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UAV-based individual plant
detection and geometric
parameter extraction
in vineyards

Meltem Cantürk*, Laura Zabawa, Diana Pavlic, Ansgar Dreier,
Lasse Klingbeil and Heiner Kuhlmann

Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany
Accurately characterizing vineyard parameters is crucial for precise vineyard

management and breeding purposes. Various macroscopic vineyard parameters

are required to make informed management decisions, such as pesticide

application, defoliation strategies, and determining optimal sugar content in

each berry by assessing biomass. In this paper, we present a novel approach

that utilizes point cloud data to detect trunk positions and extract macroscopic

vineyard characteristics, including plant height, canopy width, and canopy

volume. Our approach relies solely on geometric features and is compatible

with different training systems and data collected using various 3D sensors. To

evaluate the effectiveness and robustness of our proposed approach, we

conducted extensive experiments on multiple grapevine rows trained in two

different systems. Our method provides more comprehensive canopy

characteristics than traditional manual measurements, which are not

representative throughout the row. The experimental results demonstrate the

accuracy and efficiency of our method in extracting vital macroscopic vineyard

characteristics, providing valuable insights for yield monitoring, grape quality

optimization, and strategic interventions to enhance vineyard productivity

and sustainability.

KEYWORDS

precision viticulture, grapevine detection, vineyard canopy characteristics, 3D vineyard
structure, UAV-based point cloud
1 Introduction

Enhancing and optimizing the productivity and quality of grapevine crops is a primary

goal for winegrowers, making vineyard management decisions significant (Moreno and

Andújar, 2023). A key factor in achieving this lies in obtaining precise and detailed

information about the overall structure of vineyards, which encompasses plant

arrangements and geometric canopy attributes. This information plays a pivotal role in

making well-informed decisions that are essential for tasks like pruning, applying
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pesticides, and maximizing yield (De Castro et al., 2018). Plant-wise

canopy characteristics offer insights into plant vigor, which is

crucial for informed decisions during the growth season. Despite

the challenge of measuring these attributes across the entire

vineyard, such as estimating per-plant volumes, their inspection

can provide valuable information. This, in turn, has the potential to

significantly impact the precise application of sprayed substances,

enhancing overall vineyard management strategies (Caruso

et al., 2017).

Key geometric parameters of grapevine crops, such as canopy

structure, height, width, volume, and leaf area, are closely connected

to plant growth, health, and potential yield. These factors allow

breeders to identify and efficiently manage distinct vineyard areas,

optimizing their cultivation strategies (Moreno and Andújar, 2023).

Estimation of these parameters is traditionally performed by human

operators collecting manual measurements about the canopy

characteristics. However, as this task is labor intensive, these

parameters are typically extrapolated from a small sub-section of

the vineyard, preventing farmers from making optimal decisions at

the individual plant level (Zabawa et al., 2020). Thus, automating

the identification and accurate mapping of individual vine rows and

trunks becomes crucial for precisely evaluating the vineyard’s state

(Jurado et al., 2020; Biglia et al., 2022). Recently, Unmanned Aerial

Vehicles (UAVs) have been commonly used for this task due to

their efficient data acquisition, simplicity, and cost-effectiveness

(Matese and Di Gennaro, 2015). UAVs can quickly cover large

vineyard areas and capture high-resolution images at low altitudes,

offering advantages over ground-based, satellite, and aircraft

systems (Ferro and Catania, 2023).

Although some grapevine parameters can be extracted from

single images, a complete 3D vineyard model is more effective for

investigating conditions under the canopy and deriving traits like

biomass, canopy volume, and vine-row width and height (Weiss

and Baret, 2017; Pádua et al., 2018; Pádua et al., 2019; Tsouros et al.,

2019; Di Gennaro and Matese, 2020; Ferro and Catania, 2023). For

an accurate 3D vineyard model, different sensor modalities can be

used, including LiDAR sensors, Terrestrial Laser Scanners (TLS),

and RGB cameras combined with structure from motion (SfM)

algorithm (Remondino and El-Hakim, 2006). LiDAR and SfM

point clouds have distinct characteristics that impact their

suitability for vineyard plant phenotyping, and several studies

compared the accuracy of the two point clouds. In one study

(Madec et al., 2017), both UAV-based SfM and ground-based

LiDAR showed comparable accuracy in wheat crop height

determination, while another (Petrović et al., 2022) showed SfM

point cloud superior accuracy in representing grapevine canopies

due to its higher data density capture based on ground sampling

distance. The affordability of RGB cameras compared to LiDAR has

sparked interest, leading to numerous studies utilizing SfM-derived

point clouds to estimate vineyard parameters (De Castro et al.,

2018; Matese and Di Gennaro, 2018; Jurado et al., 2020; Pádua

et al., 2020).

Accurately determining the location of individual plants within

a vineyard is crucial for precision vineyard management tasks like

selective harvesting, accurate spraying, fertilization and weeding,

and effective crop management (Milella et al., 2019). In a related
Frontiers in Plant Science 02
study, Milella et al. (2019) proposed an algorithm using an

affordable RGB-D sensor on an agricultural vehicle to estimate

per-plant canopy volume via k-means clustering of a reconstructed

3D vine row. However, this method requires knowing the exact

plant count (k) and spacing, which is unfeasible for larger vineyards

where the number of plants and their spacing can vary significantly

between vineyards. Additionally, they segmented images into grape

bunches, leaves, and trunks but they did not explore individual

trunk detection and only tested on a single vine row. In another

study, Jurado et al. (2020) described an automatic method for

identifying and locating individual grapevine trunks, posts, and

missing plants based on spatial segmentation without using prior

knowledge of the number of plants and the distance between plants.

