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Introduction: Intelligent monitoring systems must be put in place to practice

precision agriculture. In this context, computer vision and artificial intelligence

techniques can be applied to monitor and prevent pests, such as that of the olive

fly. These techniques are a tool to discover patterns and abnormalities in the

data, which helps the early detection of pests and the prompt administration of

corrective measures. However, there are significant challenges due to the lack of

data to apply state of the art Deep Learning techniques.

Methods: This article examines the detection and classification of the olive fly

using the Random Forest and Support Vector Machine algorithms, as well as their

application in an electronic trap version based on a Raspberry Pi B+ board.

Results: The combination of the two methods is suggested to increase the

accuracy of the classification results while working with a small training data set.

Combining both techniques for olive fly detection yields an accuracy of 89.1%,

which increases to 94.5% for SVM and 91.9% for RF when comparing all fly

species to other insects.

Discussion: This research results reports a successful implementation of ML in an

electronic trap system for olive fly detection, providing valuable insights and

benefits. The opportunities of using small IoT devices for image classification

opens new possibilities, emphasizing the significance of ML in optimizing

resource usage and enhancing privacy protection. As the system grows by

increasing the number of electronic traps, more data will be available.

Therefore, it holds the potential to further enhance accuracy by learning from

multiple trap systems, making it a promising tool for effective and sustainable fly

population management.

KEYWORDS

precision agriculture, olive fruit fly pest, machine learning, support vector machine,
random forest, computer vision, edge computing, remote sensing
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1 Introduction

Precision Agriculture for pest management requires constant

monitoring of the target pest population as well as continuous

evaluation of environmental conditions like temperature and

humidity. Bactrocera oleae (Gmelin), known as the olive fruit fly,

is a serious pest in the olive industry. If environmental conditions

favour the proliferation of this tephritidae, losses from this pest

might exceed 100% of productivity in a year. As a result, developing

a system capable of collecting field data is critical for precise

pest management.

The traditional monitoring system is based on flytraps. Those

traps kill specific species of fruit flies, which are then manually

collected and identified. The number of flies trapped are checked

manually usually every week during the fruit fly season and then

fortnightly during the winter months. The number of hours spent in

this check task is huge and due to the manually data collection

frequency, the time to detect an infestation is too large for flash

responses. Therefore, developing a monitoring station to automate

this manual trap checking will produce many benefits Martins et al.

(2019). In addition, several environmental and public health

problems appear when insecticides and off-target sprays are used

extensively without adequate management. Weather parameters

like air temperature and humidity levels in the spraying area are

critical to determine the moment to spray and the duration of this

process. The adult fly population is the insecticide target, and the

weather conditions are important to decrease or increase the spray

process effectiveness. In this sense, automatically monitoring those

parameters in real time using computer-based platforms is

important to adjust the spray activity.

In general, agricultural scenarios seem to be one of the most

promising application areas for wireless monitoring station

deployments due to the necessity of improving the agro-food

production chain in terms of precision and quality. This involves

a careful system design, since a rural scenario consists of an

extensive area devoid of an electrical power supply and available

wired connections. Automatic monitoring stations technology is

introduced in Precision Agriculture strategy (PA) to obtain accurate

real time field information and make accurate and optimum

decisions Bjerge et al. (2023); Fasih et al. (2023).

Plant pest control remains one of the main research objectives

of modern agriculture Shah and Wu (2019). The widespread use of

insecticides at the field level is still the most common practice for

the control of plant pests in general and for the fruit flies in

particular Dias et al. (2018). However, its use is being restricted

by official authorities due to its impact on the environment, human

health, and the development of resistance in target pests. The use of

PA for pest control has been applied to improve the control and/or

detection of several pests, as examples: particularly sensitive maps

are used to drive variable insecticide application for the control of

certain insect pests Reay-Jones et al. (2019); hyperspectral imaging

is used to detect fruit fly infestation in fruits Ding et al. (2021); or

GIS technologies are used to implement user support systems to

take more precise decisions about treatments of insect pests in the

Mediterranean areas Goldshtein et al. (2021). In all these cases, a

continuum of more accurate monitoring data produces a more
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accurate assessment of pest presence which, together with

geolocation information, improves understanding of the spatial

and temporal distribution of pest effects. In fact, the fast access to

the information about pests is mandatory to accurately manage

pests and diseases in agriculture Grasswitz (2019).

