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In recent years, monitoring the health of crops has been greatly aided by

deploying highthroughput crop monitoring techniques that integrate remotely

captured imagery and deep learning techniques. Most methods rely mainly on

the visible spectrum for analyzing the abiotic stress, such as water deficiency in

crops. In this study, we carry out experiments on maize crop in a controlled

environment of different water treatments. We make use of a multispectral

camera mounted on an Unmanned Aerial Vehicle for collecting the data from

the tillering stage to the heading stage of the crop. A pre-processing pipeline,

followed by the extraction of the Region of Interest from orthomosaic is

explained. We propose a model based on a Convolution Neural Network,

added with a deformable convolutional layer in order to learn and extract rich

spatial and spectral features. These features are further fed to a weighted

Attention-based Bi-Directional Long Short-Term Memory network to process

the sequential dependency between temporal features. Finally, the water stress

category is predicted using the aggregated Spatial-Spectral-Temporal

Characteristics. The addition of multispectral, multi-temporal imagery

significantly improved accuracy when compared with mono-temporal

classification. By incorporating a deformable convolutional layer and Bi-

Directional Long Short-Term Memory network with weighted attention, our

proposed model achieved best accuracy of 91.30% with a precision of 0.8888

and a recall of 0.8857. The results indicate that multispectral, multi-temporal

imagery is a valuable tool for extracting and aggregating discriminative spatial-

spectral-temporal characteristics for water stress classification.

KEYWORDS

multispectral, multitemporal, UAV, stress classification, maize, BiLSTM, attention-
based network
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1 Introduction

The growth and health of the crop depend on several essential

agronomic inputs Boyer (1982) such as water and soil nutrients like

nitrogen and phosphorous. These factors play a pivotal role in

determining both the quantity and quality of production. Water

aids in the transportation of nutrients Gonzalez-Dugo et al. (2010)

from the soil to different regions of the plant. Inadequate water

supply leads to the development of abiotic stress in plants,

disrupting their capacity Wang et al. (2016); Vicente et al. (2018)

to carry out vital processes such as photosynthesis, affecting the

crop’s yield. In the recent past, the phenomenon of global warming

Mueller et al. (2012); Food and of the United Nations (2019)

resulted in irregular rainfall patterns leading to water scarcity.

Water shortage leads to diverse physiological changes, including

loss of greenness and reduced leaf surface and biomass. Maize is a

staple food around the globe and accounts for 36% of the world’s

grain production, constituting nearly 9% of the Indian food basket

Dataset IIMR (2020). Since there are about one to two kernels per

plant, drought stress impacts Zhou et al. (2020); Liu et al. (2020) the

quality, harvesting ability, and crop yield. As per the recent study by

Laborde et al. (2020), the pandemic in 2019 (COVID) resulted in

uncertainties in global food security. Owing to the potential that

maize occupies a significant amount towards ensuring the food

supply, especially in developing nations like India, it is necessary to

advance crop monitoring methods through comprehensive

geographical evaluation. Accurate determination of optimal

timing and quantity of water will facilitate enhanced irrigation.

Over the last decade, remote sensing methods have been

extensively used by Semmens et al. (2016); Thorp et al. (2018);

Tian et al. (2020) for characterizing water stress in crops. Aerial-

based remote sensing emerged as a non-invasive technique to

gather data from crop, soil, and environmental factors. It made a

significant impact by obtaining “farm” level to “leaf” level

information through image data. Further, this data helped Berni

et al. (2009); Al-Tamimi et al. (2022) in quantifying various traits of

water stress responses. Of the current aerial remote sensing

techniques, Unmanned Aerial Vehicles (UAVs) have surfaced as

efficient platforms for high-throughput phenotyping to monitor

crop fields due to their high spatial and temporal resolution, further

resulting in the improvement of the management of water stress in

agriculture. UAVs can be accommodated with different types of

camera sensors. They can fly at lower altitudes, cost-effective,

enabling increased monitoring frequencies Berni et al. (2009);

Araus and Cairns (2014); Gago et al. (2015).

Over the recent years in the field of computer vision, from

conventional image processing techniques to present novel

methods, automated learning-based feature extraction techniques

have made substantial progress Li et al. (2020). These popular

techniques include Support Vector Machine, K-Means clustering,

and Random Forest. Moreover, Deep Learning (DL), a method that

leverages LeCun et al. (2015) hierarchical feature extraction from

images, has opened up new possibilities for interpreting vast

amounts of data and permeated the field of data analytics in the

field of agriculture. The plant science community is increasingly

embracing these DL methods to extract meaningful insights from
Frontiers in Plant Science 02
the extensive datasets gathered through high-throughput

phenotyping and genotyping methods Kamilaris and Prenafeta-

Boldú (2018); Zhong et al. (2019); Wang et al. (2022).

Convolutional Neural Networks (CNNs) have gained popularity

among Deep Learning methods for their ability to automatically

extract valuable information from diverse features such as colour,

shape, texture, size, and spectral information across different levels

without the need for human expertise Krizhevsky et al. (2012);

Grinblat et al. (2016); Lee et al. (2017). The exhaustive review from

Singh et al. (2018) offers a thorough evaluation of DL methods

applied to a broad spectrum of plant species, focusing on tasks such

as identifying, classifying, quantifying, and predicting plant stress.

The other studies of Kumar et al. (2020); Tejasri et al. (2022)

explored UAV-captured imagery for predicting water stress-

affected crops using CNN-based frameworks. These studies

highlight that Red, Green, and Blue (RGB) bands are crucial for

classifying water-stressed crops due to their rich properties of

colour and texture. However, RGB bands are particularly light-

sensitive and can only provide details within the visible spectrum

Nijland et al. (2014). Moreover, multispectral data is of paramount

importance due to its additional spectral information greatly aided

Zarco-Tejada et al. (2012); Nijland et al. (2014); Wang et al. (2022)

to overcome the light sensitivity issues in the visible spectral domain

and helps in identifying the underlying information on crop

water stress.

Earlier studies by Spisǐć et al. (2022); Barradas et al. (2021),

utilized multispectral data and Supervised Machine Learning (ML)

based methods to effectively detect drought stress in crops. These

methods used MultiLayer Perceptron (MLP), Support Vector

Machine (SVM), decision tree, Random Forest based classifiers,

and gradient boosting techniques to classify water stressed plants.

Virnodkar et al. (2020) conducted an extensive review on the use of

supervised ML methods for crop water stress classification using

UAV captured multispectral imagery. However, these described

methods are mainly limited to manual feature extraction and thus

are inefficient, particularly when dealing with high dimensional data

or in complex environments Wang et al. (2022); Bouguettaya et al.

(2022). This inherent limitation of traditional machine learning

techniques has prompted a shift in focus towards machine learning

methods based on DL LeCun et al. (2015).

By leveraging DL techniques with multispectral data, a

significant transformation is occurring within the domain of data-

centric agriculture. While CNNs show promising results in water

stress detection and classification, as demonstrated by Kumar et al.

(2020), they do not take temporal data into account. CNNs are

limited by the assumption that data captured at different time

points are equivalent. However, it is well-known that visual changes

resulting from water stress in crop occur gradually and are not

immediately discernible. This poses a challenge for CNNs, as they

lack the ability to effectively learn temporal patterns, resulting in

difficulties in confidently classifying stress conditions, as discussed

by Singh et al. (2018); Gao et al. (2020). Moreover, the time-

invariant nature of CNNs requires data displaying severe signs of

stress for reliable detection, making it impractical for early

identification and recovery of stressed plants. Therefore, there is

an increasing need for a technique capable of analyzing the
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progressive visual changes in stressed plants, enabling confident

classification even in the absence of severe stress signs, facilitating

early-stage water stress classification, and addressing a critical gap

in current methods. In this context, Elsherbiny et al. (2022)

explored a CNN-LSTM approach to assess the water status of

wheat. This study aggregated features derived from RGB images,

climatic conditions, and soil moisture, achieving a remarkably low

loss of 0.0012. In our preliminary study Tejasri et al. (2023), we

utilized CNNs (AlexNet, VGG-19, ResNet18, ResNet-50) for

extracting the features from multi-temporal multispectral UAV-

captured maize data. The extracted visual features are further fed to

a single LSTM unit for capturing temporal dependencies. The

results showed that the model based on fine-tuned ResNet-18

backbone, using multispectral data outperformed with a precision

of 0.9765 and a recall of 0.9457 rather than just using RGB data with

a precision of 0.9523 and a recall of 0.9487. On the other hand,

considering the change in environment and the crop conditions,

this analysis becomes difficult with the help of a single LSTM unit.

Thus, a series of LSTM units can be made use of where the input

to these units are the sequences of visual features that are extracted

by CNNs to preserve the temporal patterns as demonstrated by

Azimi et al. (2021), for identifying water stress in chickpea plant.

This approach gained more insights by providing a more accurate

representation of the relationship between the environmental

conditions and the crop’s response. The sampling positions of

standard convolution kernels remain constant. They cannot be

adjusted to accommodate intricate spatial patterns in crop

classification, as noted by Feng et al. (2020) in their work on

multispectral image analysis. In addition, the classic pooling

layers (average or max pooling) are also fixed and do not possess

the capability to learn the downsampled features. Conversely,

deformable convolution proposed by Dai et al. (2017), enables the

neural network to adaptively adjust the sampling locations, allowing

it to effectively capture the spatially varying patterns. Deformable

convolution is an extension of standard CNN by introducing

learnable offsets to the standard grid sampling locations of

convolution kernels. Studies by Zhu et al. (2018) explored a

deformable convolut ion neural network (DCNN) for

hyperspectral image classification. Feng et al. (2020) adopted a

deformable CNN-LSTM-based network for vegetable mapping

from multi-temporal UAV-based RGB imagery. Motivated by the

works mentioned above, we propose a model entitled StressNet

which combines a deformable based CNN and a BiLSTM with

weighted attention to dynamically adjust the receptive field to

accommodate the size of the crop according to its growth stage.

In this study, we present a DL-based temporal analysis pipeline

for classifying water-stressed crops, utilizing multispectral data

captured by UAV. We aim to showcase the great performance of

the proposed method compared to standard CNN, which is time-

invariant and only spatial. The following contributions are obtained

from the present work:
Fron
1. Dataset is created by using multispectral data of maize crop

captured by UAV.

2. Our proposed model leverage the capabilities of CNN by

adding deformable convolutional layer and BiLSTM for
tiers in Plant Science 03
enhanced performance. It is specifically designed to learn

spatial-spectral-temporal patterns for identifying water

stressed crops.

3. We conducted a comparative analysis of the proposed

method using CNN based architectures - AlexNet and

VGG-16.

4. We performed an ablation study by evaluating the impact

of temporal and spectral data using the proposed model.

This involved systematically reducing the number of

temporal data used and the number of spectral channels.

In addition, we discussed the impact of the deformable

convolutional layer, BiLSTM and weighted attention on the

performance of the proposed method.
2 Materials and methods

2.1 Experimental site

The experimental study was conducted in a semi-arid zone of

Hyderabad (Telangana, India) from October to February (post-

monsoon season - Rabi) during 2018-19. The study area lies between

17°19’27.2”N – 17°19’28.3”N and 78°23’55.4”E – 78°23’56.2”E shown

in Figures 1A, B. Rabi season was particularly chosen to precisely

understand the water stress effect on the crop as the crop can be

induced by heavy water stress conditions as the rainfall level is

comparatively low during this period. The farm is situated in a semi-

arid region, characterized by an average annual precipitation of 822

mm and annual potential evapotranspiration ranging from 1700 to

1960 mm. The soil in this area is predominantly composed of light red

sandy loam and extends to a depth of approximately one meter and

bedrock beneath it. For the study, maize crop (Zea mays L.) of the

‘Cargill 900 M Gold’ variety is cultivated. The farm was maintained by

Agro Climate Research Center, Professor Jayashankar Telangana State

Agriculture University (PJTSAU), Hyderabad, India. The experimental

field comprises 30 regions, each measuring 4.2 m × 4.8 m. The

experimental field was designed in a split mode with three irrigation

and nitrogen supply levels based on a climatic approach Halagalimath

et al. (2017).

The determination of the irrigation schedule was based on Reddy

and Reddy (2019) the ratio of Irrigation Water (IW) to Cumulative

Pan Evaporation(CPE). Three distinct irrigation levels are chosen,

with IW/CPE ratios of 0.6, 0.8, and 1 assigned to the respective

regions. For each irrigation event, a uniform quantity of 50 mmwater

(IW) is provided to the designated plots using pipes equipped with

water meters to ensure accurate measurement. Pan evaporimeters (in

mm) are used to record daily readings, aiding in the calculation of the

IW/CPE ratio. This ratio was crucial in determining the ideal timing

for irrigation across various regions. Additionally, each type of

irrigation plot is subjected to one of three nitrogen fertilization

levels: 100, 200, and 300 kg nitrogen per hectare, as represented in

Table 1. By combining the three irrigation levels with the three

fertilization levels, a total of nine distinct regions are created.

Furthermore, each plot is replicated three times, resulting in a total

of 27 plots (3 water levels × 3 nitrogen levels × 3 replications), as
frontiersin.org
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depicted in Figure 1C. In order to introduce diversity, each plot, that

measures 4.2 m × 4.8 m, received one of three distinct combinations

of water and nitrogen levels. This setup allowed for categorizing areas

into conditions of low, moderate, and high water and fertilizer stress

plots. In each plot within rows, the plants are spaced 20 cm apart

from each other, and rows are spaced 60 cm apart for each treatment,

resulting in an estimated plant density of 8.33 plants per square meter

as shown in Figure 1D.
2.2 Dataset collection

To ensure an accurate geo-referenced data acquisition, we

deployed nine Ground Control Points (GCPs) that are surveyed

using a Trimble R10 GNSS Receiver within the field. The images are
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captured using a DJI Inspire-1 Pro UAV equipped with a Micasense

RedEdge-MX multispectral camera included with a Downwelling

Light Sensor (DLS) (represented in Supplementary Figure S1). This

sensor is a 5-band light sensor that calculates the surrounding light

conditions during a flight for each of the camera’s five spectral bands

and then stores this data within the metadata of the captured images.

After calibration, this information is used to rectify the illumination

changes in the middle of a flight that takes place due to cloud cover.

Using Mission Planner version 4.3.1 (ArduPilot Dev team), the UAV

flight path is predetermined at an altitude of 10 meters with a speed of

4 km/hr. The pixel resolution was set to 2 cm. Vertical overlap of 70-

80% and horizontal overlap of 50-70% is maintained in consecutive

images to ensure maximum coverage. The collected data consists of

five spectral bands, blue (475 nm), green (560 nm), red (668 nm), red-

edge (717 nm), and near-infrared (NIR) (842 nm) regions. In this

study, crop cultivated from the tillering stage through the heading

stage is considered. Radiometric calibration is carried out for the

utilization of UAV-based multispectral imagery. It considers various

factors, such as the position of the sensor and sun, camera gain,

exposure information, and irradiance measurements that may affect

the quality of image data. For radiometric calibration, images of the

Calibrated Reflectance Panel (CRP) are captured by the camera and

DL sensor before the UAV flight.
2.3 Data pre-processing

Each CRP is associated with a calibration curve spanning the

visible and NIR spectrum. Absolute reflectance values in the range
TABLE 1 Treatment information of the research farm for Rabi season
(Winter 2018–19).

Treatment Detail Application Rate

I1 High water stress IW/CPE = 0.6

I2 Moderate water stress IW/CPE = 0.8

I3 No water stress IW/CPE = 1.2

N1 High nitrogen stress 100 kg/ha

N2 Optimum nitrogen 200 kg/ha

N3 Overdose nitrogen 300 kg/ha
Here, IW means irrigated water in millimeter and CPE represents cumulative potential
evaporation in mm. Nitrogen is supplied in kilogram per hectare (kg/ha).
B

CD

A

FIGURE 1

(A) Indian map. (B) Location of experiment field in Telangana map. (C) Top view of the field captured by the UAV with dummy plots highlighted.
(D) Field layout of treatments where I1, I2, I3 represent high, moderate and no water deficit plots respectively.
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of 0 to 1 are related to the range of 400 - 850 nm (with a 1 nm

increment). To perform radiometric calibration, the captured panel

images are loaded with the above values provided by Micasense on

Agisoft Metashape® Professional (Version 1.8.3 build 14331 64-bit)

photogrammetry software. To obtain a complete field perspective,

the raw photos are aligned, geo-rectified, and further stitched, based

on similar image characteristics. After the alignment, the high-

quality and mild filter mode options are used to create a dense point

cloud. A Digital Elevation Model (DEM) and an orthomosaic (a

panoramic picture stitched together and geometrically corrected) of

each band, covered by the corresponding raw images, are exported

(shown in Supplementary Figure S2A). The settings employed in

the Agisoft Metashape software for the creation of orthomosaic are

reported in Table 2. The shape files corresponding to orthomosaic

are created using open source QGIS® tool, and using these files,

subplot containing region of interest, are extracted using RStudio

(shown in Supplementary Figure S2B). The net area is considered in

the process to ensure that the impact of crops on the boundaries

does not have any effect. This is obtained by removing 5% of the

outer perimeter on each edge of the image. By performing the

sliding window method on this extracted image, Region of Interest

(ROI) of individual plants is extracted.
2.4 Methodology

Our proposed framework’s workflow is illustrated in Figure 2,

outlining all the steps undertaken in this study.

2.4.1 Overview of StressNet
Convolutional Neural Networks (CNNs) can be divided into

two main components. The initial component, often referred to as
Frontiers in Plant Science 05
the ‘backbone,’ comprises a series of convolutional and pooling

layers aimed at extracting intricate features. These layers function as

feature detectors, sampling the input image data to produce high-

level feature maps. In simpler terms, specific neurons within these

layers become active when certain features are detected in the input

image. While the initial layers are proficient at capturing basic

features like edges, the deeper layers excel at identifying more

complex characteristics, such as textures and the shapes of

specific objects. The second component, known as the ‘head,’

learns from the extracted features and produces results tailored to

the specific application Zeiler and Fergus (2014).

As for the proposed model, StressNet, it comprises two key

components. The first is a feature extractionmodule based on a CNN,

while the second is a spatial-spectral-temporal feature fusion module

using BiLSTM network and an attention mechanism. The feature

extractor module captures spatial features across multiple spectral

channels. These spatial-spectral and temporal features are then

aggregated using the BiLSTM network and a weighted attention

mechanism to achieve the final water stress classification. The

architecture of the proposed model is depicted in Figure 3.

2.4.2 Spatial-spectral feature extraction
The input for the feature extractor is in the form of k x k x c, where

k x k represents the patch size and c denotes the number of channels.

The final convolutional layer of the backbone network is replaced with

a deformable convolutional layer. Deformable convolution is an

extension of standard convolution that introduces additional

parameters to control the sampling locations within the receptive

field. Unlike the standard convolution, where the sampling grid is

fixed, deformable convolution enables the network to learn spatial

transformations and adapt its sampling locations dynamically Dai et al.

(2017); Jin et al. (2019). The continuous increase in water stress leads to

physiological changes in the crop, such as a decrease in the surface area

of the leaf, which further leads to the twisting and rolling of the leaf

Spisǐć et al. (2022). Deformable convolution enables the kernel to adjust

its receptive field to the target size of the crop according to its growth

stage and water stress condition with additional offsets. These offsets

are updated during the training phase of the model Dai et al. (2017).

Equation 1 is used for determining the output y at the location a0,

where x represents the input feature map, w stands for the learned

weights, aispecifies the ithlocation and Daidenotes the offset to be

learned.

y(a0) =o w(ai)   *   x(a0 + ai + Dai) (1)
2.4.3 Spatial-spectral-temporal feature fusion
After extracting spatial and spectral features by deformable-

based CNN, it is essential to capture the relationship between the

temporal dependencies within the features. To achieve this, a

BiLSTM network similar to that of Melamud et al. (2016) is

employed. A BiLSTM layer is added to each feature extractor.

The output of each feature extractor is given to the BiLSTM layer.

Each BiLSTM is stacked with two LSTM layers, where the hidden

state of the first LSTM is an input for the second LSTM, illustrated

in Figure 4. By processing the sequential signals in reverse order, the
TABLE 2 The settings employed in the Agisoft Metashape software for
the creation of orthomosaic.

Sparse point cloud

Accuracy Medium

Image pair selection Ground control Point

Constrain features by mask Exclude Stationary tie points

Maximum number of feature points 20,000

Dense point cloud

Quality Medium

Depth filtering Mild

Digital Elevation Model(DEM)

Type Geographic

Coordinate system WGS 84 (EPSG::4326)

Source data Dense cloud

Orthomosaic

Surface DEM

Blending mode Mosaic
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second LSTM layer enables a detailed understanding of the inter-

dependencies within the data.

Equation 2 computes the input gate’s output, determining how

much of the new input shall be stored in the cell state ct. On the

other hand, Equation 3 corresponds to the forget gate ft, which

decides how much of the input xtand previous cell state ht−1 is to be

retained for the current time step. Further, Equation 4 updates the

cell state ctby removing some information based on the forget gate

ftand adding new information scaled by the input gate it. Equation 5

denotes the output gate that determines how much of the cell state’s

information should be passed to the hidden state. Finally, Equation

6 computes the new hidden state based on the cell state and the

output gate’s decision. In summary, these equations represent the

working of an LSTM cell that helps the network learn and store

information over longer sequences by controlling the flow through

the cell state and hidden state using gates.

it = s   (Wixxt +Wihht−1 + bi) (2)
Frontiers in Plant Science 06
ft = s   (Wfxxt +Wfhht−1 + bf ) (3)

ct = ftct−1 + it tanh  (Wcxxt +Wchht−1 + bc) (4)

ot = s   (Woxxt +Wohht−1 + b0) (5)

ht = ot tanh  (ct) (6)

where, i refers to the input gate, f stands for the forget gate, o

refers to the output gate, c is the memory cell and s stands for the

logistic sigmoid function.

To further improve the model’s performance, a weighted

attention layer is applied to the outcome of the second LSTM. By

assigning varying degrees of importance to different input features,

the attention layer dynamically adjusts the weights according to the

input feature so that the model focuses on the most pertinent

information. Consider H to be a matrix that contains the BiLSTM’s

output vectors [h1, h2,…, hT], where T stands for the length of the
FIGURE 3

Overview of StressNet model. Input image sequence, Feature Extractor, Sequence processing BiLSTM network and Weighted attention modules
are shown.
FIGURE 2

Our pipeline illustrates all the steps involved in water stress classification.
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input features. The weighted sum of vectors adds up to the output of

the attention layer and is described by the following equations 7, 8.

The softmax activation function is a commonly used activation

function in neural networks. It is used to transform the output of a

neural network into a probability distribution. This transformation

is defined by equation 9. Equation 10 refers to the ‘combined’ and

‘attention-weighted’ spatial-spectral-temporal features Ratt, where a
represents the attention vector. The BiLSTM-Attention features

undergo an adaptive re-weighting or re-calibration, enhancing the

significance of valuable feature vectors and diminishing the

unwanted or noisy ones. Subsequently, these re-weighted features

are connected to two fully connected layers and a softmax classifier.

The output of the softmax classifier is a vector of probabilities where

each element corresponds to the probability of the input belonging

to a specific class.

M = tanh (H) (7)

a = softmax  wTM
� �

(8)

 where,   softmax (zj) =
ezj

oK
k=1e

zk
  for   j = 1,…, K (9)

Ratt  = HaT (10)
2.4.4 Data preparation
The training data is classified into three categories, namely, highly

water-stressed, moderately waterstressed, and unaffected. Each class

has 32 image sequences of 13 images of 5 channels. Each image has a

dimension of 140 x 140 pixels. The Standard image normalization

method is performed for all the channels by scaling all values to fit

within the range of [0, 1] or adjusting the first- and second-order

moments to achieve a mean of zero and a variance of one. All the

channels of multispectral data are loaded into a sequence of the length

of the days on which the data is captured using a custom data function.

The ratio of training and validation is considered as 4:1.
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2.4.5 Training details
Popular CNN-based models such as AlexNet Krizhevsky et al.

(2012) and VGG-16 Simonyan and Zisserman (2014) architectures

are employed as backbones of feature extractor. The first layer of

CNN of the proposed model is modified to work with input of 5

channels instead of 3. Detailed configuration of the feature extractor

with AlexNet and VGG-16 are shared in Tables 3, 4, respectively.

During training, the model’s weights are initialized using He

initialization He et al. (2015), and biases are set to zero. The

categorical cross-entropy loss function CE, represented in

equation 11, is employed to train our model. This loss function

considers the one-hot representation of the ground-truth label y, the

predicted outcome yp.

CE = −o
i
ypi log  (yi) (11)

A batch size of 16 is utilized, and the Adam optimizer proposed

by Kingma (2014) is employed with a learning rate of 1e-4. To

address the limited data in the study, data augmentation technique

is used. This involved rotating all training images by 90 degrees and

randomly flipping them horizontally and vertically. The model is

built using the PyTorch framework, and the training process is

executed on a computer running on the Ubuntu 20.04 operating

system. The training is implemented on Intel(R) Xeon(R) Platinum

8168 CPU with 24 cores and an NVIDIA Tesla V100-SXM3

Graphics Processing Unit (GPU) with 32 GB RAM.

2.4.6 Evaluation metrics
The assessment of the proposed model is conducted using the

performance metrics that include Accuracy (Acc), Precision (Pre),

and Sensitivity/Recall are defined in equations 12, 13, and 14

respectively. FN denotes False Negatives, TN corresponds to True

Negatives, TP represents True Positives, and FP represents False

Positives with respect to the actual and predicted water stress class.

Accuracy =
TP + TN

(TP + TN + FP + FN)
(12)
FIGURE 4

The architecture of the weighted attention-based bi-directional LSTM. x1, x2, x3 correspond to features obtained by the feature extractor. h1 typically
refers to the hidden state output of the forward LSTM layer.
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Precision =
TP

(TP + FP)
(13)

Sensitivity=Recall =
TP

(TP + FN)
(14)
3 Experiments and results

3.1 Results of the proposed model

We conducted spectral analysis and temporal analysis to highlight

the efficiency of the proposed method. For the spectral analysis, we

validated the model’s performance by considering all 13 days’ data of

RGB channels or RGB with either NIR or red-edge channels. The

results of spectral analysis are reported in Table 5. In the temporal
Frontiers in Plant Science 08
analysis experiment, we assessed the model’s performance by gradually

adding the data from 3 to 13 days by utilizing all spectral channels. The

results of the temporal analysis experiment are reported in Table 6. It is

observed that the proposed model with VGG-16 backbone achieved

the highest validation accuracy of 91.30%, a precision of 0.8888, and a

sensitivity of 0.8857 when using all five spectral channels and data

collected for up to 13 days. The class-level accuracies and the

classification report of the best model are reported in Tables 7, 8,

respectively. The training loss and validation accuracy graphs are

represented in Figures 5A, B respectively.
3.2 Computational complexity

The best model (with the VGG-16 backbone) took 75 minutes

to train for 100 epochs. The model consists of 14,060,611
TABLE 4 Detailed configuration of the feature extractor with VGG-16 backbone.

Layer Name Input Size Output size Kernel Size Padding Stride

(H x W x Channels) (H x W x Channels)

Input 140 × 140 × 5 – – – –

Conv1 140 × 140 × 5 – × – × 64 3 × 3 1 1

Conv2 – × – × 64 – × – × 64 3 × 3 1 1

Conv3 – × – × 64 – × – × 128 3 × 3 1 1

Conv4 – × – × 128 – × – × 128 3 × 3 1 1

Conv5 – × – × 128 – × – × 256 3 × 3 1 1

Conv6 – × – × 256 – × – × 256 3 × 3 1 1

Conv7 – × – × 256 – × – × 256 3 × 3 1 1

Conv8 – × – × 256 – × – × 512 3 × 3 1 1

Conv9 – × – × 512 – × – × 512 3 × 3 1 1

Conv10 – × – × 512 – × – × 512 3 × 3 1 1

Conv11 – × – × 512 – × – × 512 3 × 3 1 1

Conv12 – × – × 512 – × – × 512 3 × 3 1 1

Deform Conv Layer – × – × 512 4 x 4 x 512 3 x 3 1 1
front
H,W denotes height and width of input respectively. Conv stands for Convolution. Deform Conv stands for Deformable convolutional layer.
TABLE 3 Detailed configuration of the feature extractor with AlexNet backbone.

Layer Name Input Size Output size Kernel Size Padding Stride

(H x W x Channels) (H x W x Channels)

Input 140 × 140 × 5 – – – –

Conv1 140 × 140 × 5 – × – × 96 11 × 11 0 4

Conv2 – × – × 96 – × – × 256 5 × 5 2 1

Conv3 – × – × 256 – × – × 384 3 × 3 1 1

Conv4 – × – × 384 – × – × 384 3 × 3 1 1

Deform Conv Layer – × – × 384 4 x 4 x 256 3 x 3 1 1
H,W denotes height and width of input respectively. Conv stands for Convolution. Deform Conv stands for Deformable convolutional layer.
x - is understood as the output size of feature map after convolution operation.
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parameters that include both trainable parameters (weights and

biases) and non-trainable parameters. Considering that each

parameter is stored as a 64-bit floating-point value, the estimated

memory consumption of the proposed model is around

107.274 megabytes.
3.3 Ablation study

We performed an ablation study to assess the impact of

temporal and spectral data on the proposed model’s performance.

This involved systematically reducing the number of temporal data

used and spectral channels. Additionally, the study investigates the

influence of the deformable convolution layer in comparison to

standard convolution operation, along with the use of a BiLSTM

network with weighted attention. These experiments aim to provide

comprehensive evidence supporting the efficiency of our proposed

method. The analysis includes the following cases.
Fron
1. Case I: Standard Convolution with BiLSTM.

2. Case II: Standard Convolution with BiLSTM and

Weighted Attention.

3. Case III: Deformable Convolution with BiLSTM.
4 Discussion

For Spectral analysis, from Table 5, it can be inferred that our

proposed model with AlexNet backbone achieves highest validation

accuracy of 86.96% when using RGB-NIR channels as NIR band is
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good at highlighting the edges. With VGG-16 backbone, validation

Accuracy is lowest of 65.22% when just using RGB bands. The

addition of NIR and Re channels significantly increases accuracy

and also with improvement in precision and sensitivity. The

model’s performance is highest when using all spectral channels.

In summary, for AlexNet, the addition of NIR channels significantly

improves performance, while for VGG-16, the inclusion of all

channels, particularly RGB-NIR-Re, yields the highest

performance. Both models benefit from the inclusion of multiple

spectral channels, with VGG-16 (best model) showing higher

overall accuracy and performance. In the temporal analysis, as

shown in Table 6, our proposed model with the AlexNet backbone

demonstrates strong performance with 3 and 6 days of data,

achieving a high accuracy of 95.65%. Although there is a slight

decrease in precision, sensitivity improves. However, when the

number of temporal data increases, the model’s performance

drops to 82.60%, accompanied by a notable decrease in precision

and sensitivity. On the other hand, our proposed model with the

VGG-16 backbone exhibits a gradual increase in validation

accuracy, going from 86.95% with 3 days of data to 95.65% with

9 days’ data. However, there is a performance decrease when using

11 days of data. Notably, the model performs exceptionally well

with 13 days of data, achieving a validation accuracy of 91.30%

along with improved precision and recall. It’s worth highlighting

that this model achieves 95.65% validation accuracy using only 6

days of data, indicating the potential for early identification of

water-stressed crops.

From Figure 6A, it is evident that the performance of the best

model (StressNet with VGG-16 backbone) gradually improves with

the addition of NIR and Re spectral bands alongside RGB bands,

signifying that incorporating both red-edge and NIR channels
TABLE 6 Temporal Analysis of StressNet model with AlexNet and VGG-16 backbones, where N represent images of dataset of N days.

N AlexNet VGG-16

Tr. Loss Val. Acc. Pre Se Tr. Loss Val. Acc Pre Se

3 0.5523 95.6522 0.9111 0.9111 0.5517 86.9525 0.8055 0.7603

6 0.5517 95.6522 0.9107 0.9333 0.5660 95.6522 0.8555 0.8079

9 0.5519 82.6087 0.8498 0.7523 0.5516 95.6522 0.8484 0.7904

11 0.5517 82.6087 0.8296 0.7746 0.6051 73.913 0.5726 0.5587

13 0.5619 82.6087 0.7888 0.7888 0.5515 91.3043 0.8888 0.8857
frontie
(Tr. Loss, Training loss; Val. Acc., Validation Accuracy; Pre, Precision; Se, Sensitivity/Recall).
TABLE 5 Spectral analysis of StressNet model with AlexNet and VGG-16 backbones.

No. of Channels AlexNet VGG-16

Tr. Loss Val. Acc. Pre Se Tr. Loss Val. Acc Pre Se

RGB 0.5521 73.913 0.5694 0.5206 0.5523 65.2174 0.7833 0.4777

RGB-NIR 0.5519 86.9565 0.7606 0.6793 0.5516 82.6087 0.7575 0.5936

RGB-Re 0.5516 73.913 0.6613 0.6682 0.5517 82.6087 0.6666 0.6349

All 0.5619 82.6087 0.7888 0.7888 0.5515 91.3043 0.8888 0.8857
(Tr. Loss, Training loss; Val. Acc., Validation Accuracy; Pre, Precision; Se, Sensitivity/Recall.).
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enhances the model’s capability. Figure 6B illustrates a progressive

increase in the model’s performance up to 9 days. Subsequently,

there is a decrease in performance between days 9 and 11, followed

by an increase again.
4.1 Spectral analysis

In the spectral analysis conducted as part of the ablation study,

three experiments were considered: RGB, RGB+NIR, RGB+Re, and

all bands (as shown in Table 9). In Case I, the VGG-16 model

achieved the highest test accuracy of 95.65% using RGB and red-

edge data, highlighting the significance of spectral information for

model robustness. In Case II, the VGG-16 model achieved the

highest test accuracy of 95.65% when using all spectral bands. In

Case III, the AlexNet model achieved the highest accuracy of

91.30% with RGB and red-edge information. Notably, the model

a precision of 0.9027 (as shown in Case I) with standard

convolution using RGB and Re bands. In Case II, with standard

convolution and the integration of the BiLSTM network and

weighted attention, the VGG-16 backbone model achieved a

precision of 0.8727. In Case III, when using deformable

convolutional layer with BiLSTM and weighted attention, along

with AlexNet as the backbone, the model achieved a precision of

0.9047 with RGB and red-edge information. However, in cases

where VGG-16 served as the backbone, the NIR and Re bands

introduced essential features, leading the deformable convolutional

layer to capture redundant spatial feature vectors and ultimately

resulting in a reduction in accuracy compared to RGB data.
4.2 Temporal analysis

In addition to spectral analysis, we conducted a temporal study,

exploring various temporal windows ranging from 3 to 13 days (as

shown in Table 10). In Case I, AlexNet model achieved the highest

validation accuracy of 91.30% with three days of data. In Case II,

VGG-16 model achieved the highest validation accuracy of 95.65%

with nine days of data. In Case III, AlexNet model achieved the
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highest validation accuracy of 95.65% with six days of data. By

introducing a deformable convolutional layer with six days of data,

the accuracy increased to 95% from the 90% observed in Case I

(Feature extractor + BiLSTM). In contrast, VGG-16 extracted more

refined features were with nine days of data, capturing distinct

water stress patterns. However, after that point, there was minimal

change in accuracy. The test accuracy reached 95%, underscoring

the significance of incorporating a weighted attention module.

Nevertheless, the test accuracy dropped from 95% to 65% with

the addition of deformable convolution, indicating that the

deformable convolutional layer introduced unnecessary

complexity and increased parameters, leading to overfitting.
4.3 Impact of deformable convolution

To assess the impact of deformable convolution, we examined

Cases II and III in the ablation study (Tables 9, 10). In the spectral

analysis experiment, the AlexNet model’s performance increased

from 56.52% validation accuracy to 78.26% with RGB bands.

However, there was no change with RGB-NIR. Notably, with

RGB-Re bands, the AlexNet model’s accuracy surged to 91.30%.

For the VGG-16 model, adding the deformable convolutional layer

with RGB bands raised the validation accuracy to 82.60% from

43.47%. However, introducing additional spectral channels led to a

10-20% drop in validation accuracy, likely due to increased model

complexity, overfitting, and feature redundancy. Regarding

temporal analysis, the AlexNet model achieved its highest

validation accuracy of 90% with 6 days’ data. The model’s

performance gradually declined as the number of days increased.

In contrast, the VGG-16 model’s performance was more variable,

reaching a peak of 82.60% (as shown in Case III). This suggests that

deformable convolution enhances the extraction of spatial features,

resulting in a richer vector representation across timestamps. As

data increased from 3 to 6 days, the model’s performance exhibited

a decreasing trend, suggesting a potential absence of identified

geometrical transformations. The introduction of the deformable

convolution layer added unnecessary complexity and increased the

number of parameters, resulting in overfitting.
4.4 Impact of weighted attention
based BiLSTM

To assess the impact of deformable convolution, we investigated

Cases I and II in the ablation study (Tables 9, 10). In the spectral

analysis experiment, the AlexNet model achieved an impressive
TABLE 8 Classification report of the best StressNet model.

Class Precision Recall F1-Score Support

0 0.90 0.90 0.90 20

1 1.00 1.00 1.00 14

2 0.83 0.83 0.83 12
fr
TABLE 7 Class-level accuracy of the best StressNet model.

Class Name Class Label Accuracy Score

I1N2 0 0.900

I2N2 1 1.000

I3N2 2 0.833
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BA

FIGURE 6

(A) Validation accuracy of best StressNet model with respect to Spectral Analysis; (B) Validation accuracy of best StressNet model with respect to
Temporal Analysis.
BA

FIGURE 5

(A) Training loss of best StressNet model; (B) Validation Accuracy of best StressNet model.
TABLE 9 Spectral Analysis. Case-I: Feature Extractor with BiLSTM network, Case-II: Feature Extractor with BiLSTM network and Weighted Attention,
Case-III: Feature Extractor with Deformable Convolution and BiLSTM network.

