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Introduction: The accurate extraction of navigation paths is crucial for the

automated navigation of agricultural robots. Navigation line extraction in

complex environments such as Panax notoginseng shade house can be

challenging due to factors including similar colors between the fork rows and

soil, and the shadows cast by shade nets.

Methods: In this paper, we propose a new method for navigation line extraction

based on deep learning and least squares (DL-LS) algorithms. We improve the

YOLOv5s algorithm by introducing MobileNetv3 and ECANet. The trained model

detects the seven-fork roots in the effective area between rows and uses the root

point substitution method to determine the coordinates of the localization base

points of the seven-fork root points. The seven-fork column lines on both sides

of the plant monopoly are fitted using the least squares method.

Results: The experimental results indicate that Im-YOLOv5s achieves higher

detection performance than other detection models. Through these

improvements, Im-YOLOv5s achieves a mAP (mean Average Precision) of

94.9%. Compared to YOLOv5s, Im-YOLOv5s improves the average accuracy

and frame rate by 1.9% and 27.7%, respectively, and the weight size is reduced by

47.9%. The results also reveal the ability of DL-LS to accurately extract seven-fork

row lines, with a maximum deviation of the navigation baseline row direction of

1.64°, meeting the requirements of robot navigation line extraction.

Discussion: The results shows that compared to existing models, this model is

more effective in detecting the seven-fork roots in images, and the

computational complexity of the model is smaller. Our proposed method

provides a basis for the intelligent mechanization of Panax notoginseng planting.

KEYWORDS

computer vision, Improved YOLOv5s, agricultural robot, navigation line extraction,
seven-fork root detection
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1246717/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1246717/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1246717/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1246717/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1246717&domain=pdf&date_stamp=2023-10-17
mailto:laisubo@163.com
https://doi.org/10.3389/fpls.2023.1246717
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1246717
https://www.frontiersin.org/journals/plant-science


Tan et al. 10.3389/fpls.2023.1246717
1 Introduction

Panax notoginseng is a valuable Chinese herbal medicine with

numerous medicinal properties, and its cultivation has increased in

recent years. However, the production process still relies on

outdated technology, and there is a need for efficient and

intelligent production methods to improve productivity. One

potential solution is the use of mechanized and intelligent

agricultural equipment such as robots, which can replace manual

labor and increase the scale of cultivation (Cheng et al., 2023). In the

semi-structured planting environment of Panax notoginseng shade

house, the real-time and accurate extraction of robot navigation

paths is essential for autonomous robot navigation.

Automated navigation techniques used for unstructured

environments, such as large fields and orchards, mainly include

satellite positioning navigation, Light Detection and Ranging

(LiDAR) navigation, and visual navigation (Zhang et al., 2020;

Zhou and He, 2021). However, the strong shading effect of shade

nets in the Panax notoginseng shade house environment renders

commonly used navigation systems including Global Positioning

System (GPS) and BeiDou Navigation Satellite System (BDS)

ineffective due to poor signal quality (Gai et al., 2021). LiDAR-

based navigation requires high computational power, which makes

the extraction of navigation features difficult and results in high

equipment costs (Bai et al., 2023). On the other hand, visual

navigation acquires imagery through cameras and uses techniques

such as image processing, deep learning, and navigation feature

target detection to obtain navigation lines. This method is able to

provide multiple levels of detection information, is low-cost, and

has a high real-time performance and wide applicability (Wang T.

et al., 2022). In highly occluded environments, vision-based

navigation is the mainstream method used to obtain interline

navigation information (Radcliffe et al., 2018). In particular,

vision-based robot navigation techniques are widely used in

research on fields, orchards, and forests. For such applications,

the precise positioning of the crops in the image is the basis for the

accurate extraction of navigation lines. The most commonly used

methods adopted for the extraction of navigation lines in

agricultural machinery typically include several processing steps

for navigation line extraction, such as the 2G-R-B grayscale, Otsu

binarization of images, vertical projection, and Hough transform

(Chen et al., 2020; Chen et al., 2021). These methods are based on

the large difference between the crop color and the background

color, which facilitates the use of image processing methods to

extract navigation lines (Zhang et al., 2017). Research on visual

navigation for orchards and forests generally focuses on road or

sky-based navigation line generation (Opiyo et al., 2021) and crop

detection-based navigation line fitting (Su et al., 2022), depending

on the type, shape, and height of the plants. Crop detection-based

navigation methods require the accurate identification of crop

trunks and are highly robust to complex road environments, and

therefore demand high adaptability (Juman et al., 2016).

Furthermore, although the above algorithm can identify the

center line of crop rows, the identification conditions are
Frontiers in Plant Science 02
relatively simple and are not able to account for different growing

environments and external disturbances.

The ability of traditional image processing methods to

distinguish between scenes with similar backgrounds and targets

is reduced due to their susceptible to light, canopy cover, and weeds.

However, deep learning methods can extract features beyond our

understanding for object detection. In recent years, the

development of artificial intelligence and computer hardware has

facilitated the deployment of deep learning models on embedded

devices (Aguiar et al., 2020). Moreover, computer vision-based

detection methods are less costly compared to traditional

detection approaches. As a result, deep learning-based methods

have gained widespread attention for the extraction of navigation

features. For example, Ma et al. (2021) used Faster R-CNN to

construct a target detection model for the trunk recognition of the

effective distance between the rows of an orchard. The model was

able to extract navigation lines based on cubic spline interpolation

and subsequently realized the generation of navigation lines

between the rows of a kiwifruit orchard, providing a new

reference for orchard navigation. Li et al. (2022) employed

LiDAR point cloud data to identify obstacles such as rocks and

soil blocks between rows, obtaining auxiliary navigation data to

supplement the visual information and improve the recognition

accuracy of inter-row navigation data in mid- and late-season

maize. Zhou et al. (2022) used YOLOv3 to identify orchard

trunks and fruit trees and adopted the least squares method to fit

a reference line with growth on both sides, achieving a 90% accuracy

in extracting the orchard center line. However, the authors did not

integrate the detection results with path planning, and deployment

on embedded hardware was not considered. Shanshan et al. (2023)

combined an improved YOLOv5 network with an improved

centerline extraction algorithm to detect straight and curved crop

rows, yet the method is only applicable to the seedling stage of rice.

The aforementioned deep learning-based navigation methods can

solve the real-time and robustness problems of navigation in

numerous scenarios, however they are not effective for the

navigation problem in the Panax ginseng shade house

environment. Thus, in order to fulfill the needs of embedded

device applications and enhance navigation accuracy, the model

size, accuracy, and frame rate of the model proposed by Wang et al.

requires improvement. Comprehensive and in-depth research on

navigation line extraction for Panax notoginseng shade house is

limited. However, it is possible to adopt the navigation methods

used in orchard and forest visual detection to obtain navigation

feature points based on deep learning. To achieve this, it is necessary

to ensure that the model is small enough, has anti-interference

capabilities, and is highly accurate for deployment on embedded

devices and to meet the operational requirements of robots.

Therefore, in this paper, based on the environment inside Panax

pseudoginseng shade house, we address the bottlenecks associated with

robot navigation line extraction algorithms between the rows of the

shade house in the complex farmland environment, including poor

effects and adaptability. In particular, we propose a method that

combines deep learning and least squares (DL-LS) algorithms to
frontiersin.org
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obtain the inter-row navigation lines in Panax pseudoginseng shade

house. In order to improve the detection accuracy and speed, we take

the position of the root point of seven branches as the main navigation

information, and propose a lightweight network model with improved

YOLOv5s architecture to identify the roots to accurately identify

navigation lines in the complex shade house environment. Figure 1

describes the navigation path planning of the robot working in the

Panax notoginseng shade house, with a focus placed on extracting the

middle red navigation line. The proposed method provides a new and

effective navigation approach for Panax notoginseng shade house,

which can act as a guide for the intelligent mechanized operation of

this species. The main contributions are summarized as follows:
Fron
(1) Based on YOLOv5’s target detection model, we weaken the

backbone network by replacing the original backbone with

MobileNetv3, and introduce the ECANetention mechanism

module to pay more attention to the seven-branch root

characteristics.

(2) Verifying the effectiveness of the improved YOLOv5s by an

ablation study and comparing it with other mainstream

single-stage target detection models.

(3) We use the improved YOLOv5s model to locate the small

area of the seven-fork root within the region of interest

(ROI) in the video and extract the coordinates of the

midpoint of the lower bottom frame line rather than

using the root point. We then combine the least squares

method to fit the tree line on both sides and use the angle

tangent formula to extract the traverse navigation line for

the robot.

(4) Establishing a new dataset of shade house environments,

and the proposed method was tested and analyzed using a

built data acquisition robot.
The remaining part of this paper is organized as follows. The

second section discusses the navigation line extraction method, the

improved YOLOv5s, and the evaluation metrics. The third section

presents the robot platform and the experimental results, the fourth

section shows the discussion, and the fifth section summarizes

the conclusions.
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2 Materials and methods

2.1 Navigation line generation process

Figure 2 depicts the extraction process of inter-row navigation

lines within the Panax notoginseng shade house, which includes the

following key steps: 1) The acquired images are preprocessed by

cropping redundant parts and performing data expansion. 2) The

Im-YOLOv5s network is trained using manually labeled seven-fork

root feature maps. The weight files are generated and the seven-fork

root detection model for the Panax notoginseng shade house is

obtained. 3) The trained detection model is used for the inter-row

seven-fork root detection. By determining the center coordinates of

the bottom frame using the key coordinate information of the

rectangular frame, we generate the localized base point coordinates

of the detected trunk based on the root point substitution method.