However, this method cannot provide the canopy parameters of the

vineyard but just the individual plants’ locations within a point

cloud. Both of these research efforts highlight the challenges of

accurately estimating vineyard parameters, particularly when

dealing with large-scale vineyards. While they contribute valuable

methods for plant detection and identification, they each have

limitations regarding the information they can provide about the

vineyard as a whole.

Several studies investigated the estimation of geometric canopy

characteristics. Mathews and Jensen (2013) utilized the SfM

technique to construct a 3D vineyard point cloud to estimate the

vine leaf area index (LAI). Furthermore, Weiss and Baret (2017)

developed an algorithm that utilizes dense point clouds derived

from an SfM algorithm to estimate crucial vineyard structural

attributes like row orientation, height, width, and spacing.

Similarly, Comba et al. (2018) introduced an unsupervised

algorithm for vineyard detection and evaluation of vine-row

attributes such as vine rows orientation and inter-rows spacing

based on the 3D point cloud. Subsequently, Comba et al. (2019)

extended the utilization of 3D point clouds by integrating

multispectral and thermal images with RGB data to perform a

comprehensive characterization of vineyard vigor. Mesas-

Carrascosa et al. (2020) classified 3D point cloud into vegetation

and soil using RGB information through color vegetation indices

(CVIs) and calculated the height of vines with respect to the

classified soil. In a distinct approach, Di Gennaro and Matese

(2020) implemented the 2.5D-surface and 3D-alpha shape

approaches to build an unsupervised and integrated procedure for

biomass estimation and missing plant detection in a vineyard. All

the above approaches estimate a subset of the necessary parameters

for vineyard management. To the best of our knowledge, no single

automatic pipeline capable of concurrently estimating a large set of

vine canopy traits from 3D point clouds has been proposed in

the literature.

The contribution of this paper is a pipeline to determine single

plant locations in a vineyard from UAV-derived point clouds.

Additionally, we extract geometric parameters like plant height,

width, and volume along the row with a high spatial resolution,

making it possible to assign the values to the detected single plants.

We demonstrate the method’s capability with several datasets

generated with an SfM approach using UAV imagery. We also

analyze which flight parameters are suitable for the task. Finally, we

show the results derived from UAV-based LiDAR data without
frontiersin.org
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changing any parameters of the pipeline. This demonstrates that

our pipeline significantly reduces the need for manual parameter

tuning and can be successfully applied to different 3D sensors.
2 Materials and methods

2.1 Study site and data acquisition

The study area is located in the experimental vineyard plots of

JKI Geilweilerhof in Siebeldingen, Germany. The institute aims to
Frontiers in Plant Science 03
breed new cultivars resistant to grapevine disease, weather-related

stress factors, and high-quality wine production. The vineyard plot

was composed of 23 rows, comprising 14 rows trained in the semi-

minimal pruned hedge (SMPH) system and 9 rows in the vertical

shoot positioning (VSP) system, as illustrated in Figure 1. Our

investigation focused on assessing the accuracy of the proposed

method within two distinct training systems, both characterized by

irregular vine spacing.

The VSP system has been commonly used in traditional grape

cultivation in Germany due to its suitability for cool climates. However,

this system requires labor-intensive tasks like winter pruning and wire
A

B

C

FIGURE 1

(A) The camera positions at the moment of image acquisition and reconstructed 3D point cloud. The 5 yellow flags represent the GCPs. (B) Top
view of the reconstructed 3D point cloud. The area in the red rectangle was selected as a subset. (C) Side view of the subset that comprises 3 rows
of the SMPH training system (left) and 4 rows of the VSP training system (right).
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positioning, leading to high labor costs. To address this challenge and

reduce manual labor expenses, a new training method called SMPH

was introduced. SMPH aims to optimize grapevine growth and canopy

development while minimizing the need for time-consuming pruning

and maintenance activities (Kraus et al., 2018). The SMPH pruning

system for grapevines results in notable physiological and

morphological changes compared to the traditional VSP trellis. VSP

has a single main branch that grows over several years, and the rest gets

removed after each growth period. Every year, the other branches

regrow. The grapes are mostly positioned near the bottom of the

canopy where they are rarely occluded (Zabawa et al., 2019). On the

other hand, SMPH allows branches to remain in the trellis after the

growing season, creating a more voluminous canopy with older wood

and smaller leaves that bud earlier in spring than the VSP. Moreover, it

changes the grape cluster structure, producing smaller berries on longer

stalks in looser clusters (Pennington, 2019). Two different training

systems can be seen in detail in Figure 1C. This distinction highlights

the variety of cultivation practices employed within the vineyard,

enriching the scope of our study.

This study used two different setups for data collection and

generating the vineyard point cloud. The first setting is based on a

DJI Phantom 4 Pro quadcopter UAV, equipped with an onboard

RGB camera. Three flights were conducted over one plot (49°

13’10.4” N, 8°02’33.5” E) with different heights and camera

angles. The flight parameters of the UAV measurements can be

seen in Table 1. To obtain the absolute coordinates of the 3D point

cloud, 5 ground control points (GCPs) have been measured using

the Leica GS18 GNSS RTK system, with 2-3 cm accuracy in position

and height. The camera positions at the time of image acquisition at

15 m height and with a nadir angle can be seen in Figure 1A. The

point cloud was reconstructed using images with a combination of

three different flight parameters and individually with the images

belonging to each flight number. This first study setting utilized the

SfM technique in Agisoft Metashape Professional (version 1.7.4) to

generate 3D point clouds. Aerial images acquired with three

different flight parameter settings are aligned using the software

automatically identifying features from each image (Che et al., 2020;

Wu et al., 2022). For each flight, GCPs were used to get a

georeferenced dense point cloud. Since the UAV was equipped

with an RGB camera, the result was a 3D point cloud including RGB

information. The area in the red rectangle in Figure 1B was

manually selected as a subset to investigate the impact of different

flight parameters on the extracted plant parameters. The subset

included three rows (1, 2, and 3) trained in SMPH, and four rows (4,

5, 6, and 7) trained in VSP. As a result, we obtained four different

point clouds, one of them being the combined dataset, while the

others were associated with their respective flight parameters:

tilted_20m, nadir_20m, and nadir_15m.
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The second experimental setup for this study is based on a DJI

Matrice 600 Pro UAV equipped with a Riegl miniVUX-2UAV laser

scanner with a 200kHz pulse repetition rate and a 15 mm accuracy at

50 m distance. Furthermore, the platform has pose estimation sensors

onboard, including the Inertial Measurement Unit (IMU) Applanix

APX-20 and GNSS antenna Applanix AV14. For this second setting,

we used another vineyard plot (49°13’03” N, 8°02’49.5” E). The

resulting georeferenced LiDAR point cloud had horizontal accuracy

below 0.05 m and vertical accuracy under 0.10 m.
2.2 Point cloud processing pipeline

We proposed a pipeline to extract different phenotypic traits of the

vineyard such as plant height, canopy width, and canopy volume as well

as individual plant (trunk) positions. The pipeline included three main

steps; (i) point cloud separation into the ground (GroundPCl) and plant

(PlantPCl), (ii) individual row segmentation, and (iii) extraction of row

parameters. The study workflow is shown in Figure 2. Furthermore, the

study utilized the softwareMatlab 2022b for point cloud processing and

CloudCompare 2.12 for point cloud visualization.
2.2.1 Ground-plant separation and
height normalization

To extract plant parameters, the point cloud was separated into

ground and plant using the Cloth Simulation Filtering (CSF)

algorithm (Zhang et al., 2016) in CloudCompare and defined as

Ground PCl and Plant PCl. The CSF algorithm is well-suited for

rugged and sloping terrains (Liu et al., 2021). Since the vineyard was

located in a sloped area, we used the CSF algorithm to separate

ground and plant. The algorithm inverts the point cloud and then

covers the inverted surface with a simulated cloth. Using the

interactions between the cloth nodes and the corresponding

points, the point cloud can be separated into the ground and

non-ground points. The main two parameters we tuned in this

algorithm are grid resolution GR and distance threshold DT. GR

represents the horizontal distance between two neighboring

particles in the simulated cloth to cover the terrain. As the GR

decreases, the level of detail in the resulting digital terrain model

becomes more refined. The DT determines whether the points are

classified as ground or non-ground based on their distances from

the cloth grid. Fewer ground points are obtained with a smaller DT

value, while more points are separated as plants. We chose a grid

resolution GR of 0.3 m and a distance threshold DT of 0.3 m as the

parameter settings. The 0.3 m GR allowed for capturing sufficient

details in the point cloud while maintaining computational

efficiency. Similarly, the 0.3 m DT was suitable for accurately

separating the ground and plant points, minimizing the likelihood

of misclassification. The qualitative result can be seen in Figure 3A.

In the point cloud, the z-value of each point was the ellipsoidal

height. Since we were interested in plant height which is the vertical

distance between the ground level and the uppermost boundary of

the primary photosynthetic tissues of a plant (excluding

inflorescences) (Perez-Harguindeguy et al., 2016), the separated

PlantPCl was normalized in height by subtracting the ground point
TABLE 1 Flight parameters of the UAV measurements.

tilted_20m nadir_20m nadir_15m

Flight height 20 m 20 m 15 m

Camera angle 65° Nadir Nadir

Number of images 88 76 153
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A

B

FIGURE 3

(A) The segmentation of the whole point cloud into plant and ground. (B) The height-normalized PlantPCl.
FIGURE 2

Flowchart of the general framework for row parameter extraction.
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elevation from all plant points to estimate plant height. By

substituting the z-value of each plant point with the computed

height difference, the height-normalized PlantPCl was

obtained (Figure 3B).

2.2.2 Row segmentation
We segmented the PlantPCl and GroundPCl into individual

rows to extract plant parameters row-wise. Our pipeline for row

segmentation consisted of two steps: segmentation of the PlantPCl

into rows and defining a bounding box in 3D space to represent the

spatial location of each segmented row to effectively segment the

GroundPCl into rows as well. The flowchart of the proposed method

for row segmentation can be seen in Figure 4.

First, we downsampled the PlantPCl to reduce the

computational complexity and processing time of the algorithm

using a 3D grid box with the size of (0.1 x 0.1 x 0.1 m). Second, we

reduced the dimension to 2D by removing the z component.