Since the monitoring of fruit flies is dependent on fly

identification, the first fruit fly identification platform was

proposed by Pontikakos et al. (2012) as a combination of

traditional manual inspection process and the computer-based

platform for storing the trap checking results. The proposed

computer-based platform can perform olive fruit fly evolution

analysis and treatment prediction considering weather conditions.

Although the manual trap inspection is also required, the automatic

analysis of data combined with weather conditions allows

determining the best period to apply the spray treatment and the

areas to be considered in the treatment.

The second one is related to solve the identification process and

reduce the time needed to check the fly traps. The authors in Bjerge

et al. (2023); Fasih et al. (2023) describe a procedure to identify the

fruit fly using image segmentation techniques using a camera as a

sensor and some computing process to obtain the identification

results. Although, the procedure is proposed using a MacPhil trap.

In a MacPhil trap, the fly can be over or in the liquid introducing

some additional difficulty for accurate fly identification process in

comparison with using sticky traps. The sticky trap retains the flies

on the surface of the trap plane and increases the possibilities to take

an adequate photograph for identification purposes.

This is where computer vision and Artificial Intelligence (AI)

come in. It can analyze the photo and identify the olive fly, reducing

the time it takes to check the traps and automating the process. As a

result, the farmer’s workload is reduced. Advances in image

identification techniques have paved the way for the use of AI in

this field. Although Deep Learning (DL) is the most commonly used

technique, Krizhevsky et al. (2017), and there are examples of their

effectiveness, Victoriano et al. (2023); Uzun (2023), this article

discusses classical machine learning (ML) approaches. This is

because DL requires a large dataset to achieve good results, and

such a dataset is currently unavailable. It is also computationally

expensive. Therefore, the study will focus on the ML algorithms

Random Forests (RF) and Support Vector Machines (SVM).

This work shows the design and implementation of a real time

automated low-cost olive fruit fly smart trap, will now be referred to

as e-trap throughout this article. The main novelty is the use of ML

for image identification, in addition to the connection through a

GPRS link with a cloud-based platform described in Miranda et al.

(2019). In particular, it is explored how RF and SVM can improve

efforts to reduce the use of pesticides against the olive fly to prevent

crop loss and monitor it remotely.
2 Materials and methods

The smart trap approach consists of a photographic camera for

image capture, a linux-based electronic system to implement the

algorithms to recognize olive fly adults, a solar-based power system,

and an ambient relative humidity/temperature sensor. The sensor
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and picture data collected by the smart trap is processed and stored

allowing in-situ access in case of communication lost.

The solar panel and the Stevenson screen for the humidity and

temperature sensors are at the upper part of a metal pole see

Figure 1A. The battery, transmitter system, and controller are

included in a box just in the middle part, as Figure 1A shows. The

controller system and the transmitter module are in the middle box

for weather condition protection. In addition, Figure 1B shows the

sticky trap supported by a metal pole, including a junction box with a

camera installed in front of the trap. This camera is connected to the

controller system for image capture and power supply. Finally, the

lower part of the metal pole will be used to nail the pole on Earth and

thus have a first fastening point to finish tying the pole to the

strongest olive branches. In this way, the metal pole will be stable and

tied up during the measurement period without disturbing the

agricultural machines and workers between olive trees.
2.1 Sensors and camera

The designed prototype includes a temperature, a relative

humidity sensor, and a camera serial interface (CSI). The two

sensors (model DHT22) installed in the upper part of the pole

will be connected and powered from the controller box. This sensor

has enough resolution in both parameters, see Table 1. The DHT22

device provides a new value each 2 seconds with reduced energy

consumption ratio. The controller system is designed to measure

and save in local storage memory the temperature and humidity

values each minute. But, only the maximum, minimum and the

average values are transmitted to the cloud server every hour
Frontiers in Plant Science 03
including the exact timestamp. This methodology reduces the

amount of data to be sent to the server and filters the unwanted

values (aberrant values or errors in communication with the

sensor), storing the information on the station for post-analysis

and maintenance purposes.

The camera used is a CMOS sensor Omnivision 5647 with

removed IR filter (see Table 1 for camera specifications). It is

connected and powered by the controller system using a CSI bus.

The cable between camera and controller is 1.5 meters long,

allowing to determine the most adequate position of sticky trap

without restrictions of distances, see metal arm where sticky trap

and camera are fixed in Figure 1B.

The camera is the most energy demanding device in the

proposed e-trap system apart from the 4G modem. Therefore, it

is powered on during the instant to take the photo, afterwards, it

remains turned off. The instant when taking the photography can be

adjusted considering the sun position and the amount of light

available. The smart trap has been programmed by default, to take

three photos when the sun is around the upper level, so the sunlight

intensity will be the highest producing the highest image contrast.

The three photos will be taken around midday hour with a delay of

30 minutes between each photo. In addition, users can change the

timing of the photo at any time to capture the best quality photo

depending on the locations and shadows on the sticky trap surface.

Photographies are taken only three times a day because this is

not a real-time application. Here the goal is to infer and report the

insect population without being on the field. In addition, since the

system is not perfect, it is convenient to take several photographies,

three in our case, to filter errors and increase the amount of

training data.
A B

C

FIGURE 1

Electronic components of the e-trap. (A) E-trap with solar panel, Stevenson screen to protect the temperature and relative humidity sensor, battery
and electronics. (B) Camera placed in front of a Rimi® trap. (C) Battery and electronics.
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2.2 Controller and communication system

The controller system is one of the most important parts of the

smart trap. It manages sensor, camera, data transmission and

performs the fly identification task. All these tasks require enough

computer resources, low energy consumption and system flexibility.

In this work a Raspberry Pi B+ is selected to supply the required

hardware requirements in combination with the Raspbian OS lite

version. The selected platform is flexible enough to manage all the

tasks reducing the number of active processes and power

consumption, while image processing software can be

implemented using open-source resources like OpenCV,

Bradski (2000).

The communication module consists of an Airlink GL8200

modem connected to the controller system using the serial port

interface (SPI). The communication uses flux control to obtain

maximum transmission velocity ratios (115200 bps). The modem

module is compatible with standard AT commands and can allow

server connections using standard internet protocols like File

Transfer Protocol (SFTP), Hypertext Transfer Protocol (http) and

Network Time Protocol (NTP) between others. The NTP protocol

is used to maintain and update the local real time controller (RTC)

enabling a time-based schedule of the tasks. The http protocol

enables the connection with the remote server to store the sensor
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data and the fly count result on the remote database. In case of

necessary, the SFTP protocol allows uploading images to the server

for validation purposes with the penalty to increase the energy

consumption available at the smart trap. In any case, a SD storage

disk is used to save all sensor data, fly count and images. Therefore,

the data will remain in the smart trap in case communication fails

and can be accessed manually visiting the trap location during

sticky trap maintenance.
2.3 E-trap firmware

The e-trap controller is designed using the Raspian Lite

operating system implementing a time-scheduled management.

The different e-trap tasks are executed using the Cron task

manager embedded in the Unix systems. In this way, the e-trap is

configured to work alone without expecting interaction from

remote infrastructures.

The e-trap firmware is divided into five main tasks as shown in

the functional diagram in Figure 2. All tasks are lunched using the

Cron manager, Kernighan and Pike (1984). The first task, called

“system”, maintain the controller date and time updated, check the

battery level, peripheral power supply management and rebooting-

based strategy to avoid software issues. The second task, referred to

as “collect”, is related to sensor access, and collects temperature and

humidity values from DHT22 sensor storing it timestamped in a

local file using CSV format. The third task, named “capture”, takes a

picture adjusting the exposition time and white balance level to

optimize the resolution and the quality of the picture. The fourth

task, termed “identify”, analyzes the obtained images, and try to

identify the number of flies trapped. This identification process is

explained in the next section. And finally, the fifth task, called

“transfer”, is responsible to establish LTE communications, to send

the sensor data file to the remote server and to attend to the remote

requirements (send the picture file or software update).

Each task of the e-trap software is launched by Cron daemon at

different time during the day. Therefore, each task is implemented

independently of the other tasks avoiding that one task stop the rest

of tasks. In fact, meanwhile the Cron daemon is running, the tasks

are initiated and terminated without interaction between them.

It is important to note that the “system” task is executed twice a

day. The first time it reboots the controller to get a fresh system after

one day of continuous operation. The second execution of the

“system” task (@16:00) will shut down all peripherals not related to
TABLE 1 Specifications of sensor and camera elements.

Parameter Value

Sensor voltage supply 3.3 Vdc ≤ Vcc ≤ 6 Vdc

Sensor output type Digital

Temperature range -40°C to 80°C

Temperature accuracy ± 0.5°C

Temperature resolution 0.1°C

Humidity range 0% to 100% RH

Humidity accuracy 2% RH

Humidity resolution 0.1% RH

Sensor measurement period 2 s

Camera resolution 2592 x 1944 pixels

Camera focus Fixed focus

Camera dimensions 25 x 20 x 9 mm
FIGURE 2

E-trap firmware flowchart showing the five main tasks and their execution times.
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the collection task. With this procedure, the power consumption of

Raspberry Pi platform is minimized until the next day’s reboot.
3 Data collection and generation

3.1 Dataset collection

This article uses images of the two e-traps identified as N10 and

N17. These traps were placed in the olive fields of the “Institut de

Recerca i Formació Agroalimentària i Pesquera de les Illes Balears”

(IRFAP) in Mallorca, Spain. The OV5647 camera, which is already

integrated in the e-trap itself, was used to capture the images. The

resulting images have a resolution of 1600 pixels wide by 1200 pixels

high, 3 RGB channels, 24-bit depth, and were saved in.jpg format.

Note that the physical position of the traps in the olive trees was

similar but not exactly the same, resulting in differences in the final

image. The dataset consists of a total of 62 images, 45 generated by

N10 and 15 generated by N17. Figure 3 shows an example of an

image taken by each of the traps and Table 2 shows all this

data summarized.

By taking a photo every day until the sticky pad is replaced, the

observation reveals the emergence of new flies alongside the already

trapped flies that persist over time. Figure 4 shows how this allows

us to know how the same olive fly is observed with different lighting,

thus performing the data augmentation (DA) technique in an

organic way and allowing the classifier model to learn which

features have the highest priority in defining the fly for its correct

classification. The application of this technique is common in the AI

world, since it allows to face the problem of lack of data to train, and

in the PA world it is no exception (Brilhador et al. (2019);

Fawakherji et al. (2020)); (Shorten and Khoshgoftaar (2019)).
3.2 Dataset generation

The 45 images from N10 were used to train the classifier

models. Classifier test was performed on the remaining 15 images

from N17. This was advantageous because the classifier model never

knew the training data and could even be given different e-trap

positions and luminance conditions with respect to N10. In
Frontiers in Plant Science 05
summary, it was possible to test whether a single e-trap could be

used to generate a first scalable smart trap system capable of

localizing and classifying the olive fruit fly.

After studying all the available images to train the classifier

model, the dataset consisted of 501 olive flies, 368 flies of other

species or very similar insects, and 611 different elements such as

the bag or tube with the olive fly attractant, the brand of the

adhesive panel, holes in the panel, other insects, shadows due to

different lighting, trap identifier, etc., all of 32 × 32 × 3 pixels. All of

these were grouped into two groups, “olive fly”/”others”, resulting

in a data set with a ratio of 501 “olive fly” and 979 “others” samples.

All these dataset values are summarized in Table 3.

A 9:1 ratio was used for training and validation of the models,

i.e. 90% of the samples are used for training and 10% for validation.

In addition, in order to have more working data, basic DA

techniques that could be present in the nature of the project were

applied: vertical image flipping, horizontal flipping, 90° rotation,

and changes in the brightness and contrast of the images. These

actions allowed us to enlarge each image up to 24 = 16 new

alternatives. In addition, it is worth highlighting these DA

techniques based on basic image manipulations are considered

“safe” for this application because the label is always preserved

Shorten and Khoshgoftaar (2019).

Two conditions were set for this DA process: first, between zero

and ten new images could be generated, this number being random

for each sample. Second, each DA technique could occur with a 50%

chance. In this way, the augmentation would not be homogeneous,

thus preventing the model from learning repetitive patterns. This

action eventually increased the training data set from 1332 to 8069

samples, and all AI models used it, so that the result comparisons

for different models are not biased by the dataset.

Finally, the test images from N17 were simply labeled to match

the image provided by the e-trap to simulate the real system process.
4 Machine learning
classification models

As mentioned earlier, due to the size of the dataset, the final

algorithms selected for this article were RF and SVM. These ML

methods and their validation would be the focus of this section.
FIGURE 3

Example targets from N10 and N17 sticky traps.
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4.1 Random forest

Random Forest, introduced by Breiman (2001), is a supervised

learning algorithm used for both classification and regression tasks.

It is an ensemble method that combines multiple decision trees to

make predictions. Each decision tree in the RF is built independently

on a different subset of the training data, and the final prediction is

made by aggregating the predictions of all the trees.

Here’s how RF works:
Fron
1. Data Preparation Given a collection of training examples

denoted as ½(xi, yi)�ni=1, where xi represents the input features
and yi represents the corresponding target labels, RF starts

by randomly selecting subsets of the training data with

replacement. These subsets are known as bootstrap

samples.

2. Building Decision Trees: For each bootstrap sample, a

decision tree is constructed independently. At each node

of the decision tree, a feature subset is randomly selected,

and the split that optimally separates the data based on

some criterion (e.g., Gini impurity or entropy for

classification, Jost (2006), mean squared error for

regression, Langs et al. (2011)) is chosen. The tree

continues to split the data until a stopping criterion is
tiers in Plant Science 06
met, such as reaching a maximum depth or minimum

number of samples required to split further.

3. Ensemble Prediction: Once all the decision trees are built,

predictions are made by each tree on unseen data. For

classification tasks, the class with the majority of votes

among the trees is selected as the final prediction. For

regression tasks, the average of the predicted values from all

the trees is taken.
RF offers several advantages over individual decision trees:
• Ensemble Effect: By aggregating predictions from multiple

decision trees, RF reduces the risk of overfitting and

provides more robust predictions.

• Feature Randomness: Randomly selecting a subset of

features at each node helps to decorrelate the trees and

capture different aspects of the data.

• Out-of-Bag Evaluation: As the trees are built on bootstrap

samples, the instances left out in each sample (out-of-bag

instances) can be used for validation without the need for an

additional holdout set.
In summary, RF is a versatile and powerful algorithm that

combines the predictions of multiple decision trees to achieve high

accuracy and robustness in both classification and regression tasks.

It is particularly effective when dealing with complex data and can

handle a large number of features.
4.2 Support vector machines

Support vector machines (SVM), introduced by Vapnik and

Chervonenkis (2015), are also supervised learning models used for

classification and regression analysis. The term SVM typically does

not refer to a linear SVM, but rather to the use of kernel methods,

Sánchez A (2003).
FIGURE 4

Example of the same olive fruit fly from 8 to 15 October on N17.
TABLE 2 Dataset collection parameters.

Parameter Value

e-traps count 2 (N15 & N17)

Sticky trap images count 45/15 (N10/N17)

Location IRFAP, Mallorca, Spain

Resolution 1600 × 1200 × 3

Depth 24-bit

Format .jpg
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Given a collection of training examples denoted as ½(xi, yi)�ni=1,
and a kernel function denoted as K, each yi belonging to the set [−1,

+1] represents its categorization into one of two categories. An

objective function of the SVM is used to solve the optimization

problem defined as follows:

max
a o

n

i=1
ai + o

n

i,j=1
aiajyiyjK(xi, xj)

" #
(1)

subject to the constraints:

0 ≤ ai ≤ C

o
n

i=1
aiyi = 0

Here, the Lagrange coefficients ai are involved, and the constant

C is used to penalize training errors present in the samples.

An SVM training algorithm constructs a model that classifies

new examples into one of two categories, acting as a non-

probabilistic binary linear classifier. The SVM model represents

the examples as points in a space in which they are mapped to

ensure a clear gap that maximizes its width between the different

categories. Then, new examples are projected into the same space

and their categorization is predicted based on which side of the

gap they fall. As mentioned in the introduction, the choice of the

regularization parameters aiand the form of the kernel function

K(xi, xj) have a significant impact on the performance of the SVM.

These factors are thoroughly considered and extensively discussed

in the comparative experiments.
4.3 Model validation

When building a model, there are several parameters to

consider, and depending on how they are combined, the results

may vary. In addition, there is a stochastic variable in the selection

of data that may or may not favor the final result.

Therefore, the techniques used in this article can be grouped

into two. (i) Grid search, to find the combination of

hyperparameters that give the best results. (ii) Cross validation, to

perform the process k times with different combinations of data,

thus validating that the response of the classifier model is general

and not specific to a single combination of data.

The metrics used for validation were: confusion matrix,

accuracy, precision, recall, f1-score, Receiver Operating

Characteristic (ROC) curve and the Area Under the ROC

Curve (AUC).
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4.3.1 Confusion matrix
Measures the performance of a classification model by

summarizing the number of true positive (TP), true negative

(TN), false positive (FP), and false negative (FN) predictions in

tabular form.

4.3.2 Accuracy
This metric measures the proportion of correctly classified

images out of the total number of images in the dataset.

Accuracy = ((TP + TN)=TotalImages) ∗ 10
4.3.3 Precision
It measures the proportion of correctly predicted positive

instances out of all instances predicted as positive.

Precision = TP=(TP + FP)
4.3.4 Recall
The recall metric measures the ability of a model to correctly

identify positive instances out of all the instances that are actually

positive.

