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Introduction: The cold stress is one of the most important factors for

affecting production throughout year, so effectively evaluating frost

damage is great significant to the determination of the frost tolerance

in lettuce.

Methods: We proposed a high-throughput method to estimate lettuce FDI

based on remote sensing. Red-Green-Blue (RGB) and multispectral images of

open-field lettuce suffered from frost damage were captured by Unmanned

Aerial Vehicle platform. Pearson correlation analysis was employed to select FDI-

sensitive features from RGB and multispectral images. Then the models were

established for different FDI-sensitive features based on sensor types and

different groups according to lettuce colors using multiple linear regression,

support vector machine and neural network algorithms, respectively.

Results and discussion: Digital number of blue and red channels, spectral

reflectance at blue, red and near-infrared bands as well as six vegetation indexes

(VIs) were found to be significantly related to the FDI of all lettuce groups. The

high sensitivity of four modified VIs to frost damage of all lettuce groups was

confirmed. The average accuracy of models were improved by 3% to 14%

through a combination of multisource features. Color of lettuce had a certain

impact on the monitoring of frost damage by FDI prediction models, because

the accuracy ofmodels based on green lettuce groupwere generally higher. The

MULTISURCE-GREEN-NN model with R2 of 0.715 and RMSE of 0.014 had the

best performance, providing a high-throughput and efficient technical tool for

frost damage investigation which will assist the identification of cold-resistant

green lettuce germplasm and related breeding.
KEYWORDS

lettuce, frost damage, unmanned aerial vehicle, high-throughput detection,
multisource data
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1 Introduction

Lettuce (Lactuca sativa L.) is one of the most widely consumed

leafy vegetables worldwide with high nutritional value(Shi et al.,

2022). It is also one of the most economically important vegetable

crops in the world(Soldatenko et al., 2018), with China consistently

leading in production (Shatilov et al., 2019; Wang et al., 2022).

Lettuces prefer cool temperatures between 7 and 24°C with an

average of 18°C(Jenni, 2005), and their growth will be retarded or

stagnant when temperature goes below 7°C. Frost damage of lettuce

is a stress caused by low temperatures and generally occurs below 0°

C(Yu and Lee, 2020). When frost damage occurs, ice nuclei are

formed outside the cells and ice crystals are gradually developed as

long as the low temperature continues. When the ice crystals spread

into the cells, irreversible damage will occur, causing the leaves to

appear watery, yellow or dark brown and the whole plant to wilt.

Fresh lettuce is not storage-resistant, and its supply relies on fresh

harvesting. Frost can damage the outer leaves of mature lettuce,

leading to decay in handling and storage(Turini et al., 2011). As a

result, low temperature is one of the most important factors

threatening to supply lettuce in winter (Pirinc and Alas, 2021).

Under harsh environmental conditions, crop yields can be lost

ranging from 50% to 70%(Francini and Sebastiani, 2019). Due to

the low availability and high market demand for lettuce in winter

(Han et al., 2014), it is urgent to breed cold-resistant lettuce

cultivars to keep the yield of lettuce in winter. Meanwhile, frost

damage investigation is an important basement in the breeding

programs of cold-resistant lettuce. The traditional method relies on

manual surveys plot-by-plot in the field, which is time-consuming,

laborious, subjective, and low in efficiency, especially when the

number of lettuce cultivars is large. Therefore, it is of great

significance to develop high-throughput methods of frost damage

investigation to improve breeding efficiency.

Remote sensing based on Unmanned Aerial Vehicle (UAV), a

newly developed technique for high-throughput crop growth

information acquisition, has been widely used in crop monitoring

under growth (Jiang et al., 2022)and various stresses such as pests,

diseases, water deficit, salt-stressed(Johansen et al., 2019) and frost

(Wójtowicz et al., 2016; Perry et al., 2017a; Chen et al., 2019;

Choudhury et al., 2019; Goswami et al., 2019; Jełowicki et al., 2020;

Millan et al., 2020; Marin et al., 2021). Although satellite remote

sensing technology was also used in frost damage monitoring(Feng

et al., 2009; Romanov, 2009; Romani et al., 2011; Rudorff et al., 2012;

She et al., 2015; She et al., 2017; Li et al., 2021; Gabbrielli et al.,

2022a; Gabbrielli et al., 2022b), the UAV-based remote sensing is

more accurate in the breeding field due to its high spatial resolution.

UAVs, including DJI, 3D Robotics solo and Ebee, were equipped

with spectral cameras to detect frost damage of crops such as wheat

(Guo et al., 2014; Wang et al., 2014; Murphy et al., 2020), maize

(Choudhury et al., 2019; Goswami et al., 2019; Shu et al., 2022), oat

(Macedo-Cruz et al., 2011), oilseed rape(She et al., 2015), and coffee

plants(Marin et al., 2021; Marin et al., 2022). In these studies, data

analysis techniques such as Pearson correlation analysis and

principal component analysis were used to extract stress-related

spectral features including the reflectance of different spectral bands

and several commonly used vegetation indexes (VIs) such as
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normalized difference vegetation index (NDVI)(She et al., 2015),

green NDVI, photochemical reflectance index (PRI), carotenoid

reflectance index(CRI), and anthocyanin reflectance index(ARI)

(Choudhury et al., 2019; Marin et al., 2021; Marin et al., 2022).