Assuming that the single rows do not overlap, we then applied

the Density-based Spatial Clustering of Applications with Noise

(DBSCAN) algorithm in the xy-plane. This algorithm was proposed

by Ester et al. (1996) and is a density-based clustering algorithm

intended to find clusters of any shape. DBSCAN relies on two main

parameters: ϵ, the radius distance for point neighbors (Euclidean

distance in our case), and Pmin, the minimum points needed to form

a cluster (Amiruzzaman et al., 2022). We selected the parameters of

the DBSCAN algorithm empirically based on the characteristics of

the point cloud and the desired clustering outcome. After

performing some preliminary experiments, we empirically set ϵ to

0.35 m, corresponding to the average inter-point distance in the

downsampled PlantPCl, capturing closely located point clusters
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effectively. Pmin was set to 40 to identify clusters with a sufficient

number of points while excluding noise, based on the point density

distribution in the point cloud. This value was chosen based on the

point density distribution in the downsampled point cloud, making

it independent of the input point cloud density.

The initial result of the DBSCAN algorithm can be seen in Figure 5.

Each row cluster is shown with a different color. However, these

clusters may not be consistent due to gaps ormissing plants. To address

this issue, we improved the results by incorporating cluster centroids

and leveraging the assumption that rows are linear. To achieve this, we

fit a 2D line to the row clusters, allowing us to estimate the row

orientation. Then, we rotated the point cloud with the row orientation

angle q parallel to the y-axis. After rotation, we calculated the centroids
of the clusters and determined their similarity based on Euclidean

distances d along the x-axis (Figure 5). Clusters with closely spaced

centroids were merged into the same row, while clusters with larger

centroid distances were considered separate rows. In our refinement

method for row segmentation, we set the d between the centroids of

clusters as 1 m by analyzing the datasets to address the issue of disjoint

rows merging.

To segment the GroundPCl into rows, we used 3D bounding

boxes that represent the spatial location of each segmented plant

row. As explained before, since the rows had an orientation, it

became challenging to compute the skewed boundaries of the

bounding boxes. Therefore, we defined the 3D bounding boxes

after obtaining the rotated rows. We used the maximum boundaries

of the PlantPCl in the x and y direction and the boundaries of the

GroundPCl for the z-direction to calculate the boundaries of the

bounding boxes. To segment the GroundPCl into rows, we rotated it

using the angle q and used 3D bounding boxes for clustering.
FIGURE 4

The proposed pipeline for the individual row segmentation.
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2.2.3 Row parameters extraction
2.2.3.1 Trunk position

Identifying trunks under the canopy in vineyards with complex

geometric structures is challenging. In our investigation in the

PlantPCl, we observed that the thin structure of the majority of

trunks was hard to reconstruct accurately due to the occlusions

caused by the leaves, as can be seen in Figure 6A. On the other hand,

the bottom part of the trunks was reconstructed better in the

GroundPCl (Figure 6B). Furthermore, Figure 6B shows that the

ground approximates a planar surface; in contrast, the trunks were

observed with a different geometry clearly distinguished from the

ground. We used geometric features to detect trunks in the

GroundPCl to address this issue.

We proposed a pipeline for trunk detection in vineyards,

leveraging features derived from the local neighborhood. To

enhance computational efficiency, reduce noise, and improve

feature stability, we downsampled the segmented row of the

GroundPCl using a 3D grid box with dimensions of (0.05 x 0.05 x

0.05 m). This downsampling ensured a manageable density of

points for subsequent calculations. Feature calculation involved

two steps: computing the covariance matrix for the points within

a local neighborhood around each point, defined by a specified
Frontiers in Plant Science 07
radius R to analyze the variability of the point cloud in different

directions, and determining eigenvalues of the matrix that provides

insight into the principal axes of variability. The corresponding

eigenvalues were sorted as l1 ≥ l2 ≥ l3 ≥ 0. After conducting several

experiments, we determined that the sphericity feature Sl = l3/l1
outperformed other features for trunk identification in the

GroundPCl. For the sphericity feature calculation, we set the

radius R to 0.25 m for the nearest neighbor search, as it

effectively captured the approximate trunk diameter.

We performed three steps to identify trunk candidates and

estimate their 3D positions. Firstly, the sphericity values of each

point in the segmented ground row were sorted into a histogram.

We determined a threshold that helps us identify trunk candidates

using Otsu’s method (Otsu, 1979). These candidates were the points

with sphericity values exceeding the threshold (Figure 7A). Since

trunk candidates stored many points for each trunk, the points

belonging to the same trunk must be clustered. To achieve this, the

DBSCAN algorithm was used to cluster the trunk candidates. The

chosen parameters for the DBSCAN were 0.10 m and 5 for ϵ and

Pmin, respectively. These parameter choices aided in effectively

grouping the trunk candidates into meaningful clusters. Figure 7B

illustrates the trunk candidates clusters, each represented by a
FIGURE 5

Initial result of the DBSCAN algorithm. Each row cluster is shown with a different color. Each centroid of the cluster is represented with a blue cross.
In the grey rectangle (left), a whole row and a metal post in the row are clustered separately and are colored greenish-grey and purple, respectively.
In the grey dashed rectangle (right), the row is segmented into two clusters due to the gap in the canopy. The clusters are shown in pink and orange
colors. These centroids are analyzed more closely in the red frame. The distance between these pairs in grey and grey dashed rectangles
respectively is less than the threshold value, therefore they are merged into the same cluster.
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distinct color. Finally, to estimate the position of each trunk, we

calculated the 3D centroid of each cluster. By following these steps,

we effectively identified trunk candidates and estimated their

respective 3D positions in each segmented ground row, enabling

a comprehensive analysis of the trunks in the given

dataset (Figure 7C).

