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Improper use of water resources in irrigation that contain a significant amount of

salts, faulty agronomic practices such as improper fertilization, climate change

etc. are gradually increasing soil salinity of arable lands across the globe. It is one

of the major abiotic factors that inhibits overall plant growth through ionic

imbalance, osmotic stress, oxidative stress, and reduced nutrient uptake. Plants

have evolved with several adaptation strategies at morphological and molecular

levels to withstand salinity stress. Among various approaches, harnessing the

crop genetic variability across different genepools and developing salinity

tolerant crop plants offer the most sustainable way of salt stress mitigation.

Some important major genetic determinants controlling salinity tolerance have

been uncovered using classical genetic approaches. However, its complex

inheritance pattern makes breeding for salinity tolerance challenging.

Subsequently, advances in sequence based breeding approaches and

functional genomics have greatly assisted in underpinning novel genetic

variants controlling salinity tolerance in plants at the whole genome level. This

current review aims to shed light on physiological, biochemical, and molecular

responses under salt stress, defense mechanisms of plants, underlying genetics

of salt tolerance through bi-parental QTL mapping and Genome Wide

Association Studies, and implication of Genomic Selection to breed salt

tolerant lines.
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1 Introduction

An abiotic or biotic constraint that reduces a plant’s ability to

convert energy to biomass can be called plant stress (Grime, 1977).

Reduction in crop yield due to various abiotic stresses such as

excessive salt, drought, cold, and heat is a major challenge to meet

rising food demand (Vorasoot et al., 2003; Kaur et al., 2008; Shanker

and Venkateswarlu, 2011; Ahmad et al., 2012; Mantri et al., 2012;

He et al., 2018). Crop cultivation is facing many challenges due to

soil salinity which is not only limited to coastal areas, but also

induced by other factors like faulty agronomic practices or the use

of recycled water in irrigation that may contain large amounts of

salts (Kumar and Sharma, 2020). Salinity stress and thereby the

ensued damages to the plant may arise due to an excess

accumulation of soluble ions (Na+, Ca+, K+, Mg2+) in the root

zone (Tester and Davenport, 2003; Munns, 2005; Atta et al., 2022a;

Atta et al., 2022b). Saline soils inevitably have salt concentrations

high enough in their solutions to impair plant growth. Sulphates

and chlorides of calcium, sodium, and magnesium are commonly

associated with the development of soil salinity. However, the

detrimental effects of Na salts on plants were reported to be more

pronounced than that of calcium (Bryla et al., 2021; Wu et al., 2023).

As the electrical conductivity (EC) of any system increases with the

increasing abundance of neutral salt species, it is the most widely

used determinant for assessing the degree of soil salinity. Sodic soils,

on the other hand, are formed by the excessive accumulation of

sodium ions in the soil exchange complex. These are often

characterized by high pH and dispersibility (and consequent poor

soil transmissibility). Carbonates and bicarbonates of sodium play

major role in the development of soil sodicity. Exchangeable

Sodium Percentage (ESP) and Sodium Adsorption Ratio (SAR)

are the most useful parameters to assess the hazard of sodium in soil

and soil solution, respectively. Classification of salt affected soils

based on soil pH, Electrical Conductivity (EC), ESP, and SAR is

given in Table 1.

There are two types of salinity based upon salt accumulation:

dry land salinity and irrigation salinity (Chakraborty et al., 2013;

McFarlane et al., 2016; Stavi et al., 2021). Dry land salinity refers to

the accumulation of salts in the soil surface of non-irrigated lands.

There are three general processes which are associated with dryland

salinity: deep drainage, groundwater movement, and groundwater

discharge. Dry land salinity may be classified into two categories:

Primary, where salinity occurs naturally, and secondary, where

salinity is caused by human activities, such as agriculture.

Irrigation salinity occurs when rigorous irrigation with

groundwater builds up salinity on the surface of soil through
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repeated salt accumulation, due to the leaching of irrigation water

but salts (Chakraborty et al., 2013; McFarlane et al., 2016 and

Zaman et al., 2018).

Plants are amenable to the detrimental effects of salinity

throughout their life-cycle but are most vulnerable during the

germination and seedling stage. The negative effects of salt on

plant growth are related to a reduction in the osmotic potential of

growing media, specific ion toxicity, and nutrient imbalance

(Greenway and Munns, 1980; Askari-Khorasgani et al., 2021 and

Lu et al., 2023). The level of salt tolerance in plants is determined by

osmotic adjustment and ionic homeostasis (Acosta-Motos et al.,

2017). Excess ions in the soil water lower the solute potential (ys)

and thereby the total water potential (yw) of the soil. To maintain

water uptake and turgor under such conditions, plants need to keep

their internal water potential (yw) below that of the soil (Taiz et al.,

2015) Osmotic adjustment is mediated by the accumulation of

osmolytes viz., organic acids, sugars, and amino acids in plant cells

under salt stress. Increased accumulation of osmolytes helps plants

lower their water potential to facilitate water uptake from saline

soils (Acosta-Motos et al., 2017; Ma et al., 2020; Munns et al., 2020;

Zhao et al., 2021). Plants need to maintain a balance between the

accumulation of sodium (Na+) and the loss of potassium (K+) from

the cell through ion homeostasis to ensure proper cellular functions.

A high potassium-to-sodium (K+: Na+) ratio in tissues serves as an

important indicator of higher salt tolerance in plants. Key strategies

to maintain a higher K+:Na+ involve selective ion uptake and

transport mechanisms that allow plants to either exclude or

compartmentalize excess Na+, and retain K+ (Tester and

Davenport, 2003; Hasanuzzaman et al., 2018; Ketehouli et al.,

2019; Kumari et al., 2021). Therefore, a clear understanding of

the mechanisms of salt tolerance at physiological, biochemical, and

molecular levels, underlying genetics, and chromosomal regions

associated with salt tolerance helps in the identification and further

exploitation of tolerant genotypes. The impact of salinity on plants,

their stress tolerance mechanisms, and the deployment of modern

genomic and breeding approaches to understanding the genetics

and mitigation of salt stress are explored in this review article.
2 Current global scenario of
soil salinity

The increase in soil salinity poses a serious threat to agriculture

production worldwide. Here, Figure 1A shows the gradual increase

of total salt affected land area over thirty years. Globally, more than

one billion hectares of land is affected in more than 100 countries

and these numbers are constantly growing (Szabolcs, 1989; Squires

and Glenn, 2004; Abbas et al., 2013; FAO and ITPS, 2015; Hossain,

2019; Ivushkin et al., 2019). According to Hossain (2019), about

1125 million hectares of land are affected by salinity at the present

time, of which 76 million are affected by human-induced

salinization and sodification, and 1.5 million hectares become

unsuitable for agricultural production each year due to rising

salinity levels. Recently published data by Food and Agricultural

Organization (FAO) in 2021 showed global distribution of saline

land area at topsoil (0-30 cm) and subsoil (30-100 cm) profile
TABLE 1 Different types of salt affected soil.

Type of
Soil

pH of
Soil

Soil EC (dS
m-1)

Soil
ESP

Soil
SAR

Saline < 8.5 > 4.0 < 15 <13

Sodic >8.5 Variable > 15 >13

Saline-Sodic > 8.5 > 4.0 Variable >13
Source: Modified from Stavi et al. (2021).
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(Figure 1B). The salinization of the soil will result in the loss of 50%

of cultivable lands by 2050 if it continues increasing at the present

rate (Kumar and Sharma, 2020).
3 Brief account of physiological
and biochemical alterations
under salinity stress

3.1 Effect on germination and
seedling stage

Seed germination is a multi-stage developmental process that is

influenced by both internal and external factors. Impact on seed

germination under salinity stress may be attributed to the delayed

absorption of water and a decline in the activity of a-amylase, an

enzyme involved in starch hydrolysis. Salinity lowers the soil

osmotic potential relative to the internal osmotic potential of

seed, which inhibits the absorption of water during seed

imbibition (Figure 2) (Munns, 2002 and Munns et al., 2020). As a

consequence, the seed germination rate is reduced and the seed

germination period is delayed. Even after germination, salinity may

also have detrimental effect on embryo viability due to the excess

accumulation of Na+ and Cl- ions (Daszkowska-Golec, 2011; EL

Sabagh et al., 2021). Furthermore, salt stress increases the

generation of reactive oxygen species (ROS) and oxidative

damages, which disrupt different macromolecules. Therefore, a

decrease in a-amylase activity results in a significant reduction in
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the transfer of sugars, which restricts the embryo’s growth and

development. (Hasanuzzaman et al., 2021).

Under normal conditions, seed germination occurs in three

phases. Dry seeds absorb water rapidly (imbibition) during Phase I

of germination. In phase II, metabolic processes are reactivated and

water uptake is limited. Phase III is the post-germination phase,

during which continuous water uptake occurs until full

germination. Phase I osmotic stress and phase II ionic stress are

generally attributed to inhibiting seed germination or delaying

germination under salinity stress (Yadav et al., 2011). However,

even after seed germination, the development of embryonic organs,

seedling growth, and vigor are affected at phase III by both ionic and

osmotic stress (Wahid et al., 2014; El-Hendawy et al., 2019).

Salinity impose deleterious effects on seed germination by

decreasing gibberellic acid levels, increasing abscisic acid levels,

altering membrane permeability, and reducing water absorption in

seeds. (Lee and Luan, 2012). Germination of seeds occurs when it is

catalyzed by hydrolytic enzymes such as a-amylase which

subsequently breaks down the starch stored in the endosperm

into metabolizable sugars that provide energy to the growing

embryo and radicle. (Weiss and Ori, 2007). For most crops,

although seed may be germinated under a certain limit of salinity,

it significantly delays the seed germination. The major causes of a

delay in germination time may include a delay in water intake and a

decrease in a-amylase activity with an increase in NaCl content

(Kaneko et al., 2002). It has been noted that the salt-sensitive

genotypes exhibit a greater decline in a-amylase activity than the

salt-tolerant genotypes. This decrease in a-amylase activity has a

substantial impact on the translocation of sugars, which is crucial

for the development of the embryo (Uçarlı, 2020).
3.2 Ionic imbalance and salinity mediated
nutritional deficiencies

It is also important to note that some ions can also act as plant

nutrients, such as K+ and SO4
2-, while Na+ is not considered to be an

essential plant nutrient. Thus, soil salinity is often measured in terms

of Na+ and Cl− (Stavi et al., 2021). Plants are affected by salinity in

three ways. Because of its low osmotic potential, salt makes it difficult

for plants to extract water from the soil, subjecting plants to osmotic

stress, which limits growth and reduces yield. The Na+ and Cl- ions

when absorbed and accumulated into the tissues by plants at excess

concentrations from soil cause cytotoxicity which eventually result in

leaf firing, reduced growth, and finally plant death. Moreover, high

levels of Na+ decrease the availability of other ions such as K+, Ca2+,

and Mg2+ due to the cation competition, which can lead to nutrient

deficiencies (Munns and Tester, 2008; Atta et al., 2019; Yildiz et al.,

2020; Atta et al., 2021). During salinity, the plant takes up more Na+

than K+ as the amount of Na+ in the growth medium increases,

increasing K+ efflux from the cell and raising the Na/K ratio (Figure 3)

(Parvin et al., 2016; Rahman et al., 2016). During salt stress, excessive

Na+ influx encourages ion channel disruption, nutrient replacement

and membrane depolarization, leading to abnormalities in nutrient

uptake and assimilation (Shabala et al., 2007; Zhao et al., 2007; Nahar

et al., 2016; Gaikwad et al., 2022). According to a study in rice by
A

B

FIGURE 1

(A) Year wise distribution of global total saline area. (B) Global
distribution of salt affected area at topsoil and subsoil. Data source:
Ivushkin et al. (2019); Hossain (2019), and FAO (2021).
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Farooq et al. (2022), the concentrations of all measured nutrients (Fe,

K, Mn, Mg, P, and Zn) in the roots and shoots declined under salinity

stress. Salinity stress significantly reduces the root surface area by

lowering root hair density and root hair length which are directly

proportional to nutrient uptake (Robin et al., 2016 and Arif et al.,

2019). Essential elements including Ca2+, Mg2+, Fe2+, and Zn2+, which

are impacted by salt stress, are required for normal root growth.

Therefore, the decrease in root growth can further affect the intake of

Ca2+, Mg2+, Fe2+, and Zn2+ (EL Sabagh et al., 2021; Robin et al., 2016).

According to certain studies, corn shoots under salinity stress had

lower Mn2+ levels (Rahman et al., 1993). Nahar et al. (2016) reported,

salt stress decreased the amounts of Ca2+, Mg2+, and Zn2+ in the

leaves of mung bean seedlings.
3.3 Oxidative stress caused by salinity

Along with its direct effects on plants, salinity frequently results

in an excessive build-up of reactive oxygen species (ROS), which

can interact with other essential components of plant cells and

cause oxidative damage in plants, such as DNA damage, lipid

peroxidation, enzyme inactivation, protein oxidation, hormone

and nutritional imbalances (Hasanuzzaman et al., 2021). ROS are

primarily produced in the chloroplasts, mitochondria, endoplasmic

reticulum, cytosol, and peroxisome (Figure 3). Stomatal closure

caused by salt stress can decrease the amount of available carbon

dioxide in the leaves and thus, induces photosynthetic inhibition

(Kamran et al., 2020). The light reactions in the chloroplast have a

pivotal role in the production of a majority of ROS such as
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superoxide (O2
•-), hydrogen peroxide (H2O2), hydroxyl radical

(OH•), and singlet oxygen (1O2) (Parida and Das, 2005; Ahmad and

Sharma, 2008; Ahmad et al., 2010a; Khorobrykh et al., 2020).

The complex nature of salt stress coupled with water deficit

have a variety of detrimental effects on plant metabolic process

which in turn produce ROS that affect plant systems. Previous

studies have shown oxidative damage caused by salt in many crops,

viz. in Oryza sativa (Xu et al., 2011; Rahman et al., 2016), Zea mays

(Khodarahmpour et al., 2012), Vigna radiata (Nahar et al., 2016)

and Solanum lycopersicum (Kaveh et al., 2011). They also reported

reduced ascorbate (AsA) to dehydroascorbate (DHA) ratio,

superoxide dismutase (SOD) and catalase (CAT) activity, along

with an increase of methylglyoxal (MG) content, which collectively

contribute to oxidative damage. Greater levels of H2O2, as well as

higher MDA and overproduced MG, were also reported in rice

seedlings under salt stress, where Lipoxygenase (LOX) and SOD

activity increased while CAT activity decreased (Rahman

et al., 2016).
3.4 Effect on yield and yield components

There have been numerous studies demonstrating that abiotic

stresses, like salinity, cause significant yield losses in major crops

during the reproductive stage (Kalhoro et al., 2016; Ehtaiwesh and

Rashed, 2020). During the reproductive stage, Na+ is excluded from

leaf blades by the class I high-affinity K+ transporter (HKT) family,

affecting sodium ion homeostasis under salinity stress (Suzuki et al.,

2016). It was also found that grain dry matter and the K+/Na+ ratio
FIGURE 2

Detrimental effects of salinity stress on various plant parts at different growth stages.
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was significantly correlated with grain filling rate and duration

under salt stress (Poustini and Siosemardeh, 2004).

Changes in water relations, transpiration, nutritional

imbalances, stomatal conductance, and oxidative damage due to

salt stress all contribute to a drop in yield. By altering morpho-

physiological and biochemical processes, salinity reduces

agricultural yield and production (Kaveh et al., 2011).

Additionally, it slows down photosynthetic activity, biomass

accumulation, and source-sink activity, which has a negative

impact on yield response variables and speeds up the senescence

of reproductive organs (Khataar et al., 2018). Similar to this,

throughout the reproductive phase, changes in water potential

result in decreased flag leaf and vascular tissue thickness,

mesophyll cell size, cell elongation, and epidermal cell size, which

affect the leaf area, flag leaf turgidity, assimilate synthesis, and

ultimately yield potential (Farouk, 2011). However, Ashraf and

Ashraf (2016) hypothesized that changes in such biochemical and

physiological characteristic are stage-specific and related to yield

attributes. Salinity, for instance, reduces grain output by 39.1, 24.3,

and 13.4%, respectively, at various stages of wheat like anthesis,

early booting, and mid grain filling (Ashraf and Ashraf, 2016;

Sabagh et al., 2021). Nadeem et al. (2020) found that salinity had
Frontiers in Plant Science 05
a detrimental effect on wheat crop yield (yield, test weight and grain

length), nutritional quality features (gluten content, fiber, fat, ash

and moisture), and mineral element content (Mg, P, Ca, Zn, K and

Fe). At 8 dSm−1, yield per plant in Brassica oleracea var. capitata can

drop by up to 62% (Parvin et al., 2017). Salinity has a considerable

impact on crop reproductive responses and yield contributing

qualities, resulting in yield loss (Parvin et al., 2015a). Various

crop species, including moong bean (Nahar and Hasanuzzaman,

2009), B. oleracea var. capitata (Parvin et al., 2017), tomato (Parvin

et al., 2015a) and B. oleracea var. italica (Parvin and Haque, 2017),

showed reduced yield component and yield under salt stress.

