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Introduction: Nut quality detection is of paramount importance in primary nut

processing. When striving to maintain the imperatives of rapid, efficient, and

accurate detection, the precision of identifying small-sized nuts can be

substantially compromised.

Methods:We introduced an optimized iteration of the YOLOv5s model designed

to swiftly and precisely identify both good and bad walnut nuts across multiple

targets. The M3-Net network, which is a replacement for the original C3 network

in MobileNetV3’s YOLOv5s, reduces the weight of the model. We explored the

impact of incorporating the attentionmechanism at various positions to enhance

model performance. Furthermore, we introduced an attentional convolutional

adaptive fusion module (Acmix) within the spatial pyramid pooling layer to

improve feature extraction. In addition, we replaced the SiLU activation

function in the original Conv module with MetaAconC from the CBM module

to enhance feature detection in walnut images across different scales.

Results: In comparative trials, the YOLOv5s_AMMmodel surpassed the standard

detection networks, exhibiting an average detection accuracy (mAP) of 80.78%,

an increase of 1.81%, while reducing themodel size to 20.9 MB (a compression of

22.88%) and achieving a detection speed of 40.42 frames per second. In multi-

target walnut detection across various scales, the enhanced model consistently

outperformed its predecessor in terms of accuracy, model size, and detection

speed. It notably improves the ability to detect multi-target walnut situations,

both large and small, while maintaining the accuracy and efficiency.

Discussion: The results underscored the superiority of the YOLOv5s_AMMmodel,

which achieved the highest average detection accuracy (mAP) of 80.78%, while

boasting the smallest model size at 20.9 MB and the highest frame rate of 40.42

FPS. Our optimized network excels in the rapid, efficient, and accurate detection of

mixed multi-target dry walnut quality, accommodating lightweight edge devices.

This research provides valuable insights for the detection of multi-target good and

bad walnuts during the walnut processing stage.
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1 Introduction

Walnuts (Juglans spp.) rank among the world’s top four dried

fruits, alongside almonds, cashews, and hazelnuts. Two predominant

species of walnuts, common walnuts (Juglans regia) and dark-grained

walnuts (Juglans sigillata), are extensively cultivated globally. Juglans

sigillata, also known as iron walnut or Yunnan walnut, is an endemic

species in Southwest China. It is distinguished by superior seed

quality, full kernels, high protein and fat content, and rich

nutritional value (Xie et al., 2021). After degreening, rinsing, and

drying, the evaluation of the appearance quality of walnuts plays a

vital role in bolstering their market competitiveness. Yunnan walnuts,

which are characterized by uneven kernel surfaces, non-uniform

maturity, varying harvest patterns, and irregular fruit sizes, pose

challenges during processing. Existing green walnut peeling machines

often yield unsatisfactory results, leaving behind impurities, surface

contamination, and an increased susceptibility to breakage (Su et al.,

2021). In accordance with the “Walnut Nut Quality Grade” standard

GBT20398-2021,1 common external defects in walnuts encompass

fractured walnut shells, black spots, and insect holes. Black spots on

walnut endocarps typically stem from improper peeling, which leaves

a residual walnut pericarp on the surface, leading to oxidation and the

formation of black spots. In addition to detracting from the

appearance quality and grade, these black patches cause mildew

due to their moisture-absorbing properties. Furthermore, damaged

and insect-infested walnuts expose their kernels to external elements,

resulting in rapid deterioration, mould formation, and potentially

hazardous substances, such as aflatoxins, due to water infiltration

during cleaning. Consequently, there is an urgent need for a rapid

and precise method to identify these external defects during walnut

production and processing (Li et al., 2019).

Currently, two main approaches are employed to assess produce

quality: destructive and non-destructive methods. Destructive

methods are utilized to determine the physicochemical or

biochemical properties of the produce but require the complete

annihilation of the tested specