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Editorial on the Research Topic

Identification and functional analysis of differentially expressed genes in
plant response to abiotic stresses

Overview

As the impact of climate change intensifies, plants face increasing challenges in
adapting to a rapidly changing environment. Abiotic stresses, such as drought, salinity,
extreme temperatures, and nutrient deficiency, pose significant threats to crop productivity
and global food security. It has been reported that more than 8% of the world’s agricultural
land was salinized, and the area of salt-affected land is predicted to double by 2050
(Rengasamy, 2006; Guan et al., 2014). In response to these stresses, plants have evolved
intricate molecular mechanisms to sense and respond to environmental cues, thereby
enhancing their survival and productivity. The identification and functional analysis of
differentially expressed genes (DEGs) in plant responses to abiotic stresses has become an
essential area of research, aiming to unravel the underlying genetic basis of stress tolerance
and facilitate the development of resilient crop varieties (Zhang et al., 2022).

Our Research Topic titled “Identification and Functional Analysis of Differentially
Expressed Genes in Plant Response to Abiotic Stresses” (40012) was published on 22 July 22,
2022, and completed on 12 February, 2023. A total of 62 authors confirmed the e-mails,
and finally 35 manuscripts were successfully submitted, among which 23 manuscripts were
accepted for publication. In this topic, numerous differentially expressed genes (DEGS)
were identified and functionally analyzed in many types of plants, such as maize, sunflower,
cotton, soybean, rice, Solanum lycopersicum L., Salix matsudana, Passiflora edulis Sims,
wheat, sweet potatoes, Panax ginseng, Santalum album, sorghum, and Populus, providing
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more valuable information for molecular mechanism research of
plants in responding to abiotic stresses.

Unveiling the transcriptomic
landscape

In recent years, advances in high-throughput sequencing
technologies, such as RNA sequencing (RNA-seq), have
revolutionized our ability to comprehensively characterize the
plant transcriptome. RNA-seq enables the simultaneous
quantification of gene expression levels across the entire genome,
providing an unbiased and precise snapshot of gene activity under
specific stress conditions. Through comparative transcriptomic
analyses between stressed and control plants, researchers have
successfully identified numerous DEGs involved in stress response
pathways. These findings have offered crucial insights into the
molecular networks governing plant adaptation to abiotic stresses.

Functional analysis: connecting genes to
stress response pathways

Identifying DEGs is just the first step towards understanding
their functional roles in the plant stress response. Functional analysis,
including gene ontology (GO) enrichment, pathway analysis, and
gene regulatory network reconstruction, plays a pivotal role in
deciphering the intricate mechanisms underlying stress tolerance.
GO enrichment analysis reveals the biological processes, molecular
functions, and cellular components associated with the identified
DEGs, highlighting the key biological pathways involved in stress
adaptation. Pathway analysis provides a holistic view of the
interconnected metabolic and signaling pathways orchestrating
stress responses, aiding in the identification of critical genes and
regulatory hubs. Additionally, gene regulatory network
reconstruction elucidates the intricate interactions and hierarchical
relationships among stress-responsive genes, offering a systems-level
understanding of stress adaptation.

Integrating omics approaches: towards a
systems biology perspective

The complexity of abiotic stress responses necessitates the
integration of multiple omics approaches to achieve a
comprehensive understanding. Transcriptomics, proteomics,
metabolomics, and epi-genomics collectively provide a multi-
dimensional view of the stress response, unraveling the interplay
between genes, proteins, metabolites, and epigenetic modifications.
Integration of these omics datasets allows researchers to identify key
regulatory nodes, discover novel stress-responsive molecules, and
gain insights into the cross-talk between different layers of
regulation. By adopting a systems biology perspective, we can
uncover emergent properties and regulatory modules that would
remain elusive when studying individual components in isolation.
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Research progress

Corn is the oil and feed crop with the largest sown area in
China, and it plays an important role in agricultural production
(Mousavi et al., 2022). High seed vigor and germination rates are
crucial for corn production for its potential in high quality and yield
of crops. Jin et al. performed whole-genome-wide identification of
miRNAs and their targets associated with maize seed vigor, finally a
total of 791 mature miRNAs were gained, among of which 286
miRNAs were newly identified to be closely related with seed vigor.
Ding et al. identified 129 maize NAC protein-coding genes, of
which 15 and 20 NAC genes were differentially expressed between
the two genotypes H082183 and Lv28 based on transcriptome
analysis. Jasmonic acid (JA), one of the Phytohormones, is always
involved in modulating physiological and molecular responses to
abiotic stresses (Wolters and Jurgens, 2009; Garrido-Bigotes et al.,
2019). Song et al. conducted the phylogenetic analysis and
expression profiles of 139 putative JAZ genes, and the results
indicated that JAZ genes in sunflower were conserved in sequence
but varied in their expression among duplicated HaJAZ genes,
suggesting that these JAZ genes may confer neo-functionalization
in the responses to abiotic stresses. Environment factors, such as
temperature, drought, salt, sunshine duration, significantly
influenced oil and FA compositions in soybean, thus Zuo et al.
identified QTN-by-environment (QEIs) interactions and their
candidate genes for soybean seed oil-related traits using
3VmrMLM method, providing important information for genetic
basis, molecular mechanisms, and soybean breeding. In rice, two
density of direct seeding with high and normal density were selected
by Cui et al. to identify the differentially expressed genes (DEGS)
involved in shade-avoidance syndrome. The results indicated that
simulation of shade environment could cause rapid decrease in the
expression of phytochrome genes, expression changes of multiple
miR156 or miR172 genes and photoperiod-related genes. Normal
growth and development of tomatoes (Solanum lycopersicum L.) as
well as fruit quality and yield are limited by salt stress, so Wang et al.
revealed the transcriptional regulatory network of hormones and
genes under salt stress in tomato plants.