Pixel-based classification with thresholds, random forest, random

committee, support vector machine (SVM) and other classification

methods were used to predict frost damage degree in some of these

studies(Goswami et al., 2019; Jełowicki et al., 2020). Besides,

regression methods such as multiple linear regression (MLR) and

principal component regression were employed to predict crop

yield or other physical parameters and then their changes before

and after frost damage were compared to assess stress severity(Guo

et al., 2014; Choudhury et al., 2019). Currently, several studies have

utilized RGB and multispectral image features for lettuce, such as

prediction of lettuce health(Pham et al., 2019), detection of lettuce

anthocyanin content(Kim and Van Iersel, 2023) and classification

of lettuce seeds(Concepcion et al., 2020). However, as far as we

know, few studies have been conducted to apply these techniques to

detect the frost damage of lettuce in the field during the growth

stage. Unlike other crops, different varieties of lettuce in breeding

trial fields exhibit significant differences in both morphology

(Iceberg, Batavian, Butterhead, etc.) and color (green, red, etc.).

Therefore, it remains to be seen whether these spectral features,

which are widely used in crop stress monitoring, are suitable for

screening the frost damage of lettuce with different varieties, and

whether these non-destructive and high-throughput methods for

evaluating frost damage can be applied to field investigation of

lettuce breeding materials.

Frost damage to lettuce not only leads to changes of appearance,

but also affects its physiological and biochemical indexes. Spectral

imagers have an advantage in responding to changes in the

physiological and biochemical indexes of crops due to their ability to

detect reflectance spectra in the visible and near infrared wavelengths

(Tao et al., 2022). This is the reason why spectral imagers were chosen

in the most existing researches on frost damage of field crops(Macedo-

Cruz et al., 2011; Wang et al., 2014; Yang et al., 2019; Lassalle, 2021).

However, the cost of multispectral cameras is high, and the resolution

of multispectral images is generally low, with insufficient texture

information in the images. On the other side, Red-Green-Blue

(RGB) cameras have an advantage in responding to the surface

characteristics of crops due to their high spatial resolution. Despite

the low cost and high resolution of RGB cameras, they cannot capture

spectral information beyond the visible spectrum. The combination of

data from the RGB camera and the multispectral imager allows for a

comprehensive analysis of the changes in lettuce after frost damage. In

early research, various methodologies utilizing data from distinct

sensors were contrasted to determine the most advantageous

approach (Dammer et al., 2011). Currently, there have been studies

of combining multisource image features for crop monitoring (Perry

et al., 2017b; Zheng et al., 2020; Li et al., 2021), confirming the

improvement of detection effect when multisource image features

were integrated. Thus, it is worthwhile to try to use both RGB and

multispectral images to evaluate the lettuce frost damage.

Therefore, the objectives of this study were to evaluate the frost

damage in lettuce by analyzing UAV-based RGB and multispectral

imagery. To accomplish this objective, correlation analysis with
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frost damage index (FDI) was employed to find FDI-sensitive

features, new FDI-sensitive VIs were constructed by modifying

existing well-performing VIs and tested, and multivariate regression

models using different algorithms were compared to explore the

potential of lettuce FDI estimation in the field.
2 Materials and methods

2.1 Plant material and study area

The experiment was performed in the test site of Shanghai

Academy of Agricultural Sciences in Fengxian District, Shanghai

City, China (30.891°N, 121.359°E), as shown in Figure 1. Fengxian

District is located in the alluvial plain of the Yangtze River Delta. It has

a subtropical marine monsoon climate and the average annual

temperature is about 15.8°C.

A total of 209 distinct cultivars of lettuce, consisting of 160

green and 49 red varieties, were randomly assigned to 209 plots.

Each plot, measuring approximately 4 m2 (4m x 1m), contained

approximately 24 plants of each cultivar, as illustrated in Figure 1.

All the lettuces were sown on September 24, 2020, and were

transplanted to the field on October 22, 2020. The harvest period

commenced around December 29, 2020.
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2.2 Data acquisition of frost damage index

Figure 2 shows the minimum and maximum temperatures from

Dec 15, 2020 to Jan 8, 2021. The temperatures from Dec 15, 2020 to

Dec 28, 2020 and from Jan 2, 2021 to Jan 5, 2021 range from 0 to 15°

C. Lettuce leaves remain undamaged at temperatures near freezing,

but are susceptible to damage at temperatures below freezing

(Turini et al., 2011). The first day when temperature went below

0°C after field-planting was Dec 29, 2020, on which day the

temperature dropped to -5°C. The lowest temperature, which was

-9°C, appeared on Jan 7, 2021. During these two periods, from Dec

29, 2020 to Jan 1, 2021 and from Jan 6, 2021 to Jan 8, 2021, different

cultivars of lettuce suffered from frost damage of different degrees,

as shown in Figure 3.

The field investigation of FDI of each lettuce cultivar plot was

carried out on Jan 8, 2021. The FDI was defined by referring to the

statistical method of other damage indexes, such as chilling injury

index(Fernandez-Trujillo et al., 1998; Porat et al., 2000; González-

Aguilar et al., 2004; Zhao et al., 2006; Yang et al., 2011; Pan et al.,

2016) and leaf disease index(Wang et al., 2015), which involved in a

variety of crop stress investigations. In this research, the severity of

frost damage was graded according to the characteristics of frost

damage, which was shown in Supplementary Table 1. Then the FDI

was calculated using the following equation:
FIGURE 1

Location and RGB image of the experiment field in this study.
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FDI = oi
n(PNi � i)

MAX _DL� TPN

where i is the damage level value, n is the number of damage

levels counted in this plot, PNi is the number of plants at damage

level of i in this plot,MAX _DL is the maximum damage level, TPN

is the total number of plants in this plot.
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2.3 Acquisition and processing of images

Two aerial surveys were performed on Dec 15, 2020, when the

temperature had not dropped below 0°C and there was no frost damage,

and Jan 8, 2021, when the lettuce had suffered from low temperature and

frost damage happened. In each survey, the UAV-based RGB and

multispectral images of lettuce field were acquired respectively.
FIGURE 2

The temperature during the experiment in this study.
FIGURE 3

Lettuce before and lettuce after frost damage in this experiment. FDI represents frost damage index.
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The RGB images were captured by a quadrotor named DJI

Phantom 4 RTK (SZ DJI Technology Co., Shenzhen, China), which

is a compact and lightweight UAV with a 20-megapixel RGB

camera. The flight height of flight route was set as 30 m and the

corresponding ground resolution of images was 0.012 m, and the

forward and side overlaps were 80% and 70%, respectively.

The multispectral images were acquired using a five-band

multispectral camera with a resolution of 1280 × 980 pixels,

RedEdge-M (Micasense Inc., Seattle, WA, USA), mounted on a

DJI M600 Pro UAV (SZ DJI Technology Co., Shenzhen, China).

The central wavelength of each band with the corresponding

bandwidth was 475nm (20nm), 560nm (20nm), 668nm (10nm),

717nm (10nm), and 840nm (40nm). The flight height of flight route

was set as 30 m and the corresponding ground resolution of images

was 0.018 m, and the forward and side overlaps were 85% and 80%,

respectively. The images of reference panel which is a gray board

with 50% reflectance by the size of 15.5 cm × 15.5 cm were captured

before flight missions for radiometric calibration.

The RGB and multispectral images of the whole lettuce field

were generated by mosaicking the originally acquired images within

the aerial survey area using Pix4Dmapper Pro (PIX4D, Lausanne,

Switzerland). The multispectral images were radiometrically

corrected before mosaicking according to the images of reference

panel. All the mosaiced images were geometrically corrected based

on the RGB image of Dec 15, 2020 using ArcGIS (ESRI, Redlands,

CA, USA).

The growth of lettuces almost stopped during Dec 15, 2020 to

Jan 8, 2021 and their changes were mainly caused by frost damage.

On Jan 8, 2021, many lettuces had reduced their coverage and lost

biometric features because of frost damage, making it difficult to

separate them from the background. Therefore, we chose the image

on Dec 15, 2020 to extract pure lettuce regions for image features

calculation from images on Jan 8, 2021. As NDVI is one of the most

sensitive indexes to vegetation cover(Liu et al., 2020; Murphy et al.,

2020), decision tree classification was performed on the

multispectral image (MSI) of Dec 15, 2020, when the lettuces

were in health status, to separate the lettuce plants from the

background by setting NDVI greater than 0.5 as the rule using

ENVI (Harris Geospatial Solutions, Inc., Broomfield, CO, America).

Majority/Minority analysis was then applied to the classified results

to reduce small plaques. Regions of interest of lettuce plants of each

plot were generated based on the classification results and converted

to shapefiles which were used to extract image and spectral features

from the RGB and multispectral images of Jan 8, 2021 through

zonal statistics tool.
2.4 Image and spectral features extraction

2.4.1 RGB image features
Frost damage will change the color and texture features of the

RGB images of lettuce. These features will, in turn, provide

information about the surface characteristics of lettuce after frost

damage has occurred. The color features included the digital

number (DN) of red, green, and blue channels, which were
Frontiers in Plant Science
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represented by R, G, and B, respectively. In addition, fifteen

vegetation-related color indexes (CIs) were calculated based on

DN, as listed in Table 1.

For each channel of the RGB image, 8 texture features, namely,

Mean (M), Variance (V), Homogeneity (H), Contrast (Con),

Dissimilarity (D), Entropy (E), Second Moment (SM), and

Correlation (Cor) were calculated using Gray-level Co-occurrence

Matrix (GLCM). Therefore, a total of 24 texture features were

calculated and named with the initials of the color channels plus the

abbreviation of the texture names. The calculation formulae of

texture features are as follows:

Mean   (M) =o
i

o
j
i� p(i, j)
TABLE 1 Color indexes(CIs).

Index Acronym Equation Reference

Blue
Normalized Index

BNI B
B + G + R

Green
Normalized Index

GNI G
B + G + R

Red
Normalized Index

RNI R
B + G + R

Excess Green
Vegetation Index

ExG 2� G − B − R
(Woebbecke

et al.,
1995)ADDIN

Visible
Atmospherically
Resistant Index

VARI G − R
G + R − B

(Gitelson
et al., 2002)

Excess Red
Vegetation Index

ExR 1:4� R − G
(Meyer and
Neto, 2008)

Excess Blue
Vegetation Index

ExB 1:4� B − G
(Mao

et al., 2003)

Excess Green minus
Excess Red

Vegetation Index
ExGR ExG − ExR

(Camargo
Neto, 2004)

Normalized Green-
Red Difference Index

NGRDI G − R
G + R

(Tucker, 1979)

Modified Green Red
Vegetation Index

MGRVI G2 − R2

G2 + R2
(Tucker, 1979)

Woebbecke Index WI G − B
R − G

(Woebbecke
et al., 1995)

Kawashima Index IKAW R − B
R + B

(Kawashima
and

Nakatani,
1998)

Green Leaf Algorithm GLA 2� G − R − B
2� G + R + B

(Louhaichi
et al., 2001)