4) The least squares method is used to fit the inter-monopoly seven-

fork column lines on both sides based on the positioning base point

coordinates. 5) The navigation lines are extracted based on the

navigation base lines on both sides using the angle tangent formula.
2.2 Image acquisition and pre-processing

Traditional Panax notoginseng shade house are typically

constructed using seven-fork structures with diameters ranging

from j5 to j8 cm. They are generally planted based on a grid of

2.4 m × 2.0 m (length × width) dimensions, with a 1.8 m scaffold

height and a shade net covering the top layer to provide uniform

light transmission. The test pictures were taken on November 9,

2022, in a Panax notoginseng shade net plantation in Shilin Yi

Autonomous County, Kunming City, Yunnan Province, China. The

plantation included a seedling plot, a plot to be sown, and a shade

house planting site just after harvest. For the image acquisition, a

COMS camera was mounted horizontally on a robotic platform 1.4

m above the ground and placed in the row center. We collected a

total of 412 images from three scenes under different angles and

lighting conditions: the Panax notoginseng sowing field; the Panax

notoginseng harvesting field; and the Panax notoginseng seedling
FIGURE 1

Navigation path planning map.
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field. Figure 3 presents images of the three different scenes. To

minimize the interference of trunks in the non-row inspection area

and to improve the training speed and accuracy of the detection

model, we preprocessed the images by cropping the non-row

redundant parts. After several cropping comparisons, we

determined that uniformly converting the input image resolution

to 2,000×1,000 allows us to identify interlinear information in the

sample images of the different scenes.
2.3 Training sample labeling

To improve the robustness of the model and suppress

overfitting, we added random perturbations such as saturation,

flipping, and luminance during the training process. This expanded
Frontiers in Plant Science 04
the amount of available information and enhanced the richness of

the experimental data. As a result, the 412 images were expanded to

936 images and divided into training and validation sets with a ratio

of 8:2. Moreover, we used 180 images captured by an external

computer camera as the test set to evaluate the performance of the

model during the training process. The test set was not involved in

the actual training. In each example image, the roots of the seven-

forks were marked by rectangular boxes and LabelImg installed on

Anaconda was used for the image labeling. To ensure labeling

efficiency and accuracy, we only labeled two rows of hepta-roots

within 12 m of the capture point. Each side of the tree rows

contained 3–5 labeled hepta-roots. A total of 936 images were

labeled, resulting in 7,288 labeled hepta-roots, which were saved as

label files in XML format. This labeling process was based on a

robot walking speed of 0.5–1 m/s.
FIGURE 2

Flowchart of the proposed extraction method for Panax shade house navigation line.
A B C

FIGURE 3

Pretreated results among different rows scenes. (A) Land to be sown; (B) seedling land; (C) harvested land.
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2.4 Improved YOLOv5s network

The YOLOv5s model is a lightweight version of You Ony Look

Once (YOLO) algorithm with fewer layers, allowing for a faster

detection. Therefore, the aim of this paper is to apply the improved

model to the detection of seven-fork roots based on the YOLOv5s

model. The Im-YOLOv5s is improved by reducing its backbone

network using MobileNetv3 and introducing the ECANet attention

mechanism module to enhance the extraction of useful information

and compress useless information. This enhances the recognition

accuracy and robustness of the model. With these improvements,

the model can efficiently, accurately, and quickly obtain the root

information of the seven-fork in the shadow trellis while reducing

the weight size, which is convenient for use in embedded devices.

2.4.1 YOLOv5s network
The YOLOv5 target detection model is known for its faster

detection speed and smaller model size with guaranteed accuracy,

making it an ideal choice for efficiently detecting the seven-fork

roots in this study. The YOLOv5 model is divided into four variants:

YOLOv5s; YOLOv5l; YOLOv5m; and YOLOv5x (Zhang et al.,

2022). YOLOv5s is the smallest in terms of depth and feature

map width. In order to ensure accuracy while contributing to real-

time detection and reducing the model size, we made some

improvements to the YOLOv5s target detection network. The

network structure of YOLOv5 consists of four parts, namely,

Input, Backbone, Neck, and Prediction. The size of the model

directly affects its deployment on mobile devices and real-time

detection. Compared to other algorithms, YOLOv5 has advantages
Frontiers in Plant Science 05
in terms of speed and model size. Considering the characteristics of

the dataset, the number of parameters, and the training time, we

chose the lightest model, YOLOv5s. Figure 4 presents the network

structure of YOLOv5s. The backbone is composed of two key

components, C3 and CONV, and contains a large number of

convolutional layers, which were mainly improved in this study

via the components in the blue dashed box in Figure 4.
2.4.2 Improvement based on MobileNetv3
A large number of convolutional layers increases a model’s

memory footprint. This is not conducive to deploying the model on

embedded devices. Compared to heavyweight networks, lightweight

networks have fewer parameters, require less computation, and

have a shorter inference time. Lightweight networks are thus more

suitable for scenarios with limited storage space and power

consumption, such as embedded terminals, robots, and other

small systems. MobileNetv3 (Howard et al., 2019) is the third

generation of lightweight networks released by Google in 2019,

designed for devices with limited memory and computation.

MobileNetV3 is a successor of MobileNetV1 (Howard et al.,

2017) with deep separable convolution and MobileNetV2

(Sandler et al., 2018). It adds neural network architecture search

(NAS) and h-swish activation functions, and introduces the

squeeze-and-excitation channel attention mechanism (SE) to

improve both performance and speed. MobileNetV3 has two

versions, Large and Small, for high and low resource scenarios,

respectively. The overall structure of the versions is the same, with

the difference being in the number of basic units bottleneck and

internal parameters. Figure 5 presents the network structure of
FIGURE 4

YOLOv5s network structure.
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MobileNetv3. In this paper, we used the MobileNetv3-Small

lightweight network instead of the YOLOv5s backbone network

to extract the seven-fork root images with effective features based on

the actual scenario. We compared the Im-YOLOv5 network with

the introduction of MobileNetv3-Small to the original YOLOv5s

network, revealing a 28% reduction in parameters from 7,022,326

to 5,024,100.

2.4.3 Introducing the attention mechanism
The channel attention mechanism has the potential to greatly

improve the performance of deep convolutional neural networks

(CNNs). However, while SE downscaling can reduce model

complexity, it destroys the direct correspondence between

channels and their weights. To overcome the trade-off between

performance and complexity, and to improve the accuracy and

efficiency of the algorithm for seven-fork root detection in a three-

seven shade house environment, we introduce an efficient channel

attention (ECA) module (Xue et al., 2022) into the lower neck

structure of MobileNetV3-Small. This module enables the network

to pay different levels of attention to different channel features,

giving more weight to important feature channels and less weight to

irrelevant feature channels. This allows the algorithm to compress

useless information and improve detection accuracy. Figure 6

depicts the ECANet structure.
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In this study, we used MobileNetV3 as the backbone model and

combined YOLOv5s with the ECANet and CBAM modules to

perform seven-fork root detection experiments. Table 1 reports the

experimental results. ECANet outperformed CBAM, indicating that

ECANet can improve the performance of YOLOv5s at a lower cost.

In addition, ECANet is more competitive than CBAM as it offers a

higher accuracy and lower model complexity. Figure 7 presents the

specific structure of the Im-YOLOv5 algorithm.
2.4.4 CIoU loss algorithm
The Complete Intersection over Union (CIoU) accounts for the

overlapping area, height, and centroid distance of the target and

prediction boxes, which addresses the shortcomings of the

Generalized Intersection over Union (GIoU) loss function. This

results in a more stable regression equation for the target box, with a

faster convergence speed and higher convergence accuracy.

Therefore, we used the CIOU_Loss function rather than the

GIOU_Loss function for the bounding box loss in Im-YOLOv5.

To calculate the loss of class probability and the target score, we

employed the binary cross-entropy and logit loss functions (Gui

et al., 2023), respectively, defined as follows:

GIoU = IoU −
C − (A ∪ B)j j

Cj j (1)
FIGURE 6

ECANet channel attention.
FIGURE 5

MobileNetv3 network architecture.
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IoU =
A ∩ Bj j
A ∪ Bj j (2)

CIoU = 1 − IoU +
r2(A,B)

c2
+ a ∗ n (3)

a =
v

(1 − IoU) + V
(4)

v =
4
p2 ( arctan

wgt

hgt
− arctan

w
h
)2 (5)

where A is the prediction box; B is the ground truth box; C is the

smallest box that completely encloses A and B; r(A,B) is the

Euclidean distance between the center coordinates of boxes A and

B; c is the diagonal distance of the smallest box that encloses boxes

A and B; a is the weight function; n is the function that measures
Frontiers in Plant Science 07
the consistency of the aspect ratio; wgt and hgt are the width and

height of the ground truth box, respectively; and w and h are the

width and height of the prediction box, respectively.
2.4.5 Model evaluation
In this paper, we employed five metrics, namely precision (P),

recall (R), mean average precision (mAP), model size, and detection

speed, to evaluate the seven-fork root detection model. A true

positive case indicates that the intersection over union (IoU) is

greater than or equal to 0.5; a false positive case indicates that the

IoU is less than 0.5; and a false negative case indicates that the IoU is

equal to 0 (Li et al., 2021). P, R, F, AP, and mAP are calculated using

the equations in equations (6)–(10) in the following:

p =
TP

TP + FP
∗ 100% (6)
FIGURE 7

Improved YOLOv5s architecture.
TABLE 1 Comparison of the recognition performance of YOLOv5 with different modules.