2.2.3.2 Canopy characteristics

Canopy geometric parameters were extracted for each row of

the PlantPCl with a high spatial resolution along the row. Our
Frontiers in Plant Science 08
approach involved segmenting each row into 3D bounding boxes of

equal length along the y-axis according to the methodology

described in Escolà et al. (2017); Cabrera-Pérez et al. (2023), and

Escolà et al. (2023). Segments, represented by yellow bounding

boxes, were visually depicted along a single row in Figure 8A.

Furthermore, a top and close-up view of the segments was

presented in Figure 8B. Each parameter was computed in each

segment along the row. By doing this, we can achieve a detailed

analysis of parameters along a row by adjusting the number of

segments. Therefore, any desired resolution of the parameter
A

B

FIGURE 6

(A) Trunks that are not reconstructed well in the segmented plant row are shown in purple rectangles. (B) The trunks in a segmented ground row
are encircled with cyan circles.
A

B

C

FIGURE 7

(A) Trunk candidate points that have a sphericity value larger than the sphericity threshold in a segmented ground row. (B) Trunk candidates are
segmented into clusters with the DBSCAN algorithm, and each cluster of trunk candidates is shown in a different color. (C) The calculated centroid
of each cluster is shown in different colors with trunk candidates.
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estimation along the row can be achieved. To ensure a high level of

detail, we chose the number of segments to be 250. This decision

resulted in a consistent segment length of 10 cm along the row.

Comprehensive information and visualizations regarding each

plant parameter along each row were provided through detailed

diagrams and histograms. In the following, we described the

parameters extracted by our pipeline.

Plant Height: The shortest distance from the ground to the

highest point of the canopy in the z-axis is defined as plant height

(Perez-Harguindeguy et al., 2016). We used a method based on the

90th percentile of normalized heights, as shown in a prior study

(Becirevic et al., 2019), which highlighted the reliability of the UAV-

based crop height extraction. We also visually inspected the data to

ensure our choice of percentile was appropriate. By calculating the

mean of the z-values within the 90th percentile of the normalized

height, we obtained height estimations for each segment.

Canopy Width: Assuming that each row in the PlantPCl was

positioned on the xy-plane and aligned parallel to the y-axis following

the rotation and ground projection, we can define the canopy width as

a distance perpendicular to the y-axis. In our pipeline, we calculated the

canopy width as the difference between the mean of the y-values within

the 90th percentile and the mean of the y-values within the 10th

percentile, following the procedure already described for the plant

height. In this way, we obtained a more accurate estimation of the

canopy width while excluding extremes.

Canopy Volume: The canopy volume is a reliable indicator of the

overall health and vigor of plants (Arnó et al., 2013; Caruso et al., 2017;
Frontiers in Plant Science 09
Escolà et al., 2017). The estimated vine canopy volume becomes

particularly valuable in assessing vigor, especially where a single

measure, such as height and width, is insufficient to understand

canopy geometry. To calculate the canopy volume we employed the

alpha shape algorithm (Edelsbrunner et al., 1983), which generates a

bounding volume encompassing a set of plant points. However, to

accurately calculate the canopy volume, it was necessary to discard

pieces of trunks or single branches that were occasionally present in the

PlantPCl, as illustrated in Figure 9A. As explained before, since the

trunks were not reconstructed well, the number of trunk points was

significantly lower than the canopy points in the PlantPCl. To address

this, we applied the Statistical Outlier Removal (SOR) filter to eliminate

these points within the row. As a result, we obtained a filtered PlantPCl

that excludes trunk or branch pieces, as illustrated in Figure 9B. After

filtering, the alpha shape approach was employed with different alpha

radius a. The parameter a is the sphere’s radius that sweeps over the

points to create the alpha shape and is used to tighten or loosen the

object. The approach, in theory, uses an optimal alpha value to

approximate bounding volume; however, finding an optimal value is

extremely difficult (Yan et al., 2019). Therefore, we empirically chose an

alpha radius representing the canopy’s concave structures without

creating disconnected objects. Through empirical observations in our

study, we determined the value of a as 0.3 m for the alpha shape object

when calculating the canopy volume (Figure 9C).

Canopy Lower Bound: The filtered PlantPCl, which excludes

the trunks, holds significant importance in facilitating a

comprehensive analysis of the canopy structure. In the filtered
A B

FIGURE 8

(A) Segments of the one row in the PlantPCl that were enclosed with a yellow bounding box in 3D space. (B) Top view of the segments along the row.
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PlantPCl, we can define the canopy lower bound as the lowest point

that belongs to the canopy on the z-axis. In our pipeline, the canopy

lower bound was estimated as the mean of the z-values within the

10th percentile. Thus, by incorporating this canopy characteristic,

we obtain valuable insights into the vertical structure of the canopy,

enabling a more detailed examination of the vegetation distribution

and its variability along the row.
2.3 Evaluation method

2.3.1 Row segmentation
To evaluate the accuracy of the segmented plant rows, the point

clouds of the segmented rows were compared with the manually

segmented rows. The evaluation involved comparing the number of

points in the segmented row with the number of points in the

corresponding manually segmented row. Segmentation accuracy

was calculated for each row considering the overlap between the

segmented row and the ground truth one. Furthermore, we took

into account the training system associated with each row. This

analysis provided insights into the performance of the segmentation

method across different training systems.