Table 2 illustrates the extent to which salinity stress reduces

crop yields.
4 Plant adaptations to salinity stress
and mechanisms

In high salinity soils, plants develop a range of physiological and

biochemical adaptations. In addition to ion homeostasis and

compartmentalization, the principal responses include

biosynthesis of compatible solutes, osmo-protectants, antioxidant
FIGURE 3

Different physiological alterations in plants under salinity and role of antioxidants in stress alleviation.
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compounds, polyamines, and nitrous oxide, as well as regulation of

phyto-hormones. The following sections discuss recent advances in

elucidating these mechanisms.
4.1 Ion uptake, transport,
compartmentalization, and homeostasis

Plant organs are unable to function when their tissues or cells

contain excessive Na+ or Cl– concentrations. Increased Na+

concentration usually results in a decrease in K+, and it may be

critical for tolerance to maintain cytosolic K+ levels at an acceptable

level or to maintain ‘homeostasis’ (Shabala and Pottosin, 2014). The

toxic effect of Na+ may also be a result of its competition with K+ for

enzymes that require K+, such that the ratio of cytoplasmic Na+ to

K+ may be more important than the concentration of Na+ itself

(Shabala and Cuin, 2008).

Neither glycophytes nor halophytes can tolerate high salt

concentrations in their cytoplasm; however halophytes have

developed mechanisms to sequester these ions. Na+ ion exclusion

or compartmentalization’s are essential for normal plant growth

under salinity stress (Serrano et al., 1999; Hasegawa, 2013). In saline

soils, the most abundant salt form is NaCl, therefore most research

has been on how Na+ ions are transported and compartmentalized

in cells. During salinity stress, cell membranes and their associated

components regulate ion uptake and transport within the cytosol

(Sairam and Tyagi, 2004). This results in either excess salt being

transported to the vacuole or sequestered in older tissues that

eventually senesce, thereby protecting plants from salt stress
Frontiers in Plant Science 06
(Reddy et al., 1992; Zhu, 2003). Carrier proteins, channel

proteins, antiporters, and symporters all take part in ion

transport. Some well characterized transporters include Na+

transporter AtHKT1:1 (Rus et al., 2004), Na+/H+ antiporter

AtNHX1 (Apse et al., 1999), K+/Na+ symporter TaHKT1

(Schachtman and Schroeder, 1994) and Na+/H+ antiporter SOS1

(Zhu, 2003). These antiporters facilitate the compartmentalization

of excess ions through the movement of Na+ ions into vacuoles

from the cytoplasm (Gupta and Huang, 2014; Segami et al., 2018).

After Na+ ions enter the cytoplasm in excess, antiporters transport

them into vacuoles. Vacuolar membrane H+ pumps exist in two

forms: the vacuolar type H+-ATPase (V-ATPase) and the vacuolar

pyro-phosphatase (V-PPase); V-ATPase being the predominant

form which generate motive forces across the vacuolar

membrane. The ability of the plant to survive under high salinity

depends to a great extent on its V-ATPase activity (Dietz

et al., 2001).
4.2 Osmoprotection via compatible solutes

Compatible solutes, also called osmolytes are uncharged, polar,

and soluble molecules which usually do not interfere with the

cellular metabolism even at high concentrations. Organic

osmolytes are synthesized and accumulated in varying amounts

amongst different plant species to adjust osmotic potentials and

protect cells. They are most commonly proline (Ahmad et al.,

2010b; Hossain et al., 2011; Nounjan et al., 2012; Tahir et al.,

2012), glycine betaine (Khan et al., 2000; Wang and Nii, 2000),

sugars (Bohnert et al., 1995; Kerepesi and Galiba, 1995), and polyols

(Ashraf and Foolad, 2007; Saxena et al., 2013). The amino acid

proline has been found in diverse taxonomical groups of plants

(Saxena et al., 2013), while accumulations of beta alanine betaine

have been observed in plants of the Plumbaginaceae family which

are glycophytes (Hanson et al., 1994 Matysik et al., 2002; Ben

Ahmed et al., 2010). Under salinity stress, the concentrations of

cysteine, arginine, and methionine, which represent about 55% of

total free amino acids, decreased, whereas proline concentration

increased (El-Shintinawy and El-Shourbagy, 2001). Additionally,

proline accumulated in the intracellular space during salt stress also

serves as an organic nitrogen reserve during stress recovery. In salt-

stressed plants, sugars like glucose, fructose, fructans, and trehalose

are also accumulated (Parida et al., 2004). These carbohydrates

facilitate stress mitigation via, osmoprotection, and neutralization

of reactive oxygen species. Many plant species have been reported to

increase their levels of reducing and non-reducing sugars (sucrose

and fructans) when they are under salinity stress (Kerepesi and

Galiba, 1995). Trehalose accumulation is not only a carbohydrate

reserve but also a protective mechanism against several stresses

including salinity (Ahmad et al., 2013). A reduction in sucrose

content was observed in tomato (Solanum lycopersicum) when

exposed to salinity; due to an increase in saccharophosphate

synthase activity (Gao et al., 1998). Different rice genotypes have

been reported to both increase and decrease their sugar content

under salinity stress (Alamgir and Yousuf Ali, 1999). Compatible

solutes stabilize cellular structures and enzymes, act as metabolic
TABLE 2 Yield reduction due to salinity stress on different crops.

Crops Yield
reduction

(%)

References

Rice (Oryza sativa) 30-50 Eynard et al. (2005); Hoang
et al. (2015)

Barley (Hordeum
vulgare)

10-60 Abd El-Monem et al. (2013)

Wheat (Triticum
aestivum)

10-50 Panta et al. (2014); Zorb et al.
(2018); Yadav et al. (2020)

Bajra (Pennisetum
glaucam)

5-25 Yadav et al. (2020)

Sorghum (Sorghum
bicolor)

15-50 Daniells et al. (2001); Kenneth
and Neeltje (2002)

Maize (Zea mays) 50-60 Zorb et al. (2018)

Chickpea (Cicer
arietinum)

10-30 Atieno et al. (2017)

Brassica sp. (Brassica
napus & B. juncea)

30-70 Pavlović et al. (2019); Singh
et al. (2021a)

Sugarcane (Saccharum
officinarum)

5-60 Plaut et al. (2000); Rao et al.
(2015); Kumar et al. (2023)

Groundnut (Arachis
hypogaea)

25-50 Otitoloju (2014); Zorb et al.
(2018)

Cotton (Gossypium sp.) 10-20 Zorb et al. (2018)
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signals, and scavenge ROS. Osmoprotection through compatible

solutes is thus an important mechanism for plants to mitigate the

negative effects of salinity stress.
4.3 Antioxidant regulation

Abiotic stresses including salinity result in electron overflow,

deregulation, and even disruption of electron transport chains

(ETCs) in chloroplasts and mitochondria. ROS produced under

salinity stress are scavenged by enzymatic oxidants (SOD-

Superoxide dismutase, APX- Ascorbate peroxidise, GPX- glutathione

reductase, CAT- catalase, PPO- polyphenol oxidase, MDHA-

monodehydroascorbate, MDHAR- monodehydroascorbate reductase

etc.) as well as non-enzymatic antioxidants (reduced glutathione,

flavanoids, phenolics, a-tocopherol, alkaloids etc.) which protect the

plants from oxidative damage (Figure 3) (Hasanuzzaman et al., 2021).

Among these, Ascorbate peroxidase (APX) and glutathione reductase

(GR) are important antioxidant enzymes positively related to salt

tolerance (Asada, 1999; Gupta et al., 2005). At lower concentration,

ROS act as signaling molecules which initiates complex cascade of

pathways and interactions (Golldack et al., 2014). Of these, MAPK

(mitogen-activated protein kinase) and salt overly sensitive (SOS)

signaling pathway cascades are important mediators of osmotic, ionic

and ROS homoeostasis (Huang et al., 2019). ROS signals, through these

pathways, trigger antioxidant defense mechanisms and scavenging of

ROS (Kurusu et al., 2015).
4.4 Role of polyamines

Polyamines (PA) are cationic, aliphatic, and low molecular

weight molecules which play a variety of roles in normal growth

and development, including cell proliferation, morphogenesis, and

growth offlowers and fruits. Plants show higher tolerance to stresses

when polyamine levels rise (Yang et al., 2007; Groppa and

Benavides, 2008; Kovács et al., 2010; Gupta et al., 2013a; Gupta et

al., 2013b). Under salinity stress, polyamines contribute to cellular

responses by modulating ROS homeostasis (Takahashi and Kakehi,

2010). Some research has suggested exogenous application of

polyamines helps to alleviate salinity stress (Minocha et al., 2014;

Rathinapriya et al., 2020) whereas it has also been suggested that

catabolism products of polyamines (like H2O2) limit the ability of

plants to tolerate stress (Saha et al., 2015). Further investigations on

the role of polyamines are needed in this regard before conclusive

remarks can be made.
4.5 Roles of nitric oxide

The molecule Nitric Oxide (NO) is a small volatile gas that

plays an important role in many important plant processes,

including regulating root growth, respiration, stomata closure,

flowering, cell death, seed germination, and stress responses

(Crawford, 2006; Besson-Bard et al., 2008; Zhao et al., 2009).

Many redox-regulated genes are induced by NO directly or
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indirectly. By interacting with lipid radicals, NO prevents lipid

oxidation, scavenging superoxide radicals and forming

peroxynitrite that can be neutralized by other cellular processes.

Additionally, it activates antioxidant enzymes (SOD, CAT, GPX,

APX, and GR) (Bajgu, 2014). There is evidence that exogenous NO

application can mitigate stress but the effects are dependent on NO

concentration (Hossain et al., 2010; Sung and Hong, 2010; Xiong

et al., 2010). NO has been demonstrated to mediate salt stress

tolerance in plants (Wang et al., 2012) by counteracting

germination inhibition (Zheng et al., 2009), negating inhibition of

growth (Ageeva-Kieferle et al., 2019) and by its role in ion-

homeostasis (Zhao et al., 2004).
4.6 Hormonal regulation of
salinity tolerance

Among the well characterized plant hormones, abscisic acid

(ABA), salicylic acid, jasmonic acid, and ethylene are considered as

stress response hormones (Verma et al., 2016). Many studies have

elucidated that these phytohormones have sophisticated roles in

plant systems and their action is growth stage, tissue and

environment specific (Ku et al., 2018). As a consequence of

osmotic stress and water deficit, salt stress increases ABA

production in vascular tissues and its distribution in roots and

shoots (Popova et al., 1995; Jeschke et al., 1997; Cramer and

Quarrie, 2002; Kang et al., 2005; Cabot et al., 2009). There is

evidence that the positive association between ABA accumulation

and salinity tolerance is at least partially due to the accumulation of

potassium, calcium, and compatible solutes, such as proline and

sugars, within the vacuoles of roots, which counteract Na+ and Cl-

uptake (Golldack et al., 2014). In rice seedlings, the level of

endogenous salicylic acid increased under salinity stress (Sawada

et al., 2006). Furthermore, salinity can be mitigated by

brassinosteroids (Krishna, 2003; Ashraf et al., 2010; El-Mashad

and Mohamed, 2012). As a result of brassinosteroid application, the

antioxidant enzymes SOD, POX, APX, and GPX were increased and

non-enzymatic antioxidant compounds (tocopherol, ascorbate, and

reduced glutathione) were accumulated (El-Mashad and Mohamed,

2012). Studies on Arabidopsis provide most of our information

about hormone-mediated salt stress tolerance, but rice and maize

might not conserve the same regulatory mechanisms (Yu et al.,

2020). In order to guide their application and translation into

agricultural production, further research on hormones in crop

plants is required in order to elucidate their role in salt tolerance.
5 Phenomics

Irrespective of the breeding approach adopted, be it

conventional or modern, precise phenotyping stands as the

pivotal determinant of success in any breeding program. The

expeditious advancement of crop breeding programs heavily rely

on the adoption of sensor-based automated high throughput

phenotyping (HTP). Phenomics aids in getting an extra genetic

gain when it is used along with genomic studies by increasing
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selection intensity and accuracy (Lozada and Carter 2020; Sandhu

et al., 2021b). Recent advances in phenomics facilitate acquiring

robust, non-invasive, high throughput phenotyping that quantify

different morphological and physiological parameters of plants. In

case of osmotic stress (due to salt stress), plants try to reduce

transpiration loss by reducing stomatal conductance. Low

transpiration leads to increase leaf surface temperature. Thermal

Infra-Red (IR) imaging can sense the change in leaf surface

temperature more precisely between stressed and non-stressed

plants under increasing stress level. Sirault et al. (2009) optimized

a high throughput screening protocol to quantify osmotic stress

response in barley, grown in a range of salt concentrations, using IR

thermography based on visualizing the leaf temperature differences

due to the variation in stomatal conductance. In another study,

plant temperature captured by thermal images showed negative

correlation with stomatal conductance and relative water content

and no relation with photosynthetic quantum yield in rice under

salt stress environment Siddiqui et al., 2014).

Another tool used for extracting information on plant structural

and physiological trait is optical imaging. Among these, Red-Green-

Blue (RGB) imaging and hyper spectral imaging (HSI) are two most

widely used and promising phenotyping approaches. A number of

plant morphological changes like change in plant canopy area,

compactness, leaf colour are associated with salt stress. Dissanayake

et al. (2020) screened 276 accessions of lentil for salt tolerance using

RGB imaging where the discrimination between tolerant and

susceptible genotypes were done based on projected shoot area,

leaf colour, height, convex hull area, and compactness. In a different

study, genetic variation of 245 diverse chickpea accessions under

elevated salt was assessed using image-based phenotyping

(projected shoot area, senescence) and analytic measurements

(leaf Na+ and K+ content, biomass, pod number, and 100-seed

weight) where pod and seed numbers found to be the most

important traits under consideration for breeding chickpea with

improved salinity tolerance (Atieno et al., 2017).

Chlorophyll fluorescence (ChlF) is a potential indicator of stress

induced changes in photosynthetic mechanisms (PSII activity,

photochemical and non-photochemical quenching, electron

transport rate) of plants. Tissue tolerance to Na+ ion toxicity in

rice was determined by steady state ChlF imaging. The fluorescent

images captured can measure chlorotic or necrotic area and thus

can separate healthy plant parts from senescent parts (Hairmansis

et al., 2014). Similar studies have been conducted in soybean (Kim

et al., 2014), sunflower (Neto et al., 2011), acer (Percival et al., 2003),

and grape (Dunlevy et al., 2022) for the development and

optimization of salt tolerance screening protocol. However, steady

state ChlF imaging cannot provide insight into the photosynthetic

activity of plants, so kinetic ChlF has been introduced that can

quantify the photosynthetic performance under stress condition.

Awlia et al. (2016) studied rosette area, rosette colour and

photosynthetic performance of Arabidopsis thaliana under salt

stress using kinetic ChlF imaging in conjunction with RGB

imaging. Fluorescence imaging revealed that non-photochemical

quenching and quantum yield are two important traits related to

salt stress that induced Arabidopsis plant performance for early and
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late phase salt stress, respectively. In another study Tsai et al. (2019)

reported that in a salt stress sensitive rice variety, the maximum

quantum efficiency of PSII was much lower than a tolerant one after

NaCl treatment. Al-Tamimi et al. (2016) used RGB based

phenotyping to conduct a genome wide association study

(explained later in section 7) in rice and identified loci related to

transpiration use efficiency. Similarly, in a separate study two novel

candidate genes, BnCKX5 and BnERF3, linked to salt stress in

Brassica napus were discovered by high-throughput phenotyping-

based QTL mapping. (Zhang et al., 2022a). Consequently, to

achieve a better grasp of the genetic mechanisms governing stress

tolerance and to accelerate breeding endeavors targeting these traits,

it is imperative to prioritize the incorporation of phenomic tools

within breeding programs.
6 Mapping of salinity tolerance genes

Use of existing genetic variation within or among the species or

the creation of variations through mutation or other genetic

engineering approaches is a prerequisite to crop improvement.

Efficient utilization of such tolerant genotypes as donors in crop

improvement programs either through conventional breeding or

genetic engineering necessitates unravelling the underlying genetics

of salt tolerance. Incorporation of tolerance genes from tolerant

lines to agronomically superior but susceptible lines through

Marker Assisted Selection (MAS), is a widely followed crop

improvement scheme. Mapping those genes is the elementary and

crucial step for successful MAS. The genomic regions that contain

genes which influence the expression of quantitative characters are

referred to as Quantitative Trait Loci (QTL) (Tanksley et al., 1996;

Collard et al., 2005). Bi-parental mapping of QTL has been reported

to provide valuable information for further map-based cloning of

salt tolerance genes and MAS in many economically important

crops like rice, maize, pearl millet etc. (Sharma et al., 2011; Tiwari

et al., 2016; Luo et al., 2017).

The major constraints in research progress for salinity tolerance

are attributed to the polygenic inheritance pattern and significant

influence by genotype and environment interactions (Zhu, 2000;

Singh et al., 2007; Wang et al., 2014). The basic principle behind the

QTL analysis aims to detect an association between phenotype and

genotype within the population (Collard et al., 2005). However,

mapping of salt tolerance is highly influenced by screening protocol

and phenotyping accuracy of the traits, size of the mapping

population, linkage between markers and QTL, and parental

specificity. Phenotypic response of the plants under salinity stress

depends on the age of the plant, duration and level of the salt

treatment (Singh et al., 2007). Therefore, a reliable mapping of QTL

necessitates accurate phenotyping as well as genotyping of

the population.

Major crop-specific achievements in QTL mapping for salinity

tolerance through bi-parental populations in recent years,

valuable stress indicative parameters, and the importance of

crop growth stage while screening are discussed in the

following section.
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6.1 Rice

Several mapping studies in regard to salinity tolerance have

been conducted on rice. Although the reproductive stage is

considered more critical than the seedling stage as it directly

affects grain yield, major reports on QTL are limited to the

seedling stage to avoid cumbersome phenotyping efforts (Singh

et al., 2021b). Saltol is a widely known QTL in rice at the seedling

stage, which has been reported by several groups of researchers

(Bonilla et al., 2002; Niones et al., 2006; Thomson et al., 2010).

Mapping of an indica Recombinant Inbred Lines (RIL) population

identified six QTL at the seedling stage distributed on chromosomes

1 and 4 (Dahanayaka et al., 2017). Puram et al. (2018) used a set of

introgressed Lines (IL) from donor parent ‘Nona Bokra’ and

identified 18 QTL for salt tolerance indices. This study suggested

shoot Na+ exclusion, Na+: K+ homeostasis, and compartmentation

of Na+ as probable salt tolerance mechanisms in ‘Nona Bokra’.

Another QTL mapping study conducted on an F2 population at the

reproductive stage, detected sixteen QTL related to salinity stress on

four linkage groups (Hossain et al., 2015).
6.2 Wheat

QTL mapping on 350 RILs identified 90 stable QTL for 15

traits with a genome-wide distribution except for chromosomes

4D, 6B, and 7D. Out of four QTL clusters that were located on

chromosomes 2D, 3D, 4B, and 6A, eight notable QTL were

validated in a collected natural population. Among them, one

QTL was found to be associated with the dwarfing gene Rht-B1

(Rht- Reduced height) which is responsible for reduced plant

height and increased seed yield. Additionally, three Kompetitive

Allele-Specific PCR (KASP) markers derived from SNPs were

successfully designed for three QTL clusters (Luo et al., 2021b).

Another study in a RIL population comprising of 254 individuals

revealed a total of 158 stable additive QTL for 27 morpho-

physiological traits distributed over all the wheat chromosomes

except 3A and 4D. 78 out of the 158 QTL, were mapped in nine

QTL clusters and seven QTL were validated in two unique

populations to check the reliability and potential use in MAS,

leading to the development of KASP markers closely linked to

stable QTL (Luo et al., 2021a). Rezaei et al. (2021) detected a total

of 61 main effect QTL distributed over 15 chromosomes from a

study of 186 F10 RILs during the germination and early-seedling

stages. Two major QTLs for primary-leaf fresh weight and

coleoptile fresh weight were detected on chromosomes 5 and 2,

respectively (Rezaei et al., 2021). Asif et al. (2020) identified six

QTL for salt tolerance traits: sodium accumulation, chloride

accumulation, K+-Na+ ratio, and maintenance of shoot growth

under salinity in a RIL population of wheat developed from

biparental mating of Excalibur × Kukri. GBS data of the

mapping population was associated with both non-destructive

high-throughput imaging data [projected shoot area (PSA),

relative growth rate (calculated from PSA)], and destructive data

such as Na+, K+, and Cl- ion content in the leaves.
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6.3 Maize

In a salt tolerance study of 209 doubled haploid (DH) lines, 41

QTL out of a total of 61 were found to be associated with salt

tolerance for biomass related traits. These salt tolerance-specific

QTL clustered on chromosomes 1, 3, 7, and 9, among which 13

major effect QTL on chromosome 1 contributed the most to the

phenotypic variance (Luo et al., 2019a). Another study by Luo et al.

(2017) on a DH population of 240 individuals at maturity stage

revealed a major QTL for plant height on Chromosome 1 under

salinity. In addition, the major QTL influencing plant height-based

salt tolerance index was also mapped at the same position on

Chromosome 1, and two candidate genes related to ion

homeostasis were identified within the confidence interval of this

QTL. Using 161 F2:5 RILs, a field as well as a hydroponic experiment

were conducted for QTL analysis (Cui et al., 2015). A total of 29

QTL, clustered on chromosomes 1, 3, and 5, were detected. Among

those 14 showed significant QTL by treatment (Q × T)

interaction effects.
6.4 Sorghum

In a biparental mapping population of 181 RILs, three traits at

the germination stage and nine traits at the seedling stage were

analyzed, where a total of 12 QTL [(PVE range of 5.4 to 6.0%) and

29 QTL (PVE range 5.3–21.9%) were identified, respectively. Six

major QTL at the seedling stage were identified with the positive

effects being majorly from the maternal parent. Further extension of

this study at the whole plant growth stages detected a total of 53

QTL for six characters for both salt and control conditions. Out of

which, six QTL were declared as major QTL (Wang et al., 2020). In

a recent study, using a population of 177 F3:5 interspecific RILs, a

high-density genetic map was generated covering the 10 Sorghum

chromosomes with 1991 markers. The genetic map was used to

identify 10 salt stress-specific QTL related to plant growth and

overall plant health. Four of them that affected plant height, total

biomass, and root biomass, were found to colocalize on

chromosome 4. These salt-responsive QTL contained genes

related to osmotic and ionic tolerance along with many

aquaporins (Hostetler et al., 2021).
6.5 Chickpea

In a recent study in both glasshouse and field conditions, 200

RILs from a cross between two Cicer arietinum varieties Rupali

(sensitive) and Genesis836 (tolerant), 42 QTL were detected as

having effects on different growth parameters. Among them six

major QTL on chromosomes four, five, and six were related to salt

tolerance. However, in total, 21 QTL were mapped to two distinct

regions on chromosome 4 (Atieno et al., 2021). Soren et al. (2020)

screened a set of 201 RILs at the reproductive stage under field

conditions developed by crossing two diverse parental lines ICCV

10 (salt-tolerant) and DCP 92-3 (salt-sensitive). An association
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between genotypic and phenotypic data identified 28 QTL in the

population, among which one individual QTL on chromosome 6

related to yield contributed to the maximum phenotypic variance

(28.4%). Major QTL associated with yield and yield-related

components under salinity stress were found to be clustered on

CaLG03 and CaLG06. Candidate genes related to salinity tolerance

included histidine kinase, Ca-dependent protein kinases, antiporter

genes, and transcription factors such as WRKY and MYB.
6.6 Soybean

An F9 generation RIL population (salt-sensitive cultivar,

Cheongja 3 × salt-tolerant landrace, IT162669) consisting of 174

individuals, was screened for salt tolerance at the vegetative stage

(Cho et al., 2021). Phenotypic data taken after two weeks of salt stress

included major stress-indicative physiological traits such as vegetative

damage and Na+-K+ ion contents. Two novel major QTL on

chromosomes 6 and 10 were identified as related to ionic stress

and other major physiological parameters, respectively under salinity.

Analyses of differential gene expression patterns between parents and

functional annotation revealed two potential candidate genes in qST6

and six in qST10, which included a phosphoenolpyruvate carboxylase

and an ethylene response factor. Do et al. (2018) developed a

population of 132 F2:3 (moderately sensitive cultivar Williams 82 ×

tolerant cultivar Fiskeby III (PI 438471)) and identified major

chromosomal loci related to salt stress. Plants were phenotyped

with vegetative parameters and ion contents after two weeks of salt

stress. A major QTL derived from Fiskeby III located on Chr-03 was

found to be significantly associated with leaf scorch, chlorophyll

content ratio, and sodium and chloride ion contents. Additionally,

another allele related to leaf sodium content was detected and

mapped on Chr-13.
6.7 Medicago truncatula

In a study on the model legume cropMedicago truncatula, a set

of 133 RILs (Jemalong A17 (JA17) × F83005.5 (F83)) were screened

for salt tolerance (Arraouadi et al., 2012). Dry biomass and

accumulation of Na+ and K+ ion in roots, stems, and leaves were

considered for the phenotyping of the plants. Out of 13 QTL

spanning eight linkage groups, six QTL in control, two in salt,

and five for salt sensitivity index were mapped. Most of the QTL

were found to be clustered on Chr-1, however, no QTL were

detected on Chr-5 and 6. Identification of non-overlapping QTL

for root and leaf traits suggested the involvement of different genes

in ion transportation between roots and leaves.
6.8 Cotton

In an SNP-based QTL mapping study, a total of 66 QTL were

detected from an F2-derived F3 population of tolerant cotton line

CCRI35 and susceptible Nan Dan (NH) (Diouf et al., 2017). Plants

were screened with morpho-physiological parameters at the
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seedling stage under three salt concentrations. Out of all detected

QTL, only 14 (10 from the male parent and four from the female

parent) for six traits showed consistency across three salt

environments, which accounted for 2.72 to 9.87% of PVE. Five

and nine QTL were found to be located in the At and Dt sub-

genomes, respectively. Further analysis detected eight clusters that

were associated with 12 putative key genes related to salinity.
6.9 Zoysiagrass

Guo et al. (2014) conducted a study in an intraspecific F1
mapping population comprising of 120 progeny derived from a

cross between salt-tolerant accession Zoysia japonica Z105 and salt-

sensitive accession Z061. Two QTL having a significant impact on

leaf firing were detected on chromosome 4. Another major QTL for

reduced shoot clipping dry weight was detected on chromosome 5.

Major findings of above-mentioned QTL studies are

summarized in the Table 3.
7 Genome-wide association mapping
approach for investigating
chromosomal regions related to
salinity tolerance

Despite higher efficiency and strong detection power to detect a

major variant that influences phenotype, mapping of genes using a

bi-parental mapping population faces several challenges, especially

where cross incompatibility is a major barrier to developing a

successful mapping population. With recent advancements in the

Next Generation Sequencing (NGS) and HTP, alternate strategies

for mapping genes and QTL have become possible. Genome Wide

Association Study (GWAS) is a widely used approach to overcome

the shortcomings of bi-parental mapping by utilizing the large

genetic variation present in a diverse panel of plants (Tibbs Cortes

et al., 2021). GWAS rely on Linkage Disequilibrium (LD), the

correlation structure that exists among DNA variants in the

candidate genome as a result of historical evolutionary forces,

particularly finite population size, mutation, recombination rate,

and natural selection (Visscher et al., 2017).

GWAS approaches have been implemented in different plant

species to find out the underlying genetics of several abiotic stresses

which include drought, salinity, temperature, and Boron toxicity

tolerance (Challa and Neelapu, 2018). Major crop-specific

achievements in identifying potential QTL related to salt

tolerance, important stress indicative parameters, and crop

growth stage while screening through GWAS, in recent years are

discussed in the following section (Table 4).
7.1 Rice

Warraich et al. (2020) conducted GWAS in rice at the

reproductive stage where 180 diverse accessions were evaluated
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TABLE 3 Summary of major QTL detected in different crops in recent years.

Crop Type of MP Major QTL detected Crop stage Chromosome PVE (%) Author

Rice 100 RILs (At354
× Bg352)

qSSI1, qSL1, qSNK1, qSL4, qSNK4,
qSSI4

Seedling 1, 1, 1, 4, 4 10.8, 10, 8.9, 15, 11,16 Dahanayaka
et al. (2017)

112 ILs
(Cheniere × Nona
-Bokra)

qK3.1, qNaK3.1, qSHL8.1, qDWT8.1,
qSRI-K9.1, qSRI-NaK9.1

Seedling 3, 3, 8, 8, 9, 9 14.8, 14.6, 14.2, 17.6 Puram et al.
(2018)

F2s
(Cheriviruppu ×
PB1)

qPH1.1, qTN7.3, qPL7.4, qBM8.2 Reproductive 1, 7, 7, 8 47.1, 12, 35.1, 17.9 Hossain et al.
(2015)

Wheat 254 RILs
(ZM175 × XY60)

QRl-2B.1, QsK-4B, QTrad-2B, QTrsa-
2B, QMrl-2B

Seedling 2, 4, 2, 2, 2 46.43, 12.87, 23.05,
15.14, 15.2

Luo et al.
(2021a)

350 RILs
(ZM175 ×XY60

QPh-4B, QHi-4B Whole-plant
growth

4, 4 32.43, 22.02 Luo et al.
(2021b)

184 RILs QPfw-5B2, QCl-2B1 Germination and
early seedling

5, 2 43.99, 20.38 Rezaei et al.
(2021)

128 RILs
Excalibur × Kukri

QNa:K.asl-2B, QCRGR.asl-5A, QNa.asl-
2A, QG(1-5).asl-5A

Seedling 2, 5, 2, 5 14.6, 11.2, 10.3, 10.9 Asif et al.
(2020)

Maize 209 DH lines
(hybrid Xianyu
335)

qRLS1, qFLS1-2, qRLR1, qFLS1-2 Seedling 1, 1, 1, 1 63.19, 55.21, 58.35,
55.21

Luo et al.
(2019a)

240 DH lines
(PH6WC ×
PH4CV)

qSPH1, qPHI1 Matured 1, 1 31.2, 25.94 Luo et al.
(2017)

161 RILs
(F63 × F35)

QFstr1, QStr3, QSkcs|skcn3+, QSkns|
sknn3 +

Seedling 1, 3, 3, 3 58.33, 24.98, 47.96,
32.54

Cui et al.
(2015)

Sorghum 181 RILs
(Shihong137 × L-
Tian)

qSH1, qSH4, qSFW4, qTFW4, qTFW1,
qRL10-2

Seedling 1, 4, 4, 4, 1, 10 13.5, 15.6,11.6, 11.5,
21.9, 16

Wang et al.
(2014)

181 RILs
(Shihong137 × L-
Tian)

qTB6, qSFW9, qJW9, qBrix2, qBrix10,
qSTI-Brix9

Whole-plant
growth

6, 9, 9, 2, 10, 9 11.15, 17.7, 14.4,
12.83, 11.58, 15.45

Wang et al.
(2020)

177 RILs
(S. propinquum ×
S. bicolor)

qHT45_4.STI, qTB45_4.STI,
qTB45_4.S, qRB45_4.ST

45 DAT 4, 4, 4, 4 9, 13.4, 10.37, 11.4 Hostetler et al.
(2021)

Chickpea 200 RILs
(Rupali ×
Genesis836)

salSYqtl.2, saltolSYqtl.1, saltolSNqtl.2 Reproductive 4, 5, 4 22, 17.9, 28.5 Atieno et al.
(2021)

201 RILs (F8)
(ICCV 10 × DCP
92-3)

qSSIYP6.1, SSI_YP, qSSIYP3.1, and
qSSI100SW3.1

Reproductive 6, 3 12.2-28.3, 10, 10.1 Soren et al.
(2020)

Soybean 174 RILs (F9)
(Cheongja-3 ×
IT162669)

qST10 (STR, SPAD, FW, DW), qST6
(Na+, K+:Na+)

Vegetative 10, 6 20.07-24, 14.07-24.38 Cho et al.
(2021)

132 F2:3
(Williams-82 ×
Fiskeby III)

qLSS, qCCR, qLSC, qLCC, qLSC Vegetative 3, 3, 3, 3, 13 48.2, 31.3, 20.6, 58.9,
11.5

Do et al. (2018)

M.
truncatula

133 RILs (F8)
(JA17 × F83)

LeaKCsi.1, LeaNaKCsl.1, RoNaKCct.1,
LeaNaTQct.1

Vegetative 1, 1, 1, 1 11.7, 9.8, 10, 10.8 Arraouadi et al.
(2012)

Cotton 277 F2:3
(CCRI35 × NH)

qEC_A12_110.2, qSLW_A06_110,
qFW_D03_110.2

Seedling A12, A06, D03 8.29, 7.91, 9.87 Diouf et al.
(2017)

Zoysiagrass 120 F1s
(Z. japonica Z105
× Z061

qLF-1, qLF-2, qSCW-1 30 DAT 4, 4, 5 13.1, 29.7, 65.6 Guo et al.
(2014)
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MP, Mapping Population; DAT, Days After Treatment; PVE, Phenotypic Variance Explained (with respect to mentioned QTL).
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for 13 morpho-physiological parameters (including ion contents in

stem and leaves, grain yield, and salt injury score) and genotyped by

genome-wide SSR markers. This study identified 28 significant

marker-trait associations, out of which 19 associations were

related to ion homeostasis in stems and leaves. GWAS with 155

rice varieties at the early vegetative stage identified 151 significant

marker trait associations scattered on 10 chromosomes

(Nayyeripasand et al., 2021). The diverse panel was phenotyped

with several agronomic parameters such as shoot and root length,

the biomass of above and below ground parts, and RWC. A

genomic region of 11.26 Mbp on chromosome 1 was found to be

colocalised with the QTL region SalTol1. A number of candidate

genes involved in ion transportation and encoding transcription
Frontiers in Plant Science 12
factors were identified on different chromosomes. Al-Tamimi et al.

(2016) used 533 rice accessions (297 indica and 257 aus) to

investigate early response of rice to soil salinity where they

phenotyped the accessions for projected shoot area (PSA),

absolute and relative growth rate (derived from PSA) using RGB

imaging, transpiration rate (TR), and transpiration use efficiency

(TUE). Through GWAS, combining these phenotyping data

identified new loci affecting TUE on chromosome 11. Another

GWAS was successfully implemented in rice to identify SNPs

related to 12 different salt tolerance related traits during the

reproductive stage under field grown conditions (Kumar et al.,

2015). Twenty and 44 SNP loci were identified to be associated with

Na+: K+ ratio and other yield parameters (Table 4) observed under
TABLE 4 Summary of major genome-wide association studies carried out in different crops in recent years.

Crop Size of
diversity
panel

Marker
system

Significant
Marker-trait
associations

Crop
stage

Major traits PVE
range
(%)

Author

Rice 180
accessions

SSR 28 Reproductive Na+, K+, Ca2+, Mg2+ content in stem and leaves,
chlorophyll (chl)

5.12-
13.37

Warraich et al.
(2020)

155 varieties SNP 151 Early
vegetative

Length, fresh wt., dry wt. of several agronomic traits,
and RWC

5.58-
21.17

Nayyeripasand
et al. (2021)

553
accessions

SNP – Vegetative Growth parameters through RGB analyses, TR, TUE – Al-Tamimi
et al. (2016)

220
accessions

SNP 64 Reproductive Plant height, ion content, yield parameters 5-15 Kumar et al.
(2015)

Wheat 289 elite
lines

SNP 118 at low salinity
120 at high salinity

Whole plant
growth

Chl and yield related parameters 3.91-
17.59

Chaurasia et al.
(2020)

135
accessions

SNP 220 Vegetative Chl, growth parameters, Na+, K+ contents 0.10–
45.02

Chaurasia et al.
(2020)

Maize 305 lines SNP 53 Seedling Ca2+ in shoot and root – Liang et al.,
2022)

445
accessions

SNP 57 Seedling Plant’s survival rate 5-14 Luo et al.
(2019b)

Brassica
napus

146
accessions

SNP 77 Seedling Germination vigour, germination rate, relative salt
damage index

11.20-
17.68

Zhang et al.,
(2022b)

228
accessions

SNP 142 Seedling Germination%, root length, shoot dry weight, seed
vigour index

9.6-19.5 Wassan et al.
(2021)

85 inbred
lines

SNP 62 Seedling Shoot fresh weight, shoot dry weight, leaf Na+, K+,
Ca2+, leaf Na+/K+, leaf Na+/Ca2+

– Yong et al.
(2015)

505
accessions

SNP 31 Germination
and seedling

Germination potential, germination rate, shoot
length, root length, dry weight, leaf area, chlorophyll
content, relative electrical conductivity

– Zhang et al.
(2022a)

368 cultivar
and inbred

lines

SNP 75 Seedling Root length, shoot length, shoot fresh eight, shoot
Na+ content

4.21-9.23 Wan et al.
(2017)

Soybean 305
accessions

SNP Three gene-based
SNP markers

(Salt-20, Salt14056
and Salt11655)

Seedling Leaf scorch score, chlorophyll content ratio, leaf Na+

and Cl- content
– Do et al.

(2018)

281
accessions

SNP 22 QTL Germination Fresh weight, root dry weight 3.83–8.0 Cao et al.
(2021)

121 wild
accessions

SNP 21 Germination germination index, rate, and potential 14.11 -
37.34

Shi et al.
(2022)
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salinity, respectively. Widely reported QTL at the seedling stage

present on chromosome 1: Saltol, was identified to be associated

with ion homeostasis at the reproductive stage. Other potential QTL

were detected on chromosomes 4, 6, and 7 (Kumar et al., 2015).
7.2 Wheat

A recent genome wide association study by Alotaibi et al. (2022)

in 289 elite lines of the Wheat Association Mapping Initiative

(WAMI) population was conducted under low and high salinity

conditions using 15,737 SNP markers at the whole plant growth

stage. Seven yield related traits were evaluated and 118 significant

marker trait associations at low salinity and 120 at high salinity were

found. A multi-locus GWAS in 135 diverse lines at the vegetative

stage of wheat revealed novel genomic regions for salinity tolerance

(Chaurasia et al., 2020). Out of a total 220 Quantitative Trait

Nucleotides (QTNs) identified for 12 salt tolerance related traits,

42 QTNs were found to have significant impacts on 10 salt tolerance

traits. Further studies identified 58 candidate genes for the

associated genomic regions.
7.3 Maize

An association panel comprising 305 maize inbred lines were

phenotyped for above and below ground Ca2+ concentrations and

transport coefficients, and genotyped by SNPs to perform GWAS.

Fifty three significant SNPs along with 544 associated genes in the

linkage disequilibrium regions were identified under salt treatment.

Further expression and genetic variation effects by gene-based

association analysis revealed a significant association of a

pentatricopeptide repeat protein coding gene GRMZM2G123314

with Ca2+ transport (Liang et al., 2022). Another study by Luo et al.

(2019b), investigated the survival rates of 445 maize accessions

under salinity stress at the seedling stage. GWAS detected 57 loci

significantly associated with salt tolerance, which contained 49

candidate genes.
7.4 Brassica

To know the genetic basis of salt tolerance in rapeseed a GWAS

was conducted on a diverse panel of 146 accessions using 10,658

high quality SNP markers (Zhang et al., 2022b). In this study 77

SNPs were identified having significant associations with salt

tolerance traits, out of which 36 SNPs were associated with three

salt tolerance traits (germination vigor, germination rate, relative

salt damage index) and gene ontology annotations revealed 19

candidate genes having putative roles in response to salt stress.

Using 2,01,817 SNP markers in a GWAS, Wassan et al. (2021)

identified 142 SNPs significantly associated with salt tolerance in a

diverse panel of 228 lines of Brassica napus. They obtained 117

candidate genes associated with 40 SNPs mostly encoding

transcription factors, DNA binding proteins, and aquaporins.

Further differential expression between salt tolerant and
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susceptible lines validated ten candidate genes. Sequence analysis

of putative candidate genes by Yong et al. (2015) revealed the loss-

of-function in coding regions was due to frame shift mutations or

formation of premature stop codons. This resulted in differential

response in salt tolerant and sensitive lines under stressed

condition. Similarly, QTL and candidate genes related to salt

stress in both germination and seedling stage in rapeseed were

identified by Zhang et al. (2022a). This study reported

overexpression of two candidate genes BnCKX5 and BnERF3 were

associated with increased sensitivity to salt stress. Another GWAS

experiment identified 75 SNPs and 38 putative candidate genes

associated with salt stress tolerance traits under multiple

environments at the seedling stage of brassica (Wan et al., 2017).
7.5 Soybean

Do et al. (2018) conducted two GWAS on a diverse panel of

soybean accessions to map and validate genomic regions for salt

tolerance at the seedling stage. SNPs derived through SoySNP50K

(Song et al., 2013) from 305 accessions and Whole Genome

Resequencing (WGR) of a subset of 234 accessions confirmed a

major locus for salt tolerance on chromosome 3. The highest

association of three gene-based SNP markers of the known gene,

Glyma03g32900, on Chr-3: Salt-20, Salt14056, and Salt11655 were

found to be consistent in both studies (Do et al., 2018). Another

GWAS on 281 diverse soybean accessions at the germination stage by

Cao et al. (2021) identified a total of 22 QTL associated with salt

tolerance. Four salt tolerance indices related to germination and

biomass were used for phenotyping. Two major QTL were identified

on chromosomes 5 and 16. Shi et al. (2022) evaluated 121 wild soybean

accessions during seed germination under salt stress conditions. A total

of 21 SNPs with significant associations with salt tolerance were found

to be distributed in Chr- 2, 3, 10, 18, and 19, where Chr- 10 registered

the highest number of associations.
8 Role of Whole Genome
Resequencing for investigating
structural variations related to
salinity tolerance

Our understanding of the genetic mechanisms underlying salt

stress has become even more effective with the recent developments

in Whole Genome Resequencing (WGR) and pangenomics. The

goal of a WGR experiment is often to identify the differences

between a specific individual’s genome and the reference genome.

By comparing the sequenced genomes to the reference, a list of

mutations unique to each sequenced individual is acquired. These

mutations are typically single nucleotide polymorphisms (SNPs)

and insertions-deletions (InDels). Substantial rearrangements,

including translocations, inversions, and large copy number

changes can also be identified using WGR. Findings of

noteworthy information related to salt tolerance through WGR

studies in various crops are discussed in the following section.
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8.1 Rice

Jain et al. (2014) performed WGR to analyze two rice cultivars

with contrasting responses to salinity stress and identified 401,683

SNPs and 57,656 InDels. They found a total of 614 genes with a

higher density of nonsynonymous SNPs and 576 large-effect SNPs

in 1247 genes, which might have a role in the contrasting stress

response of those rice cultivars. Furthermore, 266 potential genes

were detected that could be validated and utilized for the

improvement of salt tolerance. Another study with WGR in rice

genotypes having differences in salt tolerance identified 2347

nonsynonymous SNPs and 51 frameshift mutations (Subudhi

et al., 2020). Additionally, 396 differentially expressed genes with

large-effect variants in the coding regions were identified that are

associated with various salt tolerance mechanisms.
8.2 Chickpea

A WGR study of chickpea genotypes having contrasting

tolerance to salinity was carried out by Rajkumar et al. (2021). In

total, 920 InDels and 6173 SNPs were found that could distinguish

the chickpea genotypes with differing salinity stress responses.

Chromosome 4 and chromosome 1 were found to have the highest

number and frequency of DNA polymorphisms. However, the least

amount of DNA polymorphisms was found on chromosome 5. DNA

polymorphisms were discovered in the cis-regulatory motifs of genes

related to abiotic stress, which might affect the response to salinity

stress by modifying the binding affinity of transcription factors.
8.3 Soybean

Further extension of the previously mentioned study by Do et al.

