive

insights into the rational mixing of C. lanceolata and S. superba.

And to provide a scientific basis for rational fertilization of

ammonium N and nitrate N for the two major tree species and

improve soil N use efficiency under N deficiency environments.
Materials and methods

Plant material

In April 2022, the sand culture experiment was conducted in a

light-permeable and well-ventilated greenhouse at Fujian

Agriculture and Forestry University. One-year-old seedlings of C.

lanceolata and S. superba were selected, which had uniform growth

and were free from pests and diseases. The average height of C.

lanceolata seedlings was 22.3 cm, and the average ground diameter

was 3.73 mm, while the average height of S. superba seedlings was

18.5 cm, and the average ground diameter was 2.76 mm. Using

washed river sand as the potting substrate, the sand was repeatedly

washed with distilled water until the N content in the sand was close

to zero (Wu et al., 2011; Yan and Ma, 2021). The washed river sand

was sterilized by autoclave at 120°C for 30 min and then packed into

plastic pots after cooling. The plastic pots have a diameter of 22.5

cm and a height of 24.7 cm. Each pot was filled with an equal

amount of about 50 g of bacterial soil (The tested bacterial soil was

mainly Balloon Moses, and each 10 g of bacterial soil contained

120–150 spores). The roots were dipped into the bacterial soil by the

root dipping method, and the rest of the bacterial soil was evenly

distributed around the roots. The bacterial soil was provided by

Gansu Bofeng Agriculture, Forestry, and Animal Husbandry

Technology Co, Ltd. (Wuwei, Gansu Province, China).
Experimental design and culture of the
seedlings

In the experiment, two levels of N supply were set up. The total

N supply in each treatment was 0.5 and 2.0 mmol L−1, respectively,
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representing N stress (N1) and normal N supply (N2), where the

normal N supply of 2.0 mmol L−1 referred to the results of previous

studies (Zhang et al., 2006; Zhang et al., 2013). Five different ratios

(NH4
+-N to NO3

−-N ratio of 10:0, 0:10, 8:2, 2:8, and 5:5) were

created with two N forms (NH4
+-N and NO3

−-N) labeled as R1, R2,

R3, R4, and R5, respectively (Table 1), of which 5:5 is homogenous N

supply. Each pot contained one seedling. There were three replicate

pots for each treatment, and the total number of pots was 60. NH4
+-

N was supplied as (NH4)2SO4, while NO3
−-N was supplied as

NaNO3, and the concentrations of macroelements (Hoagland

formulation) and micronutrients (Amon formulation) were kept

the same in the nutrient solution of each treatment, except for the

different ratios of NH4
+-N and NO3

−-N concentrations. The pH of

the nutrient solution was maintained at 5.5. To prevent the

conversion of NH4
+-N from being converted to NO3

−-N, the

nitrification inhibitor dicyandiamide (C2H4N4) was added at 7 m
mol L−1 to the nutrient solution (Sun et al., 2015), while NaCl was

used to adjust the difference of Na+ in each treatment by adjusting

the nutrient solution with 2.0 mol L−1 NaOH and HCl solution

(Liang et al., 2022). Each treatment was watered with equal amounts

of pure water every 2 days and 50 ml of nutrient solution every 5

days. The experimental process has lasted a total of 180 days.
Soil sample collection

At the end of the experimental treatment, the entire seedlings of

C. lanceolata and S. superba were dug up. As a sample of

rhizosphere bacteria, the sandy soil attached to the root system

was carefully shaken off and placed in sterile bags. As a sample of

root surface bacteria, the root tip and the sandy soil still attached to

the root system after shaking were also placed in sterile bags. In

addition, samples from the same treatment were pooled into one

sample and well-labeled. The samples were snap-frozen in liquid N

and then stored in an ultra-low-temperature refrigerator at −80°C.
DNA extraction and MiSeq sequencing

The sample DNA was used as a template to complete the

genomic DNA extraction. The Miseq library was then constructed

and sequenced after PCR amplification of the bacterial 16S

ribosomal coding sequence. The amplification primers were 338F:

(5′-ACTCCTACGGGAGGCAGCAG-3 ′) and 806R: (5 ′-
GGACTACHVGGGTWTCTAAT-3′) for the V3~V4 region. PCR

extension reaction system (25 mL): 30 ng DNA sample, 1 mL
TABLE 1 Treatments with different N supply levels and form ratios.

N supply level (mmol L−1) NH4
+/NO3

−

10:0 0:10 8:2 2:8 5:5

NH4
+ NO3

− NH4
+ NO3

− NH4
+ NO3

− NH4
+ NO3

− NH4
+ NO3

−

N stress 0.5 0 0 0.5 0.4 0.1 0.1 0.4 0.25 0.25

Normal N 2.0 0 0 2.0 1.6 0.4 0.4 1.6 1.0 1.0
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Forward Primer (5uM), 1 mL Reverse Primer (5uM), 3 mL BSA (2 ng

mL−1), 12.5 mL 2× Taq Plus Master Mix, and 7.5 mL ddH2O. PCR

amplification reaction: predenaturation at 94°C for 5 min,

denaturation at 94°C for 30 s, annealing at 50°C for 30 s,

extension at 72°C for 60 s, 30 cycles, and extension at 72°C for 7

min. The purification effect of PCR products was detected by 1%

agarose gel electrophoresis, and the pair-end (PE) double-end

sequence data were read using Miseq splicing software. The

measured Fastq data were quality controlled and filtered to finally

obtain high-quality Fasta data. The DNA extraction and sequencing

services were entrusted to Ovation Gene Technology Co. The

original sequencing data were deposited in the NCBI SRA

database under the accession number PRJNA986907.
Statistical analysis of data

The obtained multiple sequence clustering operational

taxonomic units, OTUs, were analyzed for OTU abundance,

Chao1 index, and Shannon index using QIIME 1.8.0. The Chao1

index was calculated as Schao1 = Sobs + n1(n1 − 1)/2(n2 + 1), where

Schao1 is the estimated number of OTUs, Sobs is the observed

number of OTUs, n1 is the number of OTUs with only one

sequence, and n2 is the number of OTUs with only two

sequences. The Shannon index was calculated as H = −∑(Pi) (ln

Pi), where Pi is the proportion of individuals belonging to the

species in the sample (Edgar, 2013; Miller et al., 2016; Rognes et al.,

2016). Statistical analysis was performed using R software for

graphing, and differences between samples were analyzed based

on PLS-DA. Differences between N supply levels, root

compartments, and tree species were tested using an independent

samples t-test, and the differences between five N form ratios at the

same N supply level were tested using a one-way ANOVA

(Duncan’s test, p = 0.05), and a four-way ANOVA was used to

test the significance of comparisons. The above statistical analyses

were performed using SPSS 25.0. Histograms were plotted using

Origin 2019 software.
Frontiers in Plant Science 04
Results

Sequencing quality control and
significance test

Using a series of sequence quality control procedures: screening,

filtering, preclustering process, and chimera removal, 2,599,569 and

2,304,608 sequences were obtained for the root surface and

rhizosphere of C. lanceolata, with an average of 86,652.3 and

76,820.27 sequences per sample, respectively. In total, 2,979,235

and 2,400,314 sequences were obtained for the root surface and

rhizosphere of S. superba, with an average of 99,307.83 and

80,010.47 sequences per sample, respectively. The mean coverage

values were in the range of 0.94~0.96 for the root surface and

rhizosphere of the two tree species (Table 2), indicating that the

library coverage of the four samples and the confidence level of the

bacterial community structure were high.

OTUs were grouped and divided at 97% similarity, and a

multifactorial ANOVA was performed on the number of bacterial

OTUs and diversity indices (Table 3). NH4
+/NO3

− (R), root

compartment (C), tree species (T), N × R, N × C, N × T, R × C, R

× T, C × T, N × R × C, N × R × C, and N × R × T, R × C × T, and N ×

R × C × T interactions had highly significant effects on the bacterial

OTUs in root surface and rhizosphere, Chao1 index, and Shannon

index of the two tree species. N supply level (N), and N × C × T

interaction had significant effects on the OTU and Chao1 index of

the bacterial community, but not on the Shannon index. N × T

interaction had no significant effect on OTU, Chao1 index, and

Shannon index.
Effects of N stress and N form ratios on
bacterial OTUs in the root surface and
rhizosphere of C. lanceolata and S. superba

When the NH4
+-N to NO3

−-N ratio is 10:0, the OTU number in

the root surface of C. lanceolata under N stress was significantly
TABLE 2 Coverage of the bacterial community in the root surface and rhizosphere of C. lanceolata and S. superba at different N supply levels and
form ratio treatments.