Red Green Blue
Vegetation Index

RGBVI G2 − B� R
G2 + B� R

(Bendig
et al., 2015)

Vegetative VEG G
RaB1−a ,  a ¼ 0:667

(Hague
et al., 2006)
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Variance   (V) =o
i

o
j
(i − m)2p(i, j)

Homogeneity   (H) =o
i

o
j

1

1 + (i − j)2
p(i, j)

Contrast   (Con) =o
Ng

n=0

n2 o
Ng

i=1
o
Ng

j=1
p(i, j)

i − jj j = n

8>><
>>:

9>>=
>>;

Dissimilarity   (D) =o
Ng−1

n=1

n o
Ng

i=1
o
Ng

j=1
p(i, j)

i − jj j = n

8>><
>>:

9>>=
>>;

Entropy   (E) = −o
i

o
j
p(i, j) log (p(i, j))

Second  Moment   (SM) =o
i

o
j

p(i, j)f g2

Correlation   (Cor) =
oioj(i, j)p(i, j) − mxmy

sxsy

where p(i, j) is the value of the (i, j)th entry in the gray level

cooccurrence matrix; Ng is the number of distinct gray levels in the

quantized image; mx and sx are the mean and standard deviation of

x rows in matrix calculation. my and sy are the mean and standard

deviation of y rows in the matrix calculation.
2.4.2 MSI features
In addition to the changes in surface characteristics,

physiological and biochemical indexes of lettuce will also undergo

alterations, leading to corresponding changes in the spectral

reflectance of different bands. The features extracted from MSI

included the spectral reflectance of each band and different VIs. R475

, R560, R668, R717 and R840 represented the reflectance value at

specified bands. A total of twenty-three VIs were calculated based

on the spectral reflectance at different bands according to the

formulation in Table 2. Specifically, for lettuce frost damage

evaluation in this study, experiential frost damage VIs (FD_VIs)

were constructed by examining the correlativity between FDI and

the spectral reflectance of each band, while referring to the existing

FDI-sensitive VIs such as NDVI, EVI, and SIPI. These FD_VIs

incorporated more bands and different constants, and their

sensitivity to FDI was assessed through Pearson correlation

analysis. Ultimately, four FD_VIs, namely FD_VI1, FD_VI2,

FD_VI3, and FD_VI4, were established.
Frontiers in Plant Science 06
2.5 Statistical analysis and
modeling algorithms

Pearson correlation analysis method was used to select the RGB

and multispectral image features. The correlation analysis was

employed between these features and FDI in each group. The

features that reached a highly significant level (p<0.01) were

selected. Three regression algorithms, namely MLR, SVM and

neural network (NN), were used to establish the estimation

models of lettuce FDI by taking selected color, texture and

spectral features as independent variables.

MLR is a basic method in multiple regression analysis and

widely used in remote sensing monitoring because of their good

theoretical basis(Zhang et al., 2021). In this study, the MLR models

were constructed based on the following calculation formula:

Yi = b0 + b1Xi1 + b2Xi2 +⋯+bpXip + ϵi

where Yi,  p and ϵi are the FDI of the ith sample, the number of

independent variables and the ith independent identically

distributed normal error; Xij and bj are respectively the jth

independent variable and its coefficient of the ith sample (j =1, 2,

…, p).

SVM is one of the commonly used regression methods to

predict physiological parameters of crops(Shah et al., 2018; Zhang

et al., 2022). The essence of SVM is to construct a set of planes or

hyperplanes in a high or infinite dimensional space(Cortes and

Vapnik, 1995). In this study, linear kernel function and sequential

minimal optimization were chosen to construct the SVM models.

The value of kernel scale was 1 and the approximations of box

constraint and epsilon ranged from 0.18 to 0.2 and 0.018 to

0.02, respectively.

NN is a mathematical model that simulates the brain for

information processing(Agatonovic-Kustrin and Beresford, 2000).

The NN models are powerful predictive tools for crop growth status

(Romero et al., 2018). The network structure of NN includes the

number of hidden layers, the number of nodes in each layer, the

initialization of weights, the training algorithm, and the learning

rate. The NN models in this study used 10 hidden layers, and the

training algorithm was the Levenberg-Marquardt algorithm.

The experimental cultivars contained lettuce in both green and red

colors. There may be some influence of lettuce color on the predicted

results. To understand this influence, the data was divided into three

groups according to the color of lettuce: a group of all the lettuce (ALL),

a group of green lettuce (GREEN) and a group of red lettuce (RED).

Each group was divided into a training set and a test set by stratified

random sampling according to the sample ratio of 7:3. Table 3

describes the statistical characteristics of the FDI of the samples.

The procedure of statistical analysis is summarized by the

flowchart in Figure 4. Coefficient of determination (R-squared,

R2), Root Mean Square Error (RMSE) and Mean Absolute Error

(MAE) were used to evaluate the accuracy of the estimation models

established with FDI as the dependent variable. The value of R2
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(0≤R2 ≤ 1) determines the degree of closeness of correlation. The

larger R2 is, the closer the relationship between dependent and

independent variables is. RMSE and MAE are used to measure the

deviation between the predicted and actual values. The smaller
Frontiers in Plant Science
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RMSE and MAE are, the closer the predicted values are to the actual

values. Therefore, the closer R2 is to 1, RMSE is to 0 and MAE is to

0, the higher the accuracy of model will be. The formulas are as

follows:
TABLE 2 Vegetation indexes(VIs).

Index Acronym Equation Reference

Frost Damage Vegetation Index 1 FD_VI1 R840 + R717 − R668

R840 + R717 + R668

Frost Damage Vegetation Index 2 FD_VI2 R840 + R717 − R668

R840 + R717 + R668 − R475

Frost Damage Vegetation Index 3 FD_VI3 R840 + R717 − R668

R840 + R717 + 6� R668 − 7:5� R475 + 25

Frost Damage Vegetation Index 4 FD_VI4 R840 + R717 + R560 − R668

R840 + R717 + R668 + R560 − R475 + 7

Normalized Difference Vegetation Index NDVI R840 − R668

R840 + R668

(Rouse et al., 1973)

Simple Ratio Index SR R840

R668

(Pearson and Miller, 1972)

Enhanced Vegetation Index EVI 2:5� (R840 − R668)
 R840 + 6� R668 − 7:5� R475 + 1

(Huete et al., 1999)

Atmospherically Resistant Vegetation Index ARVI R840 − (2� R668 − R475)
R840 + (2� R668 − R475)

(Huete et al., 1994)

Red-edge Normalized Difference Vegetation Index RENDVI R840 − R717

R840 + R717

(Fitzgerald et al., 2010)

Modified Red Edge Simple Ratio Index mSR R840 − R475

R717 + R475

(Sims and Gamon, 2002)

Modified Red Edge Normalized Difference Vegetation Index mNDVI R840 − R717

R840 + R717 − 2� R475

(Huete et al., 1997)

Red-edge Ratio Vegetation Index RERVI R840

R717

(Gitelson et al., 2005)

Photochemical Reflectance Index PRI R560 − R668

R560 + R668

(Peñuelas et al., 1995)

Structure Insensitive Pigment Index SIPI R840 − R475

R840 + R668

(Blackburn, 1998)

Red Green Ratio Index RG R668

R560

(Gamon and Surfus, 1999)

Plant Senescence Reflectance Index PSRI R717 − R475

 R840

(Merzlyak et al., 1999)

Carotenoid Reflectance Index 1 CRI1 1 
R475

−
1 

R560

(Gitelson et al., 2001b)

Carotenoid Reflectance Index 2 CRI2 1 
R475

−
1 

R717

(Gitelson et al., 2001b)

Anthocyanin Reflectance Index 1 ARI1 1 
R560

−
1 

R717

(Gitelson et al., 2001a)

Anthocyanin Reflectance Index 2 ARI2 (
1 

R560
−

1 
R717

)� R840
(Gitelson et al., 2006)

Green Normalized Difference Vegetation Index GNDVI R840 − R560

 R840 + R560

(Gitelson et al., 1996)

Green Ratio Vegetation Index GRVI R840

R560

(Gitelson et al., 2005)

Normalized Pigment/Chlorophyll Index NPCI R668 − R475

R668 + R475

(Peñuelas et al., 1994)
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R2 = o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �y)2

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − ŷ i)
2

n

s

MAE =
1
no

n
i=1 yi − ŷ ij j

where yi, ŷ i  and �y are the actual FDI, the predicted FDI and the

average of actual FDI, respectively; n is the number of samples.
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3 Results

3.1 Correlation analysis between RGB and
multispectral image features and FDI

Supplementary Figure 1 illustrates the correlation between the

RGB and multispectral image features and FDI for three distinct

lettuce groups. The results reveal that certain CIs demonstrated a

significant correlation with FDI, while all texture features exhibited

no noticeable correlation with FDI. The majority of MSI features

displayed a significant correlation with FDI, and their correlation
TABLE 3 Descriptive statistics of the FDI of lettuce.

Statistical characteristics
ALL GREEN RED

Training set Test set Training set Test set Training set Test set

Mean 0.525 0.53 0.518 0.517 0.562 0.541

Median 0.533 0.525 0.514 0.51 0.56 0.544

Mode 0.45 0.278 0.45 0.375 0.6 0.714

Standard deviation 0.181 0.189 0.188 0.19 0.164 0.172

Variance 0.033 0.036 0.035 0.036 0.027 0.03

Minimum value 0.2 0.2 0.2 0.214 0.286 0.29

Maximum value 1 1 1 1 0.991 0.842

Sample size 146 63 112 48 35 14
fro
FIGURE 4

Experiment methodology and procedure of statistical analysis in this study. MLR, SVM and NN represent multiple linear regression, support vector
machine and neural network, respectively.
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trends with lettuce FDI remained largely consistent within each

group. Notably, the correlations between certain features, primarily

CIs, and FDI exhibited opposing trends for GREEN and RED.

Subsequent to the correlation analysis (p<0.01), features with

absolute Pearson correlation coefficients (absolute r) greater than

0.181, 0.202, and 0.358 were selected respectively for ALL, GREEN

and RED for further analysis, as depicted in Figure 5.

For the ALL group, a total of 32 features were selected, including

15 features from the RGB images and 17 features from the

multispectral images. The CIs derived from the RGB images

exhibited low correlations with FDI (absolute r< 0.55), with ExR

and ExB demonstrating absolute r values higher than 0.5, and the

highest absolute r recorded at 0.549. The correlations between

various MSI features and FDI displayed considerable disparity

(absolute r arranged from 0.183 to 0.717), with R840, the four

FD_VIs and EVI surpassing an absolute r of 0.6, and the highest

absolute r observed for EVI.