2.3.2 Trunk position
Our study focused on accurately estimating the positions of

individual trunks within vineyard rows. We evaluated the accuracy

of our estimations by comparing them to ground truth data which is

manually selected trunks in the point cloud. To determine the accuracy

of our estimates, we defined a 15 cm search radius and checked if any

ground truth trunks were within this radius. Then the confusionmatrix

was calculated based on the presence or absence of ground truth

trunks. The evaluation of our estimated trunk positions involved

calculating true positives (TP), false positives (FP), and false

negatives (FN). We computed precision, recall, and F1 scores for

each dataset to assess the performance of trunk detection. Precision

focuses on the quality of the detected trunks, measuring the extent to

which the identified trunks are valid. On the other hand, recall, in our

case, quantifies the capability to accurately identify actual trunks,

emphasizing the detection rate. To obtain a comprehensive

evaluation, we utilized the F1 score, which offers a balanced

assessment of the overall performance, considering both recall

and precision.

Furthermore, we conducted an additional experiment to

investigate the impact of different flight parameters on the trunk
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detection method. To do so, we applied our method to three distinct

datasets, tilted_20m, nadir_20m, and nadir_15m, and subsequently

compared the obtained results.

2.3.3 Canopy characteristics
In previous studies (De Castro et al., 2018; Di Gennaro andMatese,

2020; Mesas-Carrascosa et al., 2020), UAV-based canopy geometric

parameter estimation has demonstrated higher accuracy compared to

ground truthmeasurements; however, the validity of such comparisons

is highly dependent on the specific sample positions, rendering them

less meaningful. For instance, ground truth volume measurements are

highly subjective and depend on the specific person taking the measure

(Colaço et al., 2017; Qi et al., 2021). These measurements are also time-

consuming, with the additional limitation of not accounting for canopy

gaps. Furthermore, certain studies have indicated that manual

measurements tend to overestimate canopy thickness by

approximately 30% when compared to LiDAR-based measurements

(Gil et al., 2014). Therefore, considering these challenges, we rely on the

proven reliability of parameter estimation methods, as demonstrated in

previous research, and do not directly compare our estimates with

reference measures.
3 Results and discussion

3.1 Row segmentation

The final result of row segmentation is visually represented in

Figure 10. Figure 10A illustrates the segmentation results for the

PlantPCl. The rows are color-coded, with each row represented by a

different color. Our segmentation method accurately separates the

PlantPCl into distinct rows, therefore we can have a clear

understanding of the spatial distribution and arrangement of the

plants within the vineyard. By employing our proposed method, we

successfully address the challenges posed by gaps or missing plants in

the canopy, resulting in accurate and consistent row segmentation.

Similarly, Figure 10B shows the segmentation result for theGroundPCl.

The ground points are assigned different colors based on the rows they

belong to. This segmentation allows for a comprehensive analysis of the

ground characteristics along each row, which is interesting for

individual trunk detection.

As a result, the row segmentation method demonstrated

outstanding accuracy in all datasets, achieving a flawless

segmentation rate of 100%, in line with existing research (Jurado
A B C

FIGURE 9

(A) Side view of the segmented row in PlantPCl. (B) Filtered point cloud. Trunk and branch pieces are removed with the SOR filter. (C) The alpha
shape object of the row.
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et al., 2020; Moreno and Andújar, 2023). Notably, our analysis revealed

that the training systems had no noticeable effect on the performance of

the row segmentation method. Furthermore, the comparison of

different flight parameters revealed no impact on the accuracy of

row segmentation.
3.2 Row parameters extraction

3.2.1 Trunk position
We presented the estimated trunk positions and ground truth data

in Figure 11, where blue dots represent estimated trunks and black

circles represent ground truth trunks. Table 2 shows the corresponding

numerical evaluation. In combined dataset, trunk positions in the

SMPH training system were estimated with a higher F1 score of 76%

compared to 59% F1 score in the VSP training system. It can be seen in

Figure 11 that trunks were not detected well in rows number 4, 5, and 6.

This is because, in this specific dataset, these trunks belonging to these

rows were not properly reconstructed by the SfM pipeline due to the

occlusions caused by the canopy.

The evaluation revealed that the highest F1 score of 91% was

achieved in nadir_20m dataset with the VSP training system. This is

because, in the VSP case, the canopy volume is much lower so that a

larger portion of the trunk is visible from the camera, which results

in a higher precision on all datasets for our pipeline. Considering

both training systems, the highest F1 score was achieved with the

tilted_20m dataset, indicating that the trunks were detected better in

this dataset. Specifically, we observed that the more inclined camera

angle outperformed the nadir angle in effectively detecting plants

under the canopy. This confirms existing research on both maize

(Che et al., 2020) and grapevines (Garcıá-Fernández et al., 2021)

where a more inclined camera angle was more effective for the point

cloud reconstruction. However, in existing works, no assessment of

the trunk detection performances was investigated.
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The lowest F1 score of 59% was achieved in the combined

dataset. Although being reconstructed using images captured from

different camera angles and flight heights, the combined dataset did

not yield an improvement in performance. Interestingly, the

individual datasets displayed significantly higher recall rates when

compared to the combined dataset. These findings suggest that the

variability in data introduced by the different flight parameters did

not enhance the overall detection outcome. Based on these results, it

is evident that selecting a specific flight parameter set, rather than

combining data captured using different flight parameters, provided

superior trunk detection performances.