Tree species Root compartments N supply level NH4
+/NO3

−

10:0 0:10 8:2 2:8 5:5

C. lanceolata Root surface N1 0.94 ± 0.01Ab 0.95 ± 0.01Aa 0.96 ± 0.01Aa 0.96 ± 0.00Aa 0.96 ± 0.01Aa

N2 0.96 ± 0.00Ba 0.95 ± 0.00Ab 0.95 ± 0.01Aab 0.95 ± 0.01Aab 0.95 ± 0.00Ab

Rhizosphere N1 0.96 ± 0.01Aa 0.96 ± 0.00Aa 0.97 ± 0.01Aa 0.96 ± 0.00Aa 0.96 ± 0.02Aa

N2 0.95 ± 0.00Aa 0.96 ± 0.00Aa 0.96 ± 0.00Aa 0.96 ± 0.01Aa 0.95 ± 0.01Aa

S. superba Root surface N1 0.95 ± 0.01Aa 0.96 ± 0.01Aa 0.96 ± 0.00Aa 0.96 ± 0.00Aa 0.95 ± 0.01Aa

N2 0.95 ± 0.00Aa 0.96 ± 0.00Aa 0.95 ± 0.01Aa 0.95 ± 0.00Aa 0.96 ± 0.02Aa

Rhizosphere N1 0.97 ± 0.01Aa 0.96 ± 0.00Aa 0.96 ± 0.01Aa 0.96 ± 0.00Aa 0.97 ± 0.01Aa

N2 0.96 ± 0.01Aa 0.96 ± 0.00Aa 0.96 ± 0.01Aa 0.96 ± 0.00Aa 0.96 ± 0.00Aa
Different capital letters indicate the significant difference between the N supply level at the same N form ratio, and different lowercase letters indicate the significant difference between the five N
form ratios at the same N supply level (P < 0.05).
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higher than normal N supply and significantly higher than that of

the other four N form ratios (Figure 1A). Under N stress, the OTU

number in the rhizosphere of C. lanceolata was lower than normal

N supply at all five N form ratios, and the OTU number under two

N supply levels showed the lowest at the NH4
+-N to NO3

−-N ratio

of 8:2 and the highest at the NH4
+-N to NO3

−-N ratio of 5:5

(Figure 1B). The OTU number in the root surface of C. lanceolata
Frontiers in Plant Science 05
was higher than in the rhizosphere at all five N form ratios under N

stress (Figure 2A).

When the NH4
+-N to NO3

−-N ratio of 10:0 and 0:10, the OTU

number in the root surface of S. superba under N stress was

significantly higher than normal N supply, and the OTU number

was highest at the NH4
+-N to NO3

−-N ratio of 5:5 at two N supply

levels (Figure 1C). When the NH4
+-N to NO3

−-N ratio is 8:2, the
TABLE 3 Four-way ANOVA of the effects of N supply level, N form ratio, root compartment, and tree species on the OTU, Chao1 index, and Shannon
index.

OTU Chao1 Shannon

F p-values F p-values F p-values

N supply level (N) 6.704 0.011* 40.788 <0.001*** 0.641 0.426NS

NH4
+/NO3

− (R) 14.436 <0.001*** 10.836 <0.001*** 16.723 <0.001***

Root compartment (C) 791.652 <0.001*** 787.379 <0.001*** 661.540 <0.001***

Tree species (T) 194.556 <0.001*** 202.596 <0.001*** 59.999 <0.001***

N × R 17.445 <0.001*** 19.802 <0.001*** 17.047 <0.001***

N × C 43.144 <0.001*** 69.300 <0.001*** 7.666 0.007**

N × T 1.079 0.302NS 2.125 0.149NS 0.242 0.624NS

R × C 7.528 <0.001*** 9.885 <0.001*** 20.782 <0.001***

R × T 15.704 <0.001*** 16.195 <0.001*** 4.274 0.003**

C × T 33.853 <0.001*** 16.923 <0.001*** 53.452 <0.001***

N × R × C 18.435 <0.001*** 25.510 <0.001*** 23.607 <0.001***

N × R × T 6.603 <0.001*** 4.368 0.003** 11.075 <0.001***

N × C × T 7.780 0.007** 32.911 <0.001*** 1.917 0.170NS

R × C × T 15.618 <0.001*** 25.733 <0.001*** 2.776 0.032*

N × R × C × T 16.288 <0.001*** 14.140 <0.001*** 11.441 <0.001***
Significance of analysis of variance factor: NS, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
B