Method P(%) R(%) Model size (MB) FPS mAP(%)

YOLOv5s 91.0 91.4 14.4 83.3 93.1

MobileNetv3 92.0 90.8 10.5 73.5 92.9

MobileNetv3+ECANet 94.2 92.0 7.5 83.3 94.9

MobileNetv3+CBAM 93.9 91.0 10.5 64.1 93.6
fro
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R =
TP

TP + FN
∗ 100% (7)

F =
2 ∗ P ∗R
P + R

(8)

AP = ∫10P(R)dR (9)

mAP =
1
M o

M

k=1

A ∗ P(k) (10)

where TP, FP, and FN are the number of true positives, false

positives, and false negatives respectively; and M is the number of

detection categories.

Furthermore, we employed frames per second (FPS) to evaluate

the detection speed of different models. A higher value of FPS

indicates a better real-time performance of the model. We also used

giga floating point operations per Second (GFLOPs) as an

evaluation indicator to measure the computational power of the

model, with higher values denoting a higher demand on the

machine’s computing power.
2.5 Model training

The models were trained on a desktop workstation with the

following specifications: 64 GB of memory; an Intel Xeon® W-214

CPU; and an NVIDIA RTX 2080Ti GPU with 11 GB of video

memory. The workstation operated on Windows 11 (64-bit), and

the training was conducted using Python 3.9 with the deep learning

platform CUDA 11.6 and the Pytorch framework.

The quality of the training model is significantly influenced by

the difference in training parameters, and hyperparameters such as

the learning rate, batch size, and number of iterations must be set

manually during the training process. Among them, the learning

rate is crucial in deep learning optimizers as it determines the speed

at which weights are updated. If the learning rate is too high, the

training results will exceed the optimal value, while if it is too low,

the model will converge too slowly. The batch size depends on the

size of the computer memory, with larger batches providing better

model training results. The number of iterations determines the

number of training rounds, with more iterations taking longer to

complete. The iteration typically ends when the loss value has fully
Frontiers in Plant Science 08
converged. After several parameter adjustments, the parameters in

the model were set according to the values provided in Table 2.
2.6 Root point substitution method

The selection and extraction of navigation features are crucial

for inter-row navigation in shade house. In this paper, we defined

the root point as the midpoint of the dividing line between the

seven-fork point and the ground. The root point of the fork is used

as the base point for row positioning in the construction of Panax

notoginseng shade house. Therefore, the root point of the fork is

considered the optimal inter-row navigation feature. However,

since the target color of the Panax notoginseng shade house

environment is similar to the background color, it is both

challenging and time-consuming to filter out other interferences

using image processing methods. To address this issue, rather than

using navigation base points, we proposed a heptagram-based

generation method. We trained a deep learning-based seven-fork

root model and used the trained detection model to generate the

minimum rectangular detection frame outside the bottom of the

seven-fork. The midpoint of the bottom edge of the detection frame

was observed to correspond well with its root point.
2.7 Navigation line extraction method

Once the root points of the bottom of the seven-fork were

obtained, we fitted the crop rows using the seven-fork root points of

the Panax notoginseng shade house. We employed the least squares

method to fit the coordinates of these root points using equations

(11)–(13):

X = o
n
i=1xi
n

Y = o
n
i=1yi
n

8><
>:

(11)

m = o
n
i=1(xi − X) ∗ (yi − Y)

on
i=1(xi − X)2

(12)

b = Y −m ∗X (13)

where X denotes the average of the horizontal coordinate of all

root points; Y is the average vertical coordinate; xi and yi are the
TABLE 2 Target detection hyperparameter settings.

Parameter Im-YOLOv5 YOLOv5 YOLOv3 YOLOv7

Backbone network MobileNetv3 Backbone Darknet53 Backbone

Training size 640 × 640 640 × 640 416 × 416 640 × 640

Batch size 8 8 8 8

No.of categories 1 1 1 1

Initial learning rate 0.001 0.001 0.001 0.001

No.of iterations 300 300 300 300
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horizontal and vertical coordinates of each root point; respectively; i

is the serial number; m is the slope; and b is the intercept. Thus, the

fitted line can be expressed as y = m ∗ x + b.

In order to obtain two lines from the detected coordinates of the

root points, we separated the points using a positive threshold and a

reference point. We set a positive threshold xth and reference point

sr(xr , yr) i ≤ n, representing the sequence number, where n is the

total number of points. Since the seven rows of pitchforks extend in

the positive y-direction, we only used the x-values for our

calculations. The two groups of points are denoted as L1 and L2.

If for example, the absolute value of (xr1 = xr − x1) is less than or

equal to xth, the points s1 are divided into L1 and vice versa for L2.

Figure 8 presents the algorithm flow. After classifying all the

detected points, we calculated the values of m and b, and fitted

the expression parameters for the seven-forked rows on both sides

as yL1 = m1 ∗ x + b1 and yL2 = m2 ∗ x + b2.

Once the expressions of the line parameters on both sides were

determined, we used the angular bisector of the left and right seven-

forked row lines as the robot navigation baseline. The principle of

tangency between two lines was then adopted to obtain the robot

navigation parameters via equation (14). More specifically, we

calculated the robot navigation line slope m based on the

relationship that the tangent angle between m and m1 is equal to

the tangent angle between m and m2:

m −m1

1 +m ∗m1
=

m2 −m
1 +m ∗m2

(14)
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where m is the slope of the robot’s navigation center line; m1 is

the slope of the left seven-branch line; and m2 is the slope of the

right seven-branch line.
3 Experiments and results

The focus of this study is the acquisition of navigation

information in the Panax notoginseng shade. The obtained

navigation information can be used in later path planning stages

of the robot to facilitate autonomous driving. It can also be used as a

basis for adjusting the driving state of the robot.
3.1 Experimental platform

Due to the complex environment in the Panax notoginseng

shade house, its small plots, large slopes and high soil moisture, a

triangular crawler chassis with an upland gap was used as the

walking platform in this experiment. As shown in Figure 9, the

crawler chassis has a running speed of 0–5 km/h and a maximum

gradient of 60°. Considering the sowing and harvesting working

speed, the walking speed was set to 1 m/s. Table 3 reports the

specific parameters of the crawler chassis used in the

experimental platform.

We developed a LABVIEW program to control the robot

platform using the ARM embedded software architecture of the
FIGURE 8

Algorithm flowchart of classification of points into different lines.
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STM32. This facilitated data monitoring. improved development

efficiency, and reduced costs. Figure 10 depicts the experimental

platform and control system. The sensor module consisted of an

encoder, an IMU, and a camera. A PC was used as the master

computer to collect information from the camera and inertial

navigation IMU sensors. The camera obtained information on the

environment between the rows of the Panax notoginseng shade

house, while the inertial navigation IMU collected data on the
Frontiers in Plant Science 10
robot’s traverse, pitch, and yaw direction. The encoder measured

the robot’s real-time velocity information and fed it to the robot’s

underlying controller, the STM32F407. At the heart of the

embedded system board was a high-performance 32-bit ARM

Cortex-M4 processor with built-in high-speed memory and a rich

set of I/O ports used to connect various external devices. The

controller connected the motor driver, the encoder, and the host

computer. The STM32 controlled the motor rotation through the

motor driver based on the real-time speed information provided by

the encoder, using a classical PID algorithm to achieve precise robot

motion. The motor driver controlled the speed of the brushed DC

motor using pulse width modulation (PWM). For the control

process, the PC host computer processed the images captured by

the camera in real-t ime and communicated with the

STM32F407ZGT6 control module of the motion controller. The

microcontroller sent PWM signals to the motor drive module, and

the signals were amplified to drive the motor. At the same time, the

inverter performed real-time AD sampling to provide over-current

and over-voltage protection. The host computer communicated

with the motion control module via the RS232 serial port, and the

feedback information from the two motors was transmitted to the

control module via the serial port to achieve closed-loop control.
3.2 Detection results of seven-fork

We compared our improved target detection model with three

of the most advanced, fastest detecting, and widely used models.

mAP@0.5 was employed to plot the line graphs. Figure 11 reveals

that the YOLOv5 series model had an advantage in detecting the

seven-forked roots. Although both YOLOv7 (Wang CY. et al., 2022)

and YOLOv3 (Joseph and Ali, 2018) approached the YOLOv5 series

models in terms of detection accuracy after 200 training rounds,

their convergence rate was slow, and early training fluctuations

were high. The Im-YOLOv5 model exhibited a significantly faster

convergence rate and higher mAP@0.5 compared to the other

three models.

3.2.1 Comprision results with mainstream object
detection models

To evaluate the performance of the detection models proposed

in this paper, we trained the Im-YOLOv5, YOLOv3, YOLOv5s, and

YOLOv7 algorithms under the same conditions and evaluated their

performance on a test set. Table 4 reports the performance

comparison of the four detection models, revealing that the Im-

YOLOv5 model exhibited the highest P, R, F, and mAP values and

the lowest model weights and GFLOPs. Although the improved Im-

YOLOv5 model had a slower FPS than YOLOv7 and YOLOv3, it

demonstrated a better performance in identifying seven-forked

roots with 94.9% detection accuracy considering all indicators.

The Im-YOLOv5 model had the optimal detection performance, a

with faster detection speed for a single image while meeting the

real-time requirements. The results demonstrate that it can

effectively meet the needs of inter-row robots for Panax

notoginseng cultivation.
FIGURE 9

Robot experiment platform. 1. Camera; 2. laptop computer; 3.
motor driver; 4. STM 32 controller; 5. motor; 6. control box; 7
gasoline engine; 8, track car.
TABLE 3 Specific parameters of crawler chassis.