For the group of GREEN, 16 RGB image features and 21 MSI

features were selected. The absolute r of RGB image features were all

above 0.21 (mostly surpassing 0.55) with ExG recording the highest

absolute r of 0.738. Specifically, GNI, ExG, GLA, and RGBVI

exhibited absolute r values exceeding 0.72. As for the MSI

features, FD_VI3, FD_VI4, EVI, FD_VI1, FD_VI2, NDVI, SIPI,

ARVI, and R_840 demonstrated absolute r values greater than 0.65.

Among them, FD_VI3 attained the maximum absolute r of 0.773.

For the group of RED, a total of 19 features were selected,

including 3 RGB image features and 16 MSI features. The selected

RGB image features were B, G and R with absolute r of 0.558, 0.523,

and 0.492, respectively. They all showed positive correlations with

FDI. The MSI features with absolute r above 0.6 were FD_VI1,

FD_VI2, ARVI and NDVI, and FD_VI1 had the highest absolute r

of 0.626. Additionally, R668 was the only feature that displayed a

positive correlation with FDI.

Notably, the four newly proposed FD_VIs were explicitly

correlated with FDI and displayed exceptional performance across

the three groups of lettuce data, highlighting their broad utility in

accurately evaluating the impact of frost damage.
3.2 FDI estimation models based on RGB
image features

The estimation models were constructed with selected RGB image

features as independent variables and FDI as a dependent variable by

using MLR, SVM and NN algorithms. The accuracy of models was

demonstrated in Table 4 and Figure 6. For the models of the group of

ALL, the R2 and RMSE of training set ranged from 0.465 to 0.56 and

0.014 to 0.132 with MAE between 0.094 and 0.104, and the R2 and

RMSE of test set ranged from 0.437 to 0.545 and 0.019 to 0.142 with

MAE between 0.111 and 0.115. The FDI estimation accuracy of models

for GREEN were highest among the three groups with the R2 of

training and test sets between 0.517 and 0.637, RMSE between 0.012

and 0.131 andMAE between 0.090 and 0.094. The performance of FDI
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estimation models for RED was neither sufficient nor stable with R2

ranging from 0.223 to 0.386 for the training set, but from 0.357 to 0.737

for the test set. For all the three groups, the models using NN algorithm

always achieved better accuracy and stability than others with higher

R2, lower RMSE and lower MAE, and the difference of R2, RMSE and

MAE between the training and test set were smaller.
B

C

A

FIGURE 5

The features with significant correlation with FDI for the group of (A)
ALL, (B) GREEN, and (C) RED.
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3.3 FDI estimation models based on
MSI features

The FDI estimation models based on selected MSI features were

constructed using MLR, SVM and NN, respectively. Table 5 and

Figure 7 illustrate the accuracy of FDI prediction. All the models

based on MSI features had better performance than those based on

RGB image features. The R2 of models by different algorithms for
Frontiers in Plant Science 10
the group of ALL in the training set were relatively close, ranging

from 0.6 to 0.651; but the R2 of test set varied from 0.484 to 0.639.

The models for GREEN had better accuracy than other groups with

R2 up to 0.718 and 0.665, RSME down to 0.01 and 0.014 and MAE

down to 0.080 and 0.090 for the training and test set, respectively.

The models for RED were improved by using MSI features, but still

not good enough for FDI estimation with R2 lower than 0.5. As for

the algorithms, NN was still superior to MLR and SVM.
B C

D E F

G H I

J K L

M N O

P Q R

A

FIGURE 6

Scatter plots of the actual FDI and the predicted FDI. (A, D). RGB-ALL-MLR model; (B, E). RGB-ALL-SVM model; (C, F). RGB-ALL-NN model; (G, J).
RGB-GREEN-MLR model; (H, K). RGB-GREEN-SVM model; (I, L). RGB-GREEN-NN model; (M, P). RGB-RED-MLR model; (N, Q). RGB-RED-SVM
model; (O, R). RGB-RED-NN model.
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3.4 FDI estimation models based on
multisource features

In order to make full use of the information from different data

sources, the estimation models were constructed using all selected

features from both RGB and multispectral images, as shown in

Table 6 and Figure 8. Again, NN remained the best modeling

algorithm for each group. In the training sets, The R2 of the NN

models for ALL, GREEN, and RED raised to 0.653, 0.722, and 0.592;

while the RMSE and MAE decreased to 0.011, 0.009, and 0.009, and

to 0.086, 0.074 and 0.082, respectively. Correspondingly, The R2 of

NN models in the test sets for each group increased to 0.694, 0.715,

and 0.575, respectively; the RMSE dropped to 0.014, 0.014, and

0.018; and the MAE reduced to 0.097, 0.093 and 0.113.

Table 7 illustrates the average accuracy of FDI estimation

models with different sensors and groups. It can be seen that the

predictive performance of models with multisource features were

better than those with the single-source features. Therefore, it can

be concluded that the multisource features are helpful in improving

the accuracy of FDI prediction.
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4 Discussion

4.1 Response of RGB and multispectral
features to FDI of lettuce with
different colors

The damage caused by frost on lettuce will change the way how

solar radiation interacts with lettuce leaf cells. When frost damage

happened, chlorophyll broke down and Photosynthesis was

weakened(Choudhury et al., 2019), which would cause the

decrease of absorption of visible light, especially the blue and red

light which were mainly used for photosynthesis(Gates et al., 1965).

In consequence, the reflectance of red and blue bands increased

with the FDI. As can be seen in Supplementary Figure 1B and R of

RGB image as well as R475 and R668 of MSI were positively

correlated with FDI. For the same reason, most of the VIs

(including NDVI, SR, EVI, ARVI, and SIPI) that had been proven

to be related to chlorophyll content on(Susantoro et al., 2017; Chen

et al., 2021; Shu et al., 2022) had significant negative correlation

with FDI.
TABLE 5 Accuracy of the FDI estimation models based on MSI features.