C D

A

FIGURE 1

Number of bacterial OTUs in the root surface and rhizosphere of (C) lanceolata (A, B) and S. superba (C, D) at different N supply levels and N
formratio treatments. Different capital letters indicate the significant difference between the two N supply levels at the same N form ratio, and
different lowercase letters indicate the significant difference between the five N form ratios at the same N supply level (p < 0.05).
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OTU number in the rhizosphere of S. superba under N stress was

significantly higher than the normal N supply. The OTU number

was highest at the NH4
+-N to NO3

−-N ratio of 0:10 under two N

supply levels (Figure 1D). The OTU number in the root surface was

higher than in the rhizosphere of S. superba under all

treatments (Figure 2B).

Under N stress, the OTU number in the root surface of C.

lanceolata was higher than that of S. superba at all five N form

ratios, but the OTU number in the rhizosphere of C. lanceolata was

higher than that of S. superba at most N form ratios (Figures 2C, D).

The OTU number shared by root surface and rhizosphere of C.

lanceolata and S. superba under all treatments showed the root

surface of C. lanceolata > root surface of S. superba > rhizosphere of

C. lanceolata > rhizosphere of S. superba (Figure 3).
Effects of N stress and N form ratios on
bacterial a-diversity in the root surface and
rhizosphere of C. lanceolata and S. superba

Both Chao1 and Shannon indices in the root surface of C.

lanceolate under N stress were highest at the NH4
+-N to NO3

−-N

ratio of 10:0, while it was highest at the NH4
+-N to NO3

−-N ratio of

5:5 under normal N supply (Figures 4A, 5A). The Chao1 index in

the rhizosphere of C. lanceolata under two N supply levels was

highest at the NH4
+-N to NO3

−-N ratio of 5:5, while the Shannon

index was lowest at this ratio (Figures 4B, 5B). The Chao1 index in

the root surface of C. lanceolata was higher than in the rhizosphere

at all five N form ratios under N stress (Figure 6A), and the

Shannon index in the root surface of C. lanceolate was larger than

in the rhizosphere under all treatments (Figure 7A).

Under N stress, the Chao1 index in the root surface of S.

superba was highest at the NH4
+-N to NO3

−-N ratio of 10:0, and the

Shannon index was highest at the NH4
+-N to NO3

−-N ratio of 0:10.
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However, both the Chao1 and the Shannon indices in the root

surface of S. superba were highest at the NH4
+-N to NO3

−-N ratio of

5:5 under normal N supply (Figures 4C, 5C). The Chao1 index in

the rhizosphere of S. superba under N stress was lower than normal

N supply at all five N form ratios, and the Shannon index showed

that N stress was significantly higher than normal N supply at the

NH4
+-N to NO3

−-N ratio of 0:10 and 8:2. Both the Chao1 and

Shannon indices in rhizosphere of S. superba under N stress were

lowest at the NH4
+-N to NO3

−-N ratio of 5:5 (Figures 4D, 5D). In

addition, both the Chao1 and Shannon index in the root surface of

S. superba were higher than in the rhizosphere under all treatments

(Figures 6B, 7B).

Under N stress, the Chao1 index in the root surface and

rhizosphere of C. lanceolata was higher than that of S. superba at

the five N form ratios and the Shannon index in the root surface of

C. lanceolata was higher than that of S. superba at the NH4
+-N to

NO3
−-N ratio of 10:0 and 2:8 (Figures 6C, 7C). Both the Chao1 and

Shannon indices of the rhizosphere were higher in C. lanceolata

than in S. superba (Figures 6D, 7D).
Structural composition of phylum levels in
the root surface and rhizosphere bacterial
communities of C. lanceolata and S.
superba under N stress and N form ratios