Parameter Performance

Dimensions (L × W × H) 930 mm × 900 mm × 600mm

Platform weight 140 kg

Running speed 0–5 km/h

Motor rated power 600W

Motor rated voltage DC12 V

Motor speed 40–55 r/min

Rated current 50 A

Working method Oil-electric hybrid

Track width 15cm

Track material Rubber track with built in tension layer

Maximum grade 60°

Maximum load 150 kg

Generator power 1500 W

Engine Gasoline engine

Equipment power 7.5 horsepower
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3.2.2 Comparison of detection performance of
improved model algorithm

The improved Im-YOLOv5 model reduces the number of

parameters by replacing the MobileNetv3 network with the ECA

attention mechanism module. This allows the model to focus more

on the target for feature extraction and less on the roots of the

seven-forks that are further away and beyond the sides. To evaluate

the detection performance of the Im-YOLOv5s model in this study,

we verified the trained model using 180 test set images and 3 test

videos for detection accuracy and speed. The Im-YOLOv5s

detection model achieved a 47.9% reduction in weight size, from

14.4 MB to 7.5 MB (Table 5). In addition, the frame rate and

average accuracy increased by 27.7% and 1.9%, respectively. These

improvements in detection performance reduced model inference

time and increased model accuracy.

Figure 12 presents the model training and validation loss rate

curves. We evaluated the recognition performance of both the
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YOLOv5s and Im-YOLOv5s models for the primary navigation

features in terms of both model training and recognition results.

The loss rate tended to stabilize as the number of iterations

increased and eventually converged to a fixed value, indicating

that the model achieved optimal results. The improved Im-

YOLOv5s model demonstrated a better fit and generalization

ability for the seven-fork root dataset while reducing the initial

loss value.

3.2.3 Experimental results in different scenarios
We utilized the Im-YOLOv5s model for target detection

recognition in the test set and compared the experimental results

of three scenes of the sowing, seedling, and harvested fields with

high and low light intensity conditions. The results reveal a higher

recognition accuracy for the sowing and seedling fields with a

relatively clean background, reaching 95.7% and 95.2%,

respectively (Table 6). However, the recognition accuracy of the

cluttered unharvested Panax field was only 89.1%. Light intensity

exerted a minor impact on the recognition results, with better

recognition accuracy observed in both high and low light intensities.

Figure 13 depicts the recognition results under different

scenarios. Our proposed model can accurately identify the seven-

fork roots under various scenarios and obtain the corresponding

navigation feature information. Figure 14 presents the results of the

dynamic detection of the plot to be sown. Detecting moving targets

is more challenging than the detection of stationary targets. In the

video-based real-time detection, our model accurately detected the

seven-forked roots between the two rows.
3.3 Navigation reference point
acquisition experiment

After identifying and framing the root of the seven-fork using

deep learning, the coordinate values of the corner points of the

rectangular bounding box were extracted. This included the

coordinates of the upper left Pl(xl , yl) and lower right Pr(xr , yr)

corner. The coordinates of the lower edge center were calculated

Pi(
xr−xl
2 + xl , yr). We replaced the coordinates of the seven-fork root
FIGURE 11

Accuracy variation of four object detectors.
FIGURE 10

Experimental platform and control system.
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point with the center of the bottom edge, as shown in Figure 15,

where the green and red points denote the seven-forks set as base

points and the actual seven-fork root points marked by hand,

respectively. To evaluate the accuracy of the reference point

extraction, the manually marked reference points were selected as

the evaluation criteria and separately fitted to a linear line. We

defined the deviation of the line direction as the angle between the

fitted line of the reference points extracted by the algorithm in this

study and the fitted line of the manually marked points. The line

extraction was considered correct if the absolute value of the

deviation between the two was less than 4° (Zhai et al., 2022; Lai

et al., 2023). After several experimental calibrations, the maximum

and minimum deviations of the line direction for the three scenes

were 1.64° and 0.22°, respectively. The results reveal that the

proposed deep learning-based root point substitution method can

accurately obtain the navigation reference lines.
3.4 Centerline extraction results

We experimentally verified the practical feasibility of the

proposed inter-row navigation information acquisition method by
Frontiers in Plant Science 12
selecting several pictures from the dataset collected by the external

camera connected to the PC for testing. The images contained three

scenes: sowing field, seedling field and harvesting field. The effect of

the navigation line extraction for different scenes is shown in

Figure 16, where the red line represents the navigation center line

and the blue lines represent the left and right navigation

reference lines.
4 Discussion

The success of target detection algorithms heavily depends on

the extraction of navigation lines using deep learning methods. In

this paper, we compared the proposed Im-YOLOv5s algorithm with

existing detection methods for similar targets. Table 7 reports the

results. Aguiar et al. (2020) achieved an average accuracy of 52.98%

and approximately 49 frames per second using SSD MobileNet-V2

on the USB accelerator for the detection of vineyard trunks using

low-cost embedded devices. Ma et al. (2021) adopted a faster R-

CNN target detection model to achieve 89.40% detection accuracy

for kiwifruit tree trunk roots. Zhou et al. (2022) used a YOLO v3

model to detect orchard trunks with a detection accuracy of 92.11%.
TABLE 4 Performance comparison of different object detection algorithms.