(2019) using WGR with a subset of 234 accessions of soybean

facilitated the detection of some additional regions on Chr- 1, 8, and

18 which are related to salt tolerance. The region identified on Chr- 8

was predicted as a new minor locus for salt tolerance in soybean. In

another study, Patil et al. (2016) conducted a WGR experiment on 106

diverse soybean lines and identified three major structural variants

(SV-1, SV-2, and SV-3) and allelic variation in the promoter and genic

regions of the GmCHX1 ion transporter gene associated with salinity

tolerance. The presence of Ty1/copia retrotransposon in the given locus

was found in SV1, which was manifested by salt-sensitive genotypes as

reported by Qi et al. (2014). In contrast, salt-tolerant SV-2 lacked this

retrotransposon. Interestingly, the SV-3, which did not contain any

retrotransposon, showed a salt-sensitive reaction.
8.4 Medicago

The study by Friesen et al. (2014) used WGR to investigate the

genetic basis of adaptation under salinity stress in 39 wild accessions

of Medicago truncatula. They identified candidate genes such as

Medtr3g098090.1, which is orthologous to AtCIPK21 in Arabidopsis
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thaliana. AtCIPK21 is a calcium-dependent protein kinase that

plays a role in abscisic acid and jasmonic acid signal transduction

pathways. These pathways play critical roles in the regulation of

plant responses to various abiotic stresses, including salinity stress.

The researchers found that Medtr3g098090.1 showed differential

expression in response to salt stress, with higher expression levels in

salt-tolerant accessions. This gene could be a potential target for the

genetic improvement of crop plants for increased salt tolerance.
8.5 Linseed

To understand the genetic basis of salt tolerance in linseed, WGR

has been used to identify QTL for salt tolerance and candidate genes

associated with salt tolerance. Zhao et al. (2022) performed WGR on

salt-tolerant and salt-sensitive varieties of linseed and a total of 15

candidate genes related to salt tolerance were identified within a 2.597

Mb region on chromosome 1. The study identified two candidate genes

for salt tolerance, Lus.o.m. scaffold91.141 and Lus.o.m. Scaffold1.14,

which encode WD40 and cytochrome P450, respectively. Previous

studies have demonstrated that overexpression of the Ginkgo biloba

WD40 gene improved salt tolerance in poplar (Xin et al., 2021). In

addition, Ahmad et al. (2019) found that the candidate gene Lus o.m.

Scaffold1.14 in linseed encodes a cytochrome P50 protein which

promotes flavonoid biosynthesis and enhances plant cell resistance

by changing osmotic pressure. These findings suggest that these two

candidate genes could potentially be targeted for improving salt

tolerance in linseed.
9 Genomic selection for developing
salinity tolerant crops

In nature, most of the quantitative traits of economic importance

like- yield, biotic and abiotic stress tolerance are controlled by a large

number of minor effect QTL and MAS fails to capture these small

effect alleles (Xu and Crouch, 2008; Bernardo, 2016). To overcome

this challenge, a prediction model-based marker strategy called

genomic selection (GS) was introduced (Meuwissen et al., 2001).

GS uses a training population to develop a prediction model based on

its phenotypic and genotypic data and this model in turn used to

obtain genomic estimated breeding value (GEBV) of all the

individuals of a large breeding population using its genotypic

information only (Poland et al., 2012). There are several methods

to develop parametric and non-parametric prediction models like-

best linear unbiased prediction (BLUP), Bayesian regression, ridge

regression, kernel regression, machine learning methods (random

forest, support vector machine) (de Los Campos et al., 2013) and their

prediction accuracy depends on several factors like- size of the

training population (Technow et al., 2013; Endelman et al., 2014),

heritability of the trait (Isidro et al., 2015; Duangjit et al., 2016), and

marker density for the genotyping population (Zhang et al., 2015).

Medina et al. (2020) used eight different GS models to predict the

performance of alfalfa under salt stress condition. Prediction accuracy

and root mean square due to error (RMSE) values were the criteria to
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select the best-fitting model. Among rrBLUP, BayesA, BayesB,

BayesC, Bayesian Ridge Regression (BRR), Bayesian LASSO (BL),

Support Vector Machine (SVM), and Random Forest (RF), SVM

outperformed the others with a prediction accuracy of 0.793 for yield.

With a negative correlation value r2= -0.64 between accuracy and

RMSE, SVM proved to be the best for predicting breeding values with

high accuracy and low RMSE. Other studies also found machine

learningmethods to be better over others, as it identifies both additive

and non-additive (dominant and epistatic) variance of the trait by

capturing SNPs with major effects and complex SNP-SNP

interactions (Li et al., 2018; Sandhu et al., 2021a; Enoma et al.,

2022). Bartholomé et al. (2022) attempted genomic selection in rice

for salt stress related morphological traits and ion mass fractions

where they trained the GS model using SNP arrays in a training

population of 241 japonica accessions. A high prediction accuracy of

0.25-0.64 for morphological traits and moderate to high accuracy

(0.05-0.40) for stress indices were found when this model was used to

predict a breeding population. Further cross validation resulted in a

strong correlation (r2 = 0.69) in the predictive abilities of a subset of a

breeding population with the reference panel under salinity stress

conditions. All of these points to the possibility that breeding efforts

for developing new lines for salinity-prone environments could

become more effective by integrating genomic selection in breeding

programs (Figure 4).
10 Scope of pangenomics

WGR studies based on a single reference genome may not be

good enough in identifying Structural Variations (SVs) and do not
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provide sufficient details for extensive understanding of genetic

variants due to the lack of diversity within a species (Bayer et al.,

2020; Danilevicz et al., 2020). Considering these limitations, the

concept of pangenomics was put forward by the researchers.

Pangenomes not only represent more diversity of a species or

identify core genes those are present in all individuals, but also

identify distinct and variable genes that are missing in the reference

genome and in some individuals, respectively (Zhao et al., 2018;

Bayer et al., 2020). It also facilitates a multidimensional analysis of

polymorphism and SVs within and across genomes to

simultaneously investigate the genomic variations among

individuals of a species or higher taxonomic groups.

Pangenomes have been compiled for many major crop species

such as maize, rice, hexaploid wheat, soybean, and Brassica oleracea,

but have yet to be fully explored in terms of connecting genetic and

phenotypic variations, particularly about salt tolerance (Hirsch

et al., 2014; Li et al., 2014; Golicz et al., 2016; Montenegro et al.,

2017; Zhao et al., 2018). To combat harsh environmental

conditions, researchers are still working to mine certain superior

genes related to salinity tolerance from wild relatives through

forward genetics or reverse genetics approaches. The

identification and mapping of salinity-tolerant genes in important

crop species have not yet been reported from a pangenome analysis

(Ullah et al., 2022). This pangenome idea along with high-

throughput third-generation sequencing offers a reliable platform

to recapture deleted genes, identify new genes, and increase our

understanding of the dynamics and architecture of the genome.

Therefore, considering the power of pangenome analysis to address

salinity stress, research efforts are required to mine novel genes in

exotic germplasms.
FIGURE 4

A schematic illustration of genomic selection to improve salinity stress tolerance in crop plants.
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11 Conclusions and future prospects

Irrigation with recycled water, improper fertilization, and

deterioration of agricultural lands are gradually increasing the

threat of soil salinization (Jha et al., 2019). Consequently, salinity

being one of the major abiotic stresses, causes significant yield loss

in agricultural crops worldwide. To mitigate crop yield loss caused

by the rising challenge of salinity stress, various strategies have been

embraced. Interdisciplinary research advances in various model

plants as well as crop plants have improved our understanding of

the complex molecular mechanisms and underlying genetics of

salinity tolerance. Similarly, advances in genomic resources have

allowed for the identification of salinity tolerance QTLs and genes

through bi-parental and genome wide association mapping studies.

Furthermore, availability of crop genome sequences, genome re-

sequencing approaches, and pangenome assemblies can greatly

facilitate in discovery of genomic regions, structural genomic

variants or haplotypes contributing to salinity tolerance across the

whole genome.

Increasing facilities capable of HTP has improved the screening

of germplasms with enhanced phenotypic accuracy and efficiency

which has been proven highly effective for selecting potential

salinity tolerant crop plants (Al-Tamimi et al., 2016). Emerging

genome editing techniques, such as CRISPR/Cas9, are powerful

tools for the validation of candidate genes and knocking out

negative alleles associated with salt susceptibility (Kumar and

Sharma, 2020; Luo et al., 2021). Future research studies may

explore special traits and structures such as salt glands, papillae

etc. present across various plant gene pools and harness their

potential towards improving salinity tolerance (Marcum et al.,
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1998; Yamamoto et al., 2016; Jha et al., 2019; Spiekerman and

Devos, 2020; Mondal et al., 2023). Deciphering different pathways

involved in salt tolerance, understanding genetics through

molecular mapping, embracing conventional breeding approaches

along with emerging breeding tools can help improve genetic gain

under increasing salinity stress, leading to more resilient crops for

the future.
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