Feature Source Group Model
Training set Test set

R2 RMSE MAE R2 RMSE MAE

MSI

ALL

MLR 0.639 0.108 0.086 0.484 0.135 0.114

SVM 0.600 0.114 0.089 0.516 0.131 0.104

NN 0.651 0.012 0.086 0.639 0.012 0.084

GREEN

MLR 0.713 0.100 0.080 0.644 0.114 0.095

SVM 0.638 0.113 0.087 0.624 0.115 0.090

NN 0.718 0.010 0.081 0.665 0.014 0.090

RED

MLR 0.472 0.198 0.176 0.362 0.226 0.174

SVM 0.467 0.119 0.091 0.141 0.159 0.143

NN 0.485 0.013 0.094 0.421 0.039 0.169
frontie
TABLE 4 Accuracy of the FDI estimation models based on RGB image features.

Feature Source Group Model
Training set Test set

R2 RMSE MAE R2 RMSE MAE

RGB

ALL

MLR 0.555 0.120 0.094 0.437 0.142 0.113

SVM 0.465 0.132 0.104 0.451 0.140 0.115

NN 0.560 0.014 0.098 0.545 0.019 0.111

GREEN

MLR 0.637 0.113 0.090 0.517 0.131 0.109

SVM 0.611 0.117 0.094 0.527 0.131 0.110

NN 0.634 0.014 0.092 0.630 0.012 0.089

RED

MLR 0.223 0.145 0.123 0.737 0.118 0.093

SVM 0.228 0.146 0.118 0.635 0.121 0.098

NN 0.386 0.019 0.114 0.357 0.013 0.098
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The response of green channel of RGB image (G) and reflectance at

green band of MSI (R560) responded quite differently for green and red

lettuce. The absolute r of G and R560 of red lettuce were much higher

than that of green one. The possible reason is that red lettuce contained

much more anthocyanin which absorbed the green light(Yang et al.,

2016); when anthocyanins of lettuce decomposed due to frost damage,

the absorption of green light was decreased and the reflection was

enhanced; therefore, the positive relations between FDI and G and R560

of red lettuce were more significant. For the same reason, the

anthocyanin reflectance indexes of MSI, ARI1 and ARI2, which
Frontiers in Plant Science 12
reflected anthocyanin content, was more sensitive to FDI of red

lettuce. For green lettuce, the change of color from green to yellow

caused by frost damage was obvious. Although G and R560 did not

achieve a significant correlation with FDI of the green lettuce, this

change could still make the CIs(including GNI, ExG, VARI, ExGR,

NGRDI, MGRVI, GLA, RGBVI, and VEG) which enhanced the green

component show much closer relation to FDI of the green lettuce than

that of the red one.

The destruction of cell structure due to frost damage would

cause the decrease of reflectance at NIR band(Gates et al., 1965). As
B C

D E F

G H I

J K L

M N O

P Q R

A

FIGURE 7

Scatter plots of the actual FDI and the predicted FDI. (A, D). MSI-ALL-MLR model; (B, E). MSI-ALL-SVM model; (C, F). MSI-ALL-NN model; (G, J).
MSI-GREEN-MLR model; (H, K). MSI-GREEN-SVM model; (I, L). MSI-GREEN-NN model; (M, P). MSI-RED-MLR model; (N, Q). MSI-RED-SVM model;
(O, R). MSI-RED-NN model.
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a result, R840 was obviously negative correlation with FDI of all

lettuces. The result is similar to that obtained in an experiment

evaluating maize frost damage, where it was found that the frost

damage caused a sharp decline of reflectance between 720 and 1350

nm(Choudhury et al., 2019).

Although Pearson correlation analysis showed that R717 and

R560 were weakly correlated with FDI, the four proposed FD_VIs

also showed high correlations with FDI. These improvements were

mainly due to the involvement of red edge band (717nm), green

band (560nm) and blue band (475nm), on the basis of the near-

infrared band (840nm) and red band (668nm). In particular, the

correlations between FD_VI4 of all five bands and FDI of green and

red lettuce reached the maximum. The possible reason is that

canopy spectrum is the result of comprehensive influence of

multiple factors such as internal components of leaves and

canopy structure, and there are synergistic changes between FDI

and the spectrum of these bands.

The correlations between the texture features and the FDI were

not significant. One possible reason is that there were many

cultivars with different structures in this experiment, and the

difference in texture features among cultivars exceeds the

difference in texture caused by frost damage.
4.2 Effect of different sensors and
algorithms on FDI estimation models of
lettuce with different colors