We can see from the results that there is no substantial difference in

terms of F1 score between the nadir_20m and nadir_15m datasets.

These datasets were both captured from a nadir angle but at varying

flight heights, enabling us to assess the influence of flight height on

plant detection directly. Notably, we discovered that higher flight

height can still yield accurate results with lower data density but a

larger field of view, potentially shortening data collection time.

Although existing research achieved high accuracy for grapevine

detection, some conditions were assumed regarding either plant

distributions (Milella et al., 2019; Pádua et al., 2020) or the absence

of the canopy (Jurado et al., 2020; Di Gennaro et al., 2023). Instead, in

our work, we assess the trunk detection performances without any

assumptions about the vineyard conditions. In fact, we tested our

pipeline with different training systems, irregular plant spacing, and the

presence of a fully developed canopy, achieving a precision of 92%. It is

important to note that, although in our case most plants within the

vineyard were effectively reconstructed, the thin-structured trunks

located under the canopy posed a challenging scenario for accurate

trunk detection. Our research findings highlight the impact of camera

angle and flight height when designing aerial imaging surveys for plant

detection within vineyards. By optimizing these parameters,

researchers and practitioners can substantially improve performances

in individual trunk identification.
A

B

FIGURE 10

Result of row segmentation. The rows are color-coded, with each row represented by a different color. (A) Segmented rows of PlantPCl. (B) Segmented
rows of GroundPCl.
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3.2.2 Canopy characteristics
In Figures 12 and 13, we show the distribution of the canopy

characteristics along a subset of rows using our segment-based

approach. Figure 12 provides valuable and comprehensive insights

into the canopy characteristics and trunk positions in Row-5 trained in

the VSP system. The side view and top view of the row are shown in

Figures 12A, B, respectively. It allows us to observe the changes in

canopy geometry along the row, beginning from point P to the end of
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the row, with the highlighted regions of interest indicating areas where

the canopy structure undergoes abrupt variations.

By analyzing the estimated plant height and the lower canopy

bound in Figure 12C, we gain a deeper understanding of the vertical

structure of the plants. The blue points representing the estimated

trunk positions allowed us to relate the plant positions to the respective

canopy structures. The proposed method for height estimation

provided us with not only height estimation but also identification of
FIGURE 11

Evaluation of the trunk positions in geographic coordinates. The estimated trunk positions are colored in blue. The black circles represent the
ground truth trunk positions.
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TABLE 2 Evaluation of detected trunks.

Training system TP FP FN Precision Recall F1 score

combined
SMPH 66 14 27 83% 71% 76%

VSP 54 5 70 92% 44% 59%

tilted_20m
SMPH 83 9 10 90% 89% 90%

VSP 101 10 23 91% 81% 86%

nadir_20m
SMPH 73 19 20 79% 78% 79%

VSP 111 11 13 91% 90% 91%

nadir_15m
SMPH 67 11 26 86% 72% 78%

VSP 109 12 15 90% 88% 89%
F
rontiers in Plant Scien
ce
 13
 fr
A

B

D

E

C

FIGURE 12

Canopy characteristics of Row-5. (A) Side view of the row. Point P marks the starting point of the row, representing the location with the minimum
y-coordinate. The cyan, magenta, yellow, and orange rectangles highlight significant regions of interest where the canopy geometry changes
abruptly. (B) Top view of the row. (C) Estimated plant height and lower canopy bound along the row. The blue points indicate the estimated
positions of the trunks. (D) Estimated canopy width along the row. (E) Estimated canopy volume along the row. The circles within the GroundPCl of
Row-5 indicate the positions of the estimated trunks related to abrupt changes in the canopy.
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the missing plants along the row. We observed an interruption and

sharp fall in the graph in the absence of plants as can be seen in yellow

rectangles. The absence of the related trunk in the black circle in

GroundPCl proved our analysis as can be seen in Figure 12E.

Furthermore, the estimated canopy width in Figure 12D revealed

variations in the lateral extent of the canopy along Row-5. In

particular, we observed sudden declines in the graph, highlighted

with magenta, cyan, and yellow frames in Figure 12D. It is clear that

the canopy width has decreased in these frames, as can be seen

in Figure 12B.

The graph of the estimated canopy volume in Figure 12E provided

a quantitative measure of the three-dimensional extent of the canopy,

reflecting the overall vegetative vigor and biomass accumulation. This

specific alpha radius selection allowed for accurately representing

concave structures within the canopy while avoiding creating

disconnected or fragmented objects. While no significant change was

observed in plant height and width, there was a significant decrease in

canopy volume as can be seen in the orange frame. Therefore, when

combined with plant height and canopy width, canopy volume

provided a holistic perspective on the vineyard’s canopy architecture,

allowing for a more accurate assessment of its health and growth

dynamics (Escolà et al., 2017).