Recall = TP=(TP + FN)
4.3.5 F1-Score
The F1 score is a metric that combines precision and recall to

provide a single measure of a model’s performance in classification

tasks, including image classification. It takes into account both the

false positives and false negatives to assess the balance between

precision and recall. The F1 score is calculated by

F1score = 2 ∗ (Precision ∗Recall)=(Precision + Recall) :
4.3.6 ROC curve
The ROC curve is created by plotting the true positive rate

(TPR) against the false positive rate (FPR) at various threshold

settings. The TPR represents the recall or sensitivity (correctly

predicted positive instances), while the FPR represents the

proportion of negative instances incorrectly classified as positive.

4.3.7 AUC
The AUC measures the performance of a model in terms of its

ability to discriminate between positive and negative instances

across different classification thresholds.
TABLE 3 Training, validation, and test set sizes for the cropped images. Note that the training size refers to the already augmented data and the
percentages refer to the sum of these augmented samples.

Parameter Total value Train value (90%) Validation value (10%) Test value

Olive flies 501 451 50 6

Other species flies 368 332 36 17

Other elements 611 550 61 14
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5 Image approach: fruit fly detection

Identifying the olive fruit fly in the e-trap images involved a

number of challenges. The first was the lack of images available to

train and validate the AI model. The second was the ability to

distinguish the olive fruit fly from other fly families or dark

elements that might appear in the images. Finally, the third was

related to the processing power and energy consumption allocated

for inference, in this case the target device was a Raspberry Pi B+.

The usual way to perform this process of object detection on an

image is usually done by applying convolutional neural networks

(CNNs). An example of this is the recent publication by Jia et al.

(2023), where they apply the YOLOX-m network for the

localization of different green fruits, such as green apple and

green persimmon, among the leaves of trees, which can also be

green. Other examples include the recognition and counting of

bananas by Wu et al. (2021, 2023). The reason for applying this

technique is mainly due to its ability to extract physical and

temporal features from the images. However, in this paper, the

CNNs path is discarded because the challenges mentioned in the

previous section become clearly latent. State of the art CNNs require

large datasets to train the model, which has not been available so far,

and the computational process is expensive for some devices such as

a Raspberry Pi B+ without external aids like a hardware accelerator.

The working dataset is considered small compared to the usual

benchmarks for these tasks. For example, MNIST with 60,000

training images, CIFAR-10 and CIFAR-100 with 50,000 images

each or Imagenet with 1.2 million training images (LeCun et al.

(1998); Krizhevsky and Hinton (2009); Deng et al. (2009)).

Due to this challenge, in this article it was decided to finally apply

classification methods based on traditional ML techniques. Although

such models are mainly used for tabular data, present less overfitting

when working with small amounts of data. In addition, since the

model complexity is usually lower, in general, power consumption is

lower too. Table 4 shows the different models tested in a first step. It is

observed that for the same set of training data and all themetrics of the

ML models are clearly superior to those of the DL models. Therefore,

it was decided to investigate the different ML models in more detail.

The use of ML techniques for image processing is not new,

Wang et al. (2021) concluded that traditional ML has a better

solution effect on small sample data sets. Researchers such as Mekha

and Teeyasuksaet (2021) have already studied the use of different

ML algorithms for the detection of diseases in rice leaves,
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concluding that the application of RF was the one that gave them

the best results. Another example are Liu et al. (2017), which

proposes the use of the SVM algorithm for image classification in

remote locations, as in our case, instead of using DL.

Performing fly detection with traditional ML methods was a

new challenge. Some pre-trained DL models for object detection

already have this built-in function, capable of locating and

classifying objects, as well as understanding the overlap between

different possible locations of the same object (Milioto et al. (2018);

Prasetyo et al. (2020); Rong et al. (2022)). In our case, the solution

was to first apply image processing that takes advantage of the

contrast between the yellow background of the trap and the dark

color of the fly to distinguish where the different elements to be

classified appear. Finally, all that remained was the ML classification

process for each of the elements found.

Since RF and SVM gave the top-2 better performance metrics

compared to other models, it was decided to combine them to

improve classification performance. Therefore, it is validated that

the element is an olive fruit fly if both models assert that the element

is an olive fruit fly.

Figure 5 shows the logical flow. First, the image is captured.