At the phylum level, there were 20 most abundant bacteria in

the root surface and rhizosphere of C. lanceolata (Figures 8A, B)

with the same dominant phylum (>10%), Proteobacteria,

Bacteroidota, and Acidobacteriota. Proteobacteria abundance in

the root surface and rhizosphere of C. lanceolata was 23.12%

higher than normal N supply at the NH4
+-N to NO3

−-N ratio of

8:2, and higher in the rhizosphere compared to in the root surface,

while Acidobacteriota abundance was 9.94% higher than normal N
B

C D

A

FIGURE 2

Number of bacterial OTUs in the root surface and rhizosphere of C. lanceolata and S. superba at different N supply levels and N form ratio
treatments. **, p = 0.01 and *, p = 0.05 indicate significant differences between root compartments (A, B) and tree species (C, D) at the same N
supply level and N form ratio treatments. ns, not significant.
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B

C D

A

FIGURE 4

Number of bacterial Chao1 index in the root surface and rhizosphere of C. lanceolata (A, B) and S. superba (C, D) at different N supply levels and N
form ratio treatments. Different capital letters indicate the significant difference between the two N supply levels at the same N form ratio, and
different lowercase letters indicate the significant difference between the five N form ratios at the same N supply level (p < 0.05).
B

C D

A

FIGURE 3

Number of unique and shared bacterial OTUs in the root surface and rhizosphere of (C) lanceolata (A, B) and S. superba (C, D) at different N supply
levels and N form ratio treatments.
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supply at the NH4
+-N to NO3

−-N ratio of 2:8, and higher in the root

surface compared to in the rhizosphere. Bacteroidota abundance in

the root surface of C. lanceolata was 8.88% higher than the normal

N supply at the NH4
+-N to NO3

−-N ratio of 5:5, while in the

rhizosphere, it was 13.26% higher than the normal N supply at the

NH4
+-N to NO3

−-N ratio of 10:0.

There were 20 most abundant bacteria in the root surface and

rhizosphere of S. superba (Figures 9A, B). However, there were

differences in dominant phyla between the root surface and

rhizosphere, and the shared dominant phyla were Proteobacteria

and Bacteroidota. The difference is that more Acidobacteriota

accumulate in the root surface, while more Patescibacteria
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accumulate in the rhizosphere. The abundance of Acidobacteriota

was 5.15%~25.10% higher than normal N supply at the other four N

form ratios, except the NH4
+-N to NO3

−-N of 10:0 under N stress.

The abundance of Patescibacteria was 66.59% higher than the

normal N supply at the NH4
+-N to NO3

−-N ratio of 5:5. However,

the abundance of Proteobacteria and Bacteroidota in S. superba

showed different rules under different N supply levels and N form

ratios. The relative abundance of Proteobacteria in the rhizosphere

was higher than that in the root surface. Bacteroidota was higher in

the rhizosphere than in the root surface, except with the NH4
+-N to

NO3
−-N ratio of 5:5. The total abundance of the dominant phylum

was higher in C. lanceolata than in S. superba. Different N levels and
B

C D

A

FIGURE 6

Number of bacterial Chao1 index in the root surface and rhizosphere of C. lanceolata and S. superba at different N supply levels and N form ratio
treatments. **, p = 0.01 and *, p = 0.05 indicate significant differences between root compartments (A, B) and tree species (C, D) at the same N
supply level and N form ratio treatment; ns, not significant.
B
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A

FIGURE 5

Number of bacterial Shannon index in the root surface and rhizosphere of C. lanceolata (A, B) and S. superba (C, D) at different N supply levels and
N form ratio treatments. Different capital letters indicate the significant difference between the two N supply levels at the same N form ratio, and
different lowercase letters indicate the significant difference between the five N form ratios at the same N supply level (p < 0.05).
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B

A

FIGURE 8

Relative abundance of the top 20 bacterial phyla in the root surface (A) and rhizosphere (B) of C. lanceolata at different N supply levels and N form
ratio treatments.
B

C D

A

FIGURE 7

Number of bacterial Shannon index in the root surface and rhizosphere of C. lanceolata and S. superba at different N supply levels and N form ratio
treatments. **, p = 0.01 and *, p = 0.05 indicate significant differences between root compartments (A, B) and tree species (C, D) at the same N
supply level and N form ratio treatment; ns, not significant.
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N form ratios had a greater effect on the bacterial abundance in the

root surface and rhizosphere of the two tree species.
Principal component analysis for bacterial
communities in the root surface and
rhizosphere of C. lanceolata and S. superba
under N stress and N form ratios