Case Feature Extractor Metric RGB RGB-NIR RGB-Re All

Case - I AlexNet Tr. Loss 0.5551 0.5543 0.5546 0.5534

Val. Acc. 91.3043 91.3043 82.6087 86.9565

Pre 0.9 0.9444 0.62 0.83

Se 0.79 0.8968 0.56 0.8

VGG - 16 Tr. Loss 0.883 0.5536 0.5785 0.5729

Val. Acc. 82.6087 65.2174 95.6522 86.9565

Pre 0.5087 0.6809 0.9027 0.856

Se 0.5238 0.6015 0.8333 0.8238

Case - II AlexNet Tr. Loss 0.5527 0.5522 0.5532 0.5525

Val. Acc. 56.5217 82.6087 56.5217 78.2609

Pre 0.4583 0.7269 0.4814 0.7416

Se 0.4539 0.7269 0.466 0.7349

VGG - 16 Tr. Loss 1.0693 0.5717 0.562 0.5627

Val. Acc. 43.4783 91.3043 82.6087 95.6522

Pre 0.1449 0.8727 0.7051 0.787

(Continued)
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TABLE 9 Continued

Case Feature Extractor Metric RGB RGB-NIR RGB-Re All

Se 0.3333 0.8555 0.6634 0.7968

Case - III AlexNet Tr. Loss 0.5537 0.5534 0.5533 0.5517

Val. Acc. 78.2609 82.6087 91.3043 78.2609

Pre 0.6428 0.8214 0.9047 0.8333

Se 0.6079 0.738 0.7936 0.7666

VGG - 16 Tr. Loss 0.5515 0.6397 0.5877 0.6125

Val. Acc. 82.6087 78.2609 69.5652 78.2609

Pre 0.7306 0.7348 0.5958 0.6888

Se 0.7111 0.6873 0.5539 0.673
F
rontiers in Plant Scien
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Tr. Loss, Training Loss; Val. Acc., Validation Accuracy; Pre, Precision; Se, Sensitivity.
TABLE 10 Temporal Analysis. Case-I: Feature Extractor with BiLSTM network, Case-II: Feature Extractor with BiLSTM network and Weighted
Attention, Case-III: Feature Extractor with Deformable Convolution and BiLSTM network.

Case Feature Extractor Metric 3 6 9 11 13

Case - I AlexNet Tr. Loss 0.5548 0.5746 0.5541 0.5532 0.5534

Val. Acc. 91.3043 86.9565 86.9565 73.913 86.9565

Pre 0.8714 0.8517 0.8634 0.7724 0.83

Se 0.8634 0.8634 0.8634 0.6492 0.81

VGG - 16 Tr. Loss 0.5619 1.0689 0.5625 1.069 1.069

Val. Acc. 65.2174 56.5217 82.6087 43.4783 43.4783

Pre 0.5444 0.1449 0.7571 0.1449 0.1449

Se 0.5698 0.3333 0.7412 0.3333 0.3333

Case - II AlexNet Tr. Loss 0.5533 0.5535 0.5524 0.5539 0.5527

Val. Acc. 78.2609 90 82.6087 65.2174 56.5217

Pre 0.7248 0.9696 0.7471 0.7361 0.4583

Se 0.7269 0.9444 0.7269 0.5079 0.4539

VGG - 16 Tr. Loss 0.5724 0.5572 0.552 0.552 0.5621

Val. Acc. 73.913 86.9565 95.6522 95.6522 95.6522

Pre 0.3552 0.7962 0.863 0.7833 0.6974

Se 0.4523 0.5222 0.8777 0.7761 0.6571

Case - III AlexNet Tr. Loss 0.5529 0.5325 0.5529 0.5531 0.5517

Val. Acc. 82.6087 95.6522 86.9565 82.6087 78.2609

Pre 0.7458 0.9696 0.744 0.75 0.8333

Se 0.6222 0.9444 0.7555 0.7555 0.7666

VGG - 16 Tr. Loss 0.7858 0.5954 0.5795 1.0695 0.5515

Val. Acc. 78.2609 78.2609 65.2174 43.4783 82.6087

Pre 0.6388 0.7727 0.3789 0.1449 0.7306

Se 0.6253 0.6492 0.4904 0.3333 0.7111
Tr. Loss, Training Loss; Val. Acc., Validation Accuracy; Pre, Precision; Se, Sensitivity.
The bold values highlighted highest validation accuracies obtained in that specific case.
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91.30% validation accuracy. However, there was no significant

improvement in performance when either NIR or Re channels

were added. This limitation can be attributed to complex

background variations in the data, which challenged the limited

feature representation capacity of the AlexNet model, making it

challenging to distinguish foreground information. In contrast, the

VGG-16 model, with its deeper layers and the support of the

BiLSTM network and weighted attention mechanism, effectively

addressed complex backgrounds, resulting in a substantial

performance increase from 86.95% to 95.65%. In the context of

temporal analysis, the performance of the AlexNet model exhibited

an initial increase, followed by a subsequent decrease as the data

extended from 3 days to 9 days (as demonstrated in Case I). Beyond

the 9th day, this pattern persisted. A similar trend was observed

after introducing weighted attention (Case II). In contrast, the

VGG-16 model demonstrated higher performance in both Case I

and II up to 9 days, indicating the model’s resilience in managing

temporal variations in images corresponding to the crop’s growth

over time. Beyond this point, the performance remained relatively

constant with 11 and 13 days’ data, suggesting negligible growth in

the crops.
5 Conclusion

In this article, we propose a novel DL-based model titled

StressNet, which aims to monitor water stress, especially in maize

crop. StressNet consists of two key components, the first being CNN

with a deformable convolutional layer, and the second is a BiLSTM

network with weighted attention. The effectiveness of our

framework is extensively validated through a comprehensive

study utilizing multispectral and multi-temporal imagery captured

by UAV. The best model achieved a validation accuracy of 91.30%

with a training loss of 0.555. However, it is essential to acknowledge

that our proposed method is validated using a dataset acquired from

a controlled environment. However, the real-world scenario

introduces more complexities. In such circumstances, it is

essential to consider additional factors such as super-resolution,

noise reduction, and plant shoot segmentation techniques. We will

develop a DL pipeline with further additions in our future research.

We encourage researchers to verify our findings using their datasets

and expand upon our pipeline.
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