Second, the image is processed by segmenting the trap to avoid

possible false positives and locating the elements that appear in the

e-trap. Third, each element is classified one by one by applying RF

and SVM. Finally, if both validate the classification, it is marked on

the image.
6 Results

This section presents the results of the study. In the previous

points, it was mentioned that CNNs are not able to provide accurate

results due to the small training dataset. Therefore, classical ML

solutions are compared with CNNs solutions.
6.1 Machine learning and deep
leaning results

As mentioned above, the challenges of the project were: mainly

how to deal with the limited training data available, and also

whether it is possible to develop an accurate classifier model

taking into account the low computational capacity of the
TABLE 4 Olive fly classification performance metrics for different traditional ML and DL approaches.

Model Type Accuracy Precision Recall F1-score AUC

Random Forest ML 0.85 0.84 0.85 0.85 0.85

SVM ML 0.81 0.80 0.80 0.80 0.80

Decision Tree ML 0.75 0.78 0.75 0.75 0.77

VGG16 DL 0.59 0.68 0.69 0.39 0.54

MobileNet DL 0.59 0.68 0.69 0.39 0.54

Xception DL 0.58 0.68 0.69 0.38 0.53
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Raspberry Pi B+. Table 1 shows the metrics of the different models

proposed in the first phase of the project.

As evident from the analysis, there are six evaluated models,

comprising three classical ML algorithms and three CNN models.

The ML algorithms are the already mentioned RF and SVM, and

also the Decision Tree algorithm, which already includes the RF, as

mentioned above.

On the other hand, the CNNs include the VGG16, Mobilenet,

and Xception models (Simonyan and Zisserman (2014); Howard

et al. (2017); Chollet (2017)). Models that are widely used for image

classification due to their good results. For example, the work of

Subramanian and Sankar (2022), where they compare this CNN

model and others for coconut maturity detection. Or the work of

Sehree and Khidhir (2022) that classifies olive trees from unmanned

aerial vehicle images.

Looking at Table 4, the superiority of the ML becomes evident,

maintaining an accuracy of no less than 75%, compared to the DL,

which does not achieve more than 60% accuracy in any case due to

the limited availability of data.

As mentioned in section 3.2 Dataset Generation, the validation

data come from N10, so the metrics will always tend to be higher

than the test metrics, which comes from e-traps unknown to the

model. Table 4 also shows the AUC value, DL models tend to be

around 0.5, which could lead us to think that they are doing a

random classification.

At this point, it was decided to take the two best results and test

them as if the system was already in production.
6.2 Random forest and support
vector machines analysis

Figure 6 shows the results of the two-week evolution of trap N17

from no flies to six flies. The Figure 6A refers to the true positives

(TP), i.e. the correct classification of the olive fly by the different

models. And the Figures 6B, C refer to the false classifications of the

fly, the false positives (FP) refer to the elements that the model

classified as flies and they are not, and the false negatives (FN) refer

to the elements that are flies and the model discarded them. The

final hyperparameters used in RF were: max depth of 20, min

samples split equal to 5, and 3 estimators. And the final SVM

hyperparameters were A polynomial kernel, C equal to 0.1, and

gamma equal to 1.
Frontiers in Plant Science 09
6.2.1 RF classifier
This model tends to classify most items that resemble an olive

fruit fly as “Olive Fly”. After examining the images, one may

conclude this is because the RF model is not able to differentiate

whether a fly belongs to the olive fruit fly species or not, so its FP

rate tends to rise and conversely the FNs are very low.

6.2.2 SVM classifier
The graphs show how this model is more cautious about RF in

determining whether an object is an olive fly or not. Therefore, its FP rate

is lower, but it increases the FN discriminating flies that were correct.

6.2.3 RF+SVM classifier
Finally, combining the two models allows for more accurate

classification. The FNs go down even further, in exchange for the fact

that if an item is claimed to be a olive fly, it is muchmore likely to be so.
7 Discussion

In this study, an intelligent system capable of detecting the olive

fly using non-invasive techniques was developed. Two models were

created with an accuracy of 62.1% for RF and 86.4% for SVM,

Figure 7A, using only the data of two traps, one for training and the

other to validate the models.

While RF would be the first to warn of a possible fly infestation.

SVM proved to be more conservative in stating whether or not there

was a fly in the sticky trap. In addition, a third option was also presented

too, the combination of both models to be able to combine the best of

each and achieve a higher accuracy of 89.1%, as shown in Figure 7A.

It has been shown that it is also possible to control the olive fly

using classical ML techniques. Allowing deploy this intelligent systems

faster than if the detection were performed using CNN techniques.

And consequently understand the status of the crops before and

remotely observe the evolution of the fly population, Figure 6A. In

addition, the robustness achieved using ML is reflected in Figure 7B.