The lettuce FDI estimation models based on MSI features had

better performance than those based on RGB image features, which

is consistent with previous studies on the vegetation coverage

monitoring and nitrogen accumulation estimation of rice (Zheng

et al., 2018; Furukawa et al., 2021). It was because that multispectral

imager typically captured more information than RGB cameras(Shu

et al., 2022). While RGB cameras capture only three color channels,

multispectral imagers capture more pronounced changes in

reflectance at multiple bands across the electromagnetic spectrum,

including near-infrared bands. This allows for the calculation of
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vegetation indexes that are highly sensitive to changes in plant

health and vigor. This additional information can be leveraged to

better detect and quantify frost damage. Some relevant studies have

proved that RGB images are generally used to monitor the early

growth of crops, and the information about near-infrared band

provided by multispectral images is more suitable for the later

growth of crops(Marcial-Pablo et al., 2019). In addition, the use of

multispectral images in some studies enhanced the monitoring of

biodiversity(Tait et al., 2019; Wolff et al., 2023). In this research, the

monitored field lettuces were already in the harvesting period, and

the changes were no longer obvious as in the early growth stage. As

a result, the changes captured by the RGB camera were limited. At

the same time, many cultivars of lettuce were selected in this study,

the diversity of which was suitable for monitoring with a

multispectral camera. However, although multispectral imagers

had the advantage of high accuracy, RGB cameras could also be

an alternative selection for low-cost monitoring of frost damage, for

green lettuce at least. The FDI predictive accuracy was further

improved by taking the combination of both RGB and multispectral

image features as model independent variables, in which way all the

information related to frost damage was fully used and the problem

of spectrum saturation can be solved(Zhou et al., 2021; Shu et al.,

2022). The conclusion that multisource data fusion can improve

model accuracy has also been demonstrated in previous studies on

crop monitoring(Jiang et al., 2019; Liu et al., 2019; Zhu et al., 2021).

Compared to the models trained based on RED and ALL, the

models trained based on GREEN worked better. The major reason

for the low accuracy of RED models was that there were only 49 red

lettuce plots, and the sample size of red lettuce was too small which

led to severe overfitting in most models for RED. In the future

studies, the number of red lettuce cultivars should be increased in

the selection of experimental cultivars to improve the sample size of

the red lettuce dataset. Since green and red lettuces had different

levels of secondary metabolites, they presented different colors and

produced different responses after frost damage, as manifested in

section 3.1. Therefore, the accuracy of models for ALL were not as

good as those for GREEN. But even in the best FDI estimation

model for GREEN, the RGB and multispectral image features could
TABLE 6 Accuracy of the FDI estimation models based on multisource features.

Feature Source Group Model
Training set Test set

R2 RMSE MAE R2 RMSE MAE

MULTISOURCE
(RGB and MSI)

ALL

MLR 0.709 0.097 0.079 0.504 0.133 0.103

SVM 0.660 0.105 0.081 0.581 0.122 0.099

NN 0.653 0.011 0.086 0.649 0.014 0.097

GREEN

MLR 0.752 0.093 0.076 0.684 0.106 0.089

SVM 0.684 0.105 0.082 0.691 0.106 0.088

NN 0.722 0.009 0.074 0.715 0.014 0.093

RED

MLR 0.487 0.162 0.141 0.331 0.188 0.188

SVM 0.497 0.116 0.087 0.201 0.151 0.151

NN 0.592 0.009 0.082 0.575 0.018 0.113
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explain only about 70% of the variation. The differences between

lettuces were not only caused by the different frost damage degrees,

but also influenced by the different plant morphologies and green

levels among different lettuce cultivars. The accuracy of models

built by different regression algorithms did not show significant

distinction for ALL and GREEN. NN models tended to be more

stable than MLR and SVM with less difference of R2 between

training and test set.
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5 Conclusions

This study showed the feasibility of using features derived from

RGB and multispectral images collected by a UAV to estimate

lettuce FDI. Especially, the accuracy of models with multisource

features were higher than those with single-source features.

Notably, the four newly proposed FD_VIs had certain universal

correlation with frost damage of lettuce with different colors. The
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FIGURE 8

Scatter plots of the actual FDI and the predicted FDI. (A, D). MULTISOURCE-ALL-MLR model; (B, E). MULTISOURCE-ALL-SVM model; (C, F).
MULTISOURCE-ALL-NN model; (G, J). MULTISOURCE-GREEN-MLR model; (H, K). MULTISOURCE-GREEN-SVM model; (I, L). MULTISOURCE-
GREEN-NN model; (M, P). MULTISOURCE-RED-MLR model; (N, Q). MULTISOURCE-RED-SVM model; (O, R). MULTISOURCE-RED-NN model.
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findings could be applied for the prediction and evaluation lettuce

resources tolerant to freeze by non-destructive, accurate, and high-

throughput identification, providing genetic resources and

theoretical basis for the cultivation and genetic improvement of

new varieties of lettuce resistant to frost damage in the future. In

subsequent works, the impact of differences among cultivars of

lettuce on the evaluation of frost damage should be considered, and

the sample size of red lettuce should be increased, so as to improve

the evaluat ion models and improve the accuracy of

evaluation results.
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SUPPLEMENTARY FIGURE 1

Pearson correlation analysis between RGB and multispectral image features
and FDI.

SUPPLEMENTARY TABLE 1

Damage level and description for assessing frost damage of lettuce.
TABLE 7 The average accuracy of FDI estimation models with different sensors and groups.

Feature Source Group
Training set Test set

R2 RMSE MAE R2 RMSE MAE

RGB

ALL 0.527 0.089 0.099 0.478 0.100 0.113

GREEN 0.627 0.081 0.092 0.558 0.091 0.103

RED 0.279 0.103 0.118 0.576 0.084 0.096

MSI

ALL 0.630 0.078 0.087 0.546 0.093 0.101

GREEN 0.690 0.074 0.083 0.645 0.081 0.092

RED 0.475 0.110 0.120 0.308 0.141 0.162

MULTISOURCE
(RGB and MSI)

ALL 0.674 0.071 0.082 0.578 0.089 0.100

GREEN 0.719 0.069 0.078 0.696 0.075 0.090

RED 0.525 0.096 0.103 0.369 0.119 0.151
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