We further focused on the comparison between the results for two

training systems, VSP and SMPH. Figure 13 shows the histogram of

row parameters for two exemplary rows that are Row-1 (trained in the

SMPH system) and Row-5 (trained in the VSP system). The expected

difference in plant height, canopy width, and volume explained in

Section 2.1 could be precisely detected between the two training

systems. As shown in Figure 13, the mean height, width, and volume
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of Row-1 are much larger than Row-5, as in the SMPH system the

canopy volume is typically denser than in VSP. Although we show

histograms just for two rows, we also computed the mean of the row

parameters trained with the SMPH and VSP system separately for each

dataset. In this way, we investigated both the differences in row

parameters for the two training systems and the influence of the

different flight settings, as shown in Table 3. Similarly to the Row-1/

Row-5 results, we observed that the mean plant height, canopy width,

and canopy volume of the rows trained in the SMPH system were

higher than those trained in the VSP system for all datasets. Our results

found no significant differences in plant height and canopy width

across tilted_20m, nadir_20m, and nadir_15m datasets in two training

systems. However, a relatively lower canopy volume was observed in

the SMPH training system within the nadir_15m dataset. The reason

for this may be the lower flight altitudes can yield a higher spatial

resolution, which makes the system more sensitive to small canopy

variations potentially causing an underestimation of canopy volume.

One of the notable advantages of our method is its flexibility in

achieving the desired resolution of parameter calculations. By adjusting

the number of segments, we can readilymodify the resolution along the

row. Compared to other methods that fix the segment length a priori

(Escolà et al., 2017; Cabrera-Pérez et al., 2023), we can precisely analyze

and evaluate the plant’s characteristics and variations along the row at

the desired level of detail. One example of this is given in Table 3, where

the canopy volume is computed with a segment length of 1 m instead

of 10 cm to give a more reasonable value. Overall, our approach

provides a robust and adaptable framework for obtaining essential

plant parameters, offering valuable insights into the spatial distribution

and properties of the plant along the row.
A

B

FIGURE 13

A comparison was conducted between (A) Row-1 in the SMPH training system and (B) Row-5 in the VSP training system in terms of their training
systems, using histograms to analyze the row parameters.
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3.3 Algorithm application on LiDAR dataset

We successfully applied our pipeline to the vineyard’s LiDAR point

cloud dataset. Figure 14 shows the qualitative results of row

segmentation and trunk detection algorithm. We utilized the same

set of parameters used in the image-based datasets for all components
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within the pipeline. Remarkably, our method effectively segmented the

point cloud into rows with 100% accuracy. Figure 14A shows the

qualitative result of row segmentation. Notably, our trunk detection

algorithm also succeeded in identifying trunks, achieving an F1 score of

77%. Figure 14B shows the detected trunks with red spheres. This

experiment demonstrated that our algorithm can generalize effectively
TABLE 3 Row parameters in different datasets.

Parameters: Plant height [m] Canopy width [m] Canopy volume [m3]

SMPH VSP SMPH VSP SMPH VSP

Training system: Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

combined 1.72 0.04 1.66 0.03 0.66 0.03 0.35 0.05 0.61 0.03 0.23 0.02

tilted_20m 1.71 0.03 1.61 0.02 0.69 0.03 0.36 0.04 0.59 0.03 0.24 0.02

nadir_20m 1.70 0.06 1.58 0.01 0.70 0.03 0.36 0.05 0.55 0.02 0.23 0.02

nadir_15m 1.71 0.04 1.58 0.01 0.71 0.03 0.37 0.05 0.46 0.02 0.21 0.01
frontiers
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B

FIGURE 14

Results of our pipeline in the vineyard’s LiDAR point cloud dataset. (A) The row segmentation output. Each segmented row is represented with a
different color. (B) The result of the trunk detection algorithm. The detected trunks are shown with red spheres.
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to different sensor settings with accurate results without

parameter tuning.
4 Conclusion

The determination of the geometric properties and the

identification of the individual plants were the main focus of this

work, and the results presented demonstrate the potential of using a

3D plant model derived from RGB images acquired with a UAV for

achieving these objectives in the vineyard. The extraction of single rows

was performed. Consequently, for each row, we derived the plant

positions as well as detailed row parameters, including the plant

height, canopy width, and canopy volume. In contrast to many other

approaches, we provided detailed information and visualizations of the

height, width, and volume in the form of diagrams and histograms,

giving essential clues on the distribution of these factors along the row.

These extracted parameters have the potential to enhance vineyard

productivity, improve grape quality, and contribute to the long-term

sustainability of vineyard operations. This detailed geometric analysis of

the canopy offers valuable insights for vineyard managers and breeders,

assisting them in crucial tasks such as pruning, agrochemical spraying,

and optimizing yields. Additionally, the influences of different flight

parameters on the extracted plant parameters have been investigated.

The whole pipeline is independent of the terrain slope and does not

require assumptions like plant or row spacing. We investigated all these

parameters in detail and had reference data for the segmented rows and

estimated trunk positions for the evaluation. The vine rows were

segmented with a high accuracy of 100% in the vineyard plot

independent of the training systems and different flight parameter

settings. We could also identify the trunk positions with a precision

of 92%. Furthermore, we applied our algorithm to the LiDAR point

cloud and showed accurate results regarding row segmentation and

trunk detection. This experiment demonstrates that our algorithm can

generalize to different sensor settings with good performances without

the need for parameter tuning.
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Garcıá-Fernández, M., Sanz-Ablanedo, E., Pereira-Obaya, D., and Rodrıǵuez-Pérez,
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Gil, E., Arnó, J., Llorens, J., Sanz, R., Llop, J., Rosell-Polo, J. R., et al. (2014). Advanced
technologies for the improvement of spray application techniques in spanish
viticulture: an overview. Sensors 14, 691–708. doi: 10.3390/s140100691
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