Model P(%) R(%) F(%) FPS mAP (%) Modelsize/MB GFLOPs

Im-YOLOv5s 94.2 92.0 93.1 106.4 94.9 7.5 6.3

YOLOv5s 91.0 91.4 91.2 83.3 93.1 14.4 15.8

YOLOv3 90.2 91.7 90.9 144.9 92.5 17.4 13.0

YOLOv7 88.3 89.4 88.8 125.0 91.3 12.3 13.2
fr
P, comparison of accuracy; R, recall; F, harmonic average; FPS, frame rate; m, mean average precision; GFLOPs, giga floating-point operations per second.
TABLE 5 Indexes before and after model improvement.

Model P(%) R(%) FPS mAP(%) Model Size/MB

YOLOv5s 91.0 91.4 83.3 93.1 14.4

Im-YOLOv5s 94.2 92.0 106.4 94.9 7.5
A B

FIGURE 12

Loss iteration graph. (A) YOLOv5s loss iteration; (B) Im-YOLOv5s loss iteration.
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In this paper, we demonstrate that the proposed Im-YOLOv5s

model strikes a balance between detection speed, model size, and

accuracy. The improved model provides better detection

performance, with a mAP value of 94.90%, approximately 106.4

frames per second, and a model size of 7.5 MB. Compared to

current studies, the improved YOLOv5s model presents great

progress in model size and detection time.

Although the proposed method in this study can accurately

extract the centerline of seven-fork rows in Panax notoginseng

shade house, we came across several limitations. While the

improved deep learning model enhances detection accuracy and
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speed, the field of view range and camera jitter can affect the

detection accuracy rate of the seven-fork roots, which, in turn,

affects the fitting error of the navigation line. For the complex and

variable inter-row environment, relying solely on visual sensing to

obtain navigation feature information may pose significant risks

to the actual safety of robot operation. In future work, we plan to

transfer the deep learning model and seven-fork row centerline

extraction algorithm to a mobile robot platform and combine them

with multi-sensor fusion technology to achieve automatic

navigation in the semi-structured environment of Panax

notoginseng shade trellis.
TABLE 6 Experimental results under different backgrounds and light intensities.

Scenes No. of photos P(%) R(%) F(%) mAP(%)

Land to be sown 48 92.6 93.7 93.1 95.7

Seedling land 58 92.8 92.4 92.6 95.2

Harvested land 77 85.1 88.1 86.6 89.1

High light intensities 62 92.1 92.5 92.3 93.4

Low light intensities 62 95.3 91.2 93.2 94.8
A B C

FIGURE 13

Recognition results in different scenes. (A) Land to be sown; (B) seedling land; (C) harvested land.
FIGURE 14

Video of actual environment.
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5 Conclusions

In this paper, we proposed a navigation line extraction method

based on Im-YOLOv5s. By replacing the original backbone with a
Frontiers in Plant Science 14
lightweight network architecture, MobileNetv3, and introducing

the ECANet attention mechanism module, we improved the

model’s recognition accuracy and robustness while reducing its

weight size by 47.9%, increasing the frame rate by 27.7%, and

improving the average accuracy by 1.9%. The algorithm efficiently

and accurately extracted information on the seven-fork roots in

the shade trellis with an average detection accuracy of 94.9%, and

was resilient to light and shadow disturbances. We located the

coordinates of the root point according to the bottom edge

midpoint of the outer rectangular box of the detected seven-fork

roots and used the least squares method to fit the navigation

reference line on both sides. The maximum deviation of the row

direction was 1.64°, which met the criteria for navigation line

extraction. We then used the detected bilateral column line as the
A B C

FIGURE 15

Seven branch positioning base points and actual root points in different scenes. (A) Land to be sown; (B) seedling land; (C) harvested land.
A B C

FIGURE 16

Results of navigation line extraction in different scenarios. (A) Land to be sown; (B) seedling land; (C) harvested land.
TABLE 7 Comparison of proposed method with existing methods.

Source Method Object mAP(%)

Aguiar, A.S.P. [14] SSD Vineyard 52.98

Ma et al. [15] Faster R-CNN Kiwi trunk 89.40

Zhou et al. [17] YOLO v3 Orchard trunk 92.11

Proposed method Im-YOLOv5s Seven-fork 94.90
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navigation reference line and extracted the middle navigation line

using the angle tangent formula to determine the robot’s forward

direction. The proposed method provides a technical reference for

inter-row path planning.
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