The structural differences in bacterial communities between

root surface and rhizosphere samples of C. lanceolata and S. superba

were explored by downscaling (based on differences in OTUs). PC1

and PC2 explained 9.49% and 4.91% of the sample differences in the

root surface of C. lanceolata, respectively (Figure 10A). The

community structure of bacteria in the root surface showed a

stronger segregation effect at the NH4
+-N to NO3

−-N ratio of 10:0

than the remaining four N form ratios, especially since the

dispersion degree between repeats was larger under N stress. PC1

and PC2 explained 10.43% and 6.87% of the sample differences in

the rhizosphere of C. lanceolata, respectively (Figure 10B). The

NH4
+-N to NO3

−-N ratio of the 5:5 treatment had greater variation

than the remaining four N form ratios at two N supply levels, which

had greater dispersion than the remaining four treatments with the

NH4
+-N to NO3

−-N ratio. PC1 and PC2 explained 6.53% and 4.39%

of the sample differences in the root surface of S. superba

(Figure 10C), while PC1 and PC2 explained 8.55% and 6.74% of

the sample differences in the rhizosphere (Figure 10D), respectively.

Under N stress, the proportions of five N form ratios in the root

surface were evenly distributed on the same half-axis, which was

just the opposite of that in the rhizosphere.
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Discussion

Effects of N stress and N form ratios on the
bacterial community composition in the
root surface and rhizosphere of C.
lanceolata and S. superba

Under nutrient stress, the interaction between plant and

bacterial communities in the rhizosphere contributes to the

efficiency of nutrient uptake by plants (Berendsen et al., 2012).

Bacterial community and diversity are influenced by several factors,

among which soil N supply level and N form ratio are considered to

be important factors that directly or indirectly affect the soil

bacterial community, especially bacteria with genes functional for

N cycling (Szukics et al., 2009; Tang et al., 2016). In our study, the N

supply level had a significant effect on the abundance but not on the

diversity of bacteria in the root surface and rhizosphere of two tree

species. Except for the interaction between the N supply level and

tree species, the bacterial abundance and diversity were strongly

influenced by the N form ratio, root compartment, tree species, and

the interaction of the N supply level, N form ratio, root

compartment, and tree species. Soil bacterial communities in C.

lanceolata plantations varied with broadleaf mixed forest species

and were influenced by the total N as well as ammonium N content

of the soil (Liu et al., 2013). Each plant has a specific bacterial

community. Studies on the model plant Arabidopsis thaliana

showed that the root bacterial community consisted mainly of

Proteobacteria, Actinobacteria, and Bacteroidota (Bulgarelli et al.,

2012). In addition, the rhizosphere and endosphere typically

contain Proteobacteria, Actinobacteria, and, to a lesser extent,
B

A

FIGURE 9

Relative abundance of the top 20 bacterial phyla in the root surface (A) and rhizosphere (B) of S. superba at different N supply levels and N form
ratio treatments.
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Bacteroidota (Liu et al., 2017). In our study, the bacteria abundance

higher than 1% in the root surface and rhizosphere of C. lanceolata

and S. superba were completely consistent under the two N supply

levels. Proteobacteria and Bacteroidota were common in the root

surface and rhizosphere of two tree species, and their relative

abundance was more than 10% in both cases, which indicates

that the level of N supply did not change the bacterial

composition. Proteobacteria and Bacteroidota are important

components of the root surface and rhizosphere of two tree species.

Soil N is an extremely important factor, directly or indirectly,

affecting the bacterial community. Numerous studies have shown

that the addition of N results in significant changes in bacterial

abundance, especially at the phylum level, and that bacterial

abundance varies with the level of N supply (Beauregard et al,

2010; Wang et al, 2018). Proteobacteria is the most dominant

bacterial phylum in soil (Lundberg et al., 2012), which belongs to

the eutrophic bacterial community and is positively correlated with

soil carbon availability. Most of the groups of Proteobacteria are N

fixers and play an important role in the N cycle of the soil (Fierer et

al, 2007; Lin et al., 2018). The relative abundance of co-nutrient

taxa, mainly Proteobacteria and Bacteroidota, increased under high

N treatment in a long-term N addition experiment (Fierer et al.,

2012). Furthermore, the average relative abundance of

Proteobacteria in the soil of young C. lanceolata forests increased
Frontiers in Plant Science 11
after high N treatment (Hao et al., 2018; Guo P. P. et al., 2021).