Phenotypes of Salix matsudana females and males are obviously
different under salinity stress, and the molecular mechanisms were
decoded by Liu et al. based on the root transcriptome of males and
females. Yang et al. conducted genome-wide characterization and
identification of Trihelix transcription factors and expression
profiling in response to abiotic stresses in Chinese Willow (Salix
matsudana Koidz) to reveal the molecular mechanism when
responding to various abiotic stresses. Wheat (Triticum aestivum L.)
is one of the world’s most widely cultivated crops (Alghabari et al,
2015). At present, no documents about chromosome condensation 1
(RCC1) domain proteins have been found. An et al. performed
genome-wide identification and expression analysis of the regulator
of RCC1 gene family in wheat. MYB TFs, common regulators of gene
transcription, form a large gene family involved in a variety of
biological processes in plants (Dai et al., 2023). Identification of the
passion fruit (Passiflora edulis Sims) MYB family in fruit development
and abiotic stress was performed by Zhang et al,, laying the foundation
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for further analysis of the biological functions of PeMYBs involved in
stress resistance in passion fruit. Tang et al. identified 144 R2R3-MYB
genes and investigated their characteristics and expression patterns in
Santalum album. Sweet potato, regarded as the seventh most important
food crop, is a popular food source in many countries, i.e., China, India,
and Kenya. Liu et al. revealed the molecular mechanism of two sweet
potatoes with different drought tolerances using transcriptome analysis.
Tong et al. also used transcriptome analysis to obtain 672 upregulated
genes and 526 downregulated genes in the roots of rusty ginseng when
compared with the healthy ginseng roots. Jiao et al. revealed the
regulation mechanism of the flavonoid biosynthesis pathway in
responding to cadmium stress by integration analysis of
transcriptome and metabolome in sorghum. Guo et al. identified a
total of 30 heat shock transcription factor (HSF) members in poplar,
and overexpression of PsnHSF21 conferred salt tolerance in Populus
simonii x P. nigra by functional analysis.

Cotton is the main raw material of textile industry in China and
as well as the world in general, and it plays a pivotal role in our
national economy (Lu et al., 2019). In this topic, a total of eight
articles related to cotton tolerance were published. Yan et al.
reported that GhCDPK60 positively regulated drought stress
tolerance in both transgenic Arabidopsis and cotton by regulating
proline content and ROS level. The GhSRS2I gene was proved to
negatively control cotton salt tolerance by regulating the balance
between ROS production and scavenging by Sun et al. Documents
demonstrated that subtilisin-like proteases (SBT's) are a large family
of serine peptidases that are unique to plants and are closely
associated with environmental responses (Page and Di Cera,
2008; Jin et al, 2021). Dai et al. identified 120 and 112 SBTs in
the tetraploid cotton species G. hirsutum and G. barbadense, while
67 and 69 SBTs were identified in the diploid species G. arboreum
and G. raimondii, respectively. In several plant species, NITRATE
TRANSPORTER 1/PEPTIDE TRANSPORTER (NPF) genes are
reported to play crucial roles in plant growth, development and
resistance to various stresses, involving in the transport of nitrate
(NO3-) and peptides (O’brien et al., 2016; Fan et al., 2017). Liu et al.
identified 201 genes encoding NPF proteins with a peptide
transporter (PTR) domain in three different Gossypium species,
and investigated expression profiles of the NPF genes. Cui et al.
identified a total of 260 Terpene synthases (TPS) in four cotton
species and conducted their expression profiles for their crucial
characteristics in response to flooding stress. Trihelix transcription
factors (TTFs) play important roles in abiotic stress responses in
many plant species. Li et al. reported that the overexpression of the
cotton trihelix transcription factor GhGT23 in Arabidopsis could
mediate salt and drought stress tolerance by binding to GT and
MYB promoter elements in stress-related genes. In addition, GhSS9
and GhLDAP2 were reported to enhance drought tolerance of
cotton by Dai et al. and Zhao et al,, respectively.
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Future perspectives

In summary, the work published in this Research Topic showed
many differentially expressed genes (DEGs) and transcription
factors were identified and functionally analyzed in responding
salinity, drought, temperatures, and waterlogging stress. As we all
know, plant tolerance is a complex quantitative trait, involving a
series of DEGs and networks. Although several important research
progresses were published in topic, it is far from enough to elucidate
how plant tolerances are formed. Based on this Research Topig, it is
very necessary to carry out further research into the following
issues: 1) manuscripts related to proteomics, miRNAs, DNA
methylation, and gene editing should be encouraged; 2)
regulation networks of multiple genes should be constructed; 3)
interaction mechanism of stress-related genes; 4) the influence of
environmental factors on subcellular structures in plants.
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