Here, the performance of both models is shown when trying to classify

only flies, regardless of the species. As can be seen, the accuracy of

both algorithms increases to 91.9% for RF and 94.5% for SVM.

Therefore, this project demonstrates the application of ML on an

e-trap system that facilitates the control tasks to the experts, being able

to reduce the number of times they should go to the fields to make the

manual count of the flies, as well as providing additional information
FIGURE 5

Inference pipeline.
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not to go blindly. Thus providing an improvement compared to the

previous article of this same project of Miranda et al. (2019).

This opens a horizon for new challenges where, if the size of the

data set and the computational capabilities of the system are not

optimal, as is often the case in specific systems such as the trap

described, combined ML techniques can be explored for image

classification on remote devices.

In addition to the benefits described above, the application of ML

strategies opens up new possibilities for the system. Once the model

is trained, the device performs the prepreocessing and inference on

the image data, but only the prediction is exchanged with the server.

In this regard, it is also worth mentioning the advantages in terms of

privacy, e.g. there is no risk related to identifying people in images

sent to the server. Since no images are shared with the server, it also

represents an improvement in terms of privacy. Moreover, these

models are relatively small compared to state-of-the-art neural

networks and might be running on small IoT devices, such as
Frontiers in Plant Science 10
Raspberry Pi B+ used in this case, or even smaller very low power

microcontroller boards. Overall, it implies a reduction in power and

energy consumption and an increase in battery life. All this is

possible by making a more efficient use of bandwidth.

Finally, it is important to note that the data source used has come

from a single e-trap system, so the system has the potential to increase

the accuracy of the results as the system of nodes grows while each e-trap

system can learn specific details of the conditions that make it unique.
8 Conclusions

The main contributions of this study are threefold: development

of an intelligent system for efficient crop monitoring, demonstrating

superior performance of ML methods over DL for this particular

case study, and further improving performance using a simple

model ensembling approach.
B

C

A

FIGURE 6

Evolution of the number of olive flies detected in the sticky trap as a function of time using different ML classifiers for the N17 e-trap. (A) TP
evolution of RF classifier, SVM classifier and their combination together with the real count. (B) FP evolution of the same classifiers. (C) FN evolution
of the same classifiers.
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An intelligent system capable of detecting the olive fly using

non-invasive techniques was successfully developed. The system is

capable of monitoring the fly and olive fly population using image

processing and ML techniques. This enabled experts to remotely

monitor the status and evolution of the fly population, thereby

reducing the need for manual fly counts in the fields.

Since a relatively small dataset was available, the application of

classical ML techniques worked better compared to a transfer

learning approach using pre-trained DL models. The study

revealed that classical ML models (RF and SVM) outperformed

CNN solutions in this case. Despite the scarcity of images, these

models demonstrated good accuracy, making them an attractive

option for resource-constrained applications. In particular, the RF

and SVM models reported an accuracy of 62.1% and 86.4% for the

olive fly detection task, respectively. In addition, the RF and SVM

approaches reported an accuracy of 91.9% and 94.5%, respectively,

when classifying only flies, regardless of the species.

Finally, the model performance was further improved by

combining both RF and SVM models. RF was found to be more

sensitive in detecting a potential fly infestation, while SVM

demonstrated a more cautious approach in stating whether a fly

was present in the sticky trap. As a result, combining both models

led to an increased accuracy of 89.1% for the olive fly detection task.

In conclusion, this research showcases the successful

implementation of ML in an e-trap system for olive fly detection,

providing valuable insights and benefits. The combination of RF and

SVM models demonstrated promising results, offering more efficient

crop monitoring and control tasks to the experts. The potential for

using small IoT devices for image classification opens up new

possibilities, emphasizing the significance of ML in optimizing
Frontiers in Plant Science 11
resource usage and enhancing privacy protection. As the system

grows by increasing the number of e-traps, more data will be

available. Therefore, it holds the potential to further enhance

accuracy by learning from multiple e-trap systems, making it a

promising tool for effective and sustainable fly populationmanagement.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

MM-R, MM and BA-L contributed to conception of the study.

MM-R and BA-L contributed to the design of the study MM-R

organized the datasets and performed the experimental analysis.

MM-R wrote the first draft of the manuscript. MM-R, MM, AM,

and BA-L wrote sections of the manuscript. All authors contributed

to manuscript revision, read, and approved the submitted version.

Funding

This work has been partially sponsored and promoted by the

Comunitat Autonoma de les Illes Balears through the Direcció
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