However, this is not the same as the present study, where there is

some uncertainty about the effect of N addition on the soil bacterial

community. This may be because high N addition can appropriately

increase the relative abundance of the dominant bacterial phylum,

as low N levels may not support the metabolic processes of bacterial

growth (Liao et al., 2016). Proteobacteria abundance was not always

higher under normal N supply than under N stress in this study.

Although the abundance of Proteobacteria was highest in the root

surface and rhizosphere communities of C. lanceolata and S.

superba, it varied with N form ratios. The NH4
+-N to NO3

−-N

ratio of 8:2 significantly increased the abundance of Proteobacteria

in the root surface and rhizosphere of two tree species under N

stress, and the abundance of Proteobacteria in both the root surface

and rhizosphere of C. lanceolata was higher in this ratio than the

other four N form ratios. It is also interesting to observe that the

relative abundance of Proteobacteria was higher under N stress at

all five N form ratios in the rhizosphere of S. superba than under

normal N supply. This may be due to the greater ability of the soil

bacterial community to utilize carbon sources under the low N

treatment, and the high ammonium N supply enhances favorable

survival conditions for the Proteobacteria.

The habitats of tree species had a significant effect on soil

bacterial abundance. It was found that the composition of the
B

C D

A

FIGURE 10

Partial least squares discriminant analysis grouped by the root surface of C. lanceolata (A), by the rhizosphere of C. lanceolata (B), by the root
surface of S. superba (C), and by the rhizosphere of S. superba (D).
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bacterial community varied among the different species of

deciduous trees (Wang et al., 2023). The relative abundance of

Proteobacteria was lower in nutrient-poor C. lanceolata soils than

in broadleaf forests (Yan et al., 2022). In our study, the abundance of

Proteobacteria in C. lanceolata was lower than that in S. superba,

which is consistent with the results of previous studies. It is

hypothesized that broadleaf litter helps to increase soil organic

matter content and provide energy for bacterial activity. In addition,

Acidobacteriota played an equally important role in the bacterial

communities in the root surface and rhizosphere of C. lanceolata

and S. superba. The dominant phylum of bacteria in the rhizosphere

of S. superba, which accumulated relatively more Acidobacteriota in

the root surface and Patescibacteria in the rhizosphere, was more

affected by N stress and N form ratio. The Acidobacteriota and

Proteobacteria are the main phyla of C. lanceolata and S. superba

plantations, with the Acidobacteria dominating (Cao et al., 2021;

Wang et al., 2023). However, in our study, the abundance of

Baobacteria in the surface and rhizosphere of two tree species was

higher than that of Acidobacteriota. This may be because the soil

where the study site is located is acidic, while the Acidobacteriota is

acidophilic. Collectively, these results suggest that the relative

abundance of the root surface and rhizosphere of C. lanceolata

and S. superba were significantly affected by N supply level and

nitrogen form ratio, especially the rhizosphere bacteria of S. superba

were more sensitive to the changes.
Effects of N stress and N form ratios on the
abundance and diversity of bacteria in the
root surface and rhizosphere of C.
lanceolata and S. superba

Bacteria is an important component of the microbial

community; its diversity reflects the overall dynamics of the

community. Appropriate N addition provides a rich nutrient

source for bacterial growth over a period of time, which

contributes significantly to the abundance and diversity of

bacterial communities, especially when mixed N addition

significantly increases bacterial biomass (Xu et al., 2016; Song

et al., 2022). Pau (1996) found that microbial abundance and

biomass were higher under high N than in low N plots. In the

present study, the bacterial abundance in the root surface and

rhizosphere of C. lanceolata and S. superba was higher under

normal N supply than under N stress in most treatments.

Appropriate ratios of N forms could increase the abundance of

bacterial communities and even significantly increase the

abundance of bacterial communities in the root surface and

rhizosphere under N stress, indicating that the N form ratio had

a greater effect on soil bacterial abundance. It has been shown that

the soil microbial communities have higher bacterial diversity

under nitrogen deficiency stress. In a study on the effect of N

stress on the structural characteristics of soil microbial communities

in the rhizosphere of wheat, it was mentioned that N deficiency

significantly increased the a-diversity of soil bacterial communities
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(Xiong et al., 2022). The Shannon diversity index combines the

abundance and evenness of the community, with higher values

indicating a greater diversity of the community. Yuan et al. (2012)

found that high N inhibited the microbial biomass and abundance

of C. lanceolata, and moderate low N treatment was beneficial to

improve the microbiota Shannon diversity index and evenness

index and promote microbial biomass. Kavamura et al. (2018)

found that the Shannon index on the soil bacterial community of

wheat was higher under low N conditions. This is consistent with

the present study, where the bacterial diversity in both the root

surface and rhizosphere of C. lanceolata and S. superba was higher

under N stress than under normal N supply. The reason for this

analysis may be due to the continuous accumulation of effective N

in the soil, aggravating the acidification of the substrate and

eventually leading to a decrease in the diversity of the bacterial

community. However, this speculation needs further in-depth study

and verification.

The diversity of microbiota showed a gradually decreasing trend

from the rhizosphere to the inner boundary (Zgadzaj et al., 2016). In

the present study, the abundance and diversity of bacteria in the

root surface were higher than those in the rhizosphere of C.

lanceolata and S. superba under N stress treatment, which was

consistent with the results of previous studies and could be

attributed to the secretions released from the root system. Root

secretions are an important adaptive mechanism for plants to

overcome N deficiency. For example, under N-limiting

conditions, legumes release large amounts of flavonoids to attract

N-fixing bacteria, thereby increasing soil N content. In some low-N

soils, the relative contribution of root secretions to carbon input

increases, providing essential nutrients for bacterial growth and

metabolism and significantly increasing the biomass of soil

microbia (Zhang and Mason, 2022). Furthermore, in this study, it

was found that the bacterial diversity in the root surface of C.

lanceolata was highest under single ammonium N treatment, while

the bacteria in the root surface of S. superba was highest under

single nitrate N treatment. This may be related to the different

preferences of N uptake by different tree species in environments

with heterogeneous N distribution. Previous studies suggested that

C. lanceolata preferentially absorbed ammonium N and S. superba

preferentially absorbed nitrate N (Zhang et al., 2013; Yan et al.,

2019; Yan et al., 2020). It is worth noting that when N is taken up by

plants in various N forms, it can cause changes in the pH of the

rhizosphere soil. A study of bacterial communities in the

rhizosphere showed that the soil pH had a high correlation with

bacterial abundance and diversity. Closer to neutral soils, bacterial

communities are more abundant, while the bacterial community

abundance was lowest in acidic soils (Lauber et al., 2009). Therefore,

the pH of the soil needs to be further studied. The enrichment effect

of the rhizosphere on specific microorganisms was influenced by

different tree species. Grayston and Prescott (2005) found that the

relative abundance of soil microorganisms was high when the leaves

were high in calcium for four Canadian tree species. Different tree

species respond differently to soil nutrients, which is an important

factor influencing soil bacterial communities. Zhang Zehao found
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that short-term N addition helped increase the diversity of bacterial

communities in salt-tolerant plants (Zhang et al., 2023). The

bacterial communities and diversity of different tree species were

positively correlated with total soil nitrogen in the South Asian

tropics. However, differences in bacterial diversity among tree

species were not apparent (Qin et al., 2021). In the present study,

the relative abundance of bacteria in the root surface and

rhizosphere of C. lanceolata was significantly higher than that of

S. superba, presumably by altering the quality of plant-derived

carbon, which may influence the microbial community. In

conclusion, the diversity of bacteria was significantly increased by

an appropriate N form ratio under N stress. Moreover, the

important role of root surface bacteria in influencing plant

nitrogen cannot be ignored.
Conclusion

In the present study, we explored the bacterial community

composition and diversity on the root surface and rhizosphere of C.

lanceolata and S. superba under different N supply levels and N

form ratios. N stress and N form ratios had significant effects on the

bacterial community diversity on the root surface and rhizosphere

of C. lanceolata and S. superba, and altered the abundance of the

dominant phylum, but did significantly change the composition of

the bacterial community in the two tree species. Under N stress, the

bacterial community diversity in the root surface of two tree species

was higher than that in the rhizosphere. The bacterial diversity in

the root surface of C. lanceolata was highest under the complete

supply of ammonium N, and the bacterial diversity in the root

surface of S. superba was highest under the complete supply of

nitrate N, and a homogeneous supply of ammonium and nitrate N

can significantly reduce the bacteria diversity in the rhizosphere of

two tree species. The bacterial community in different tree species

and different root compartments responded differently to the N

supply level. A reasonable ammonium-nitrate N form ratio plays a

key role in the root surface and rhizosphere under the N-

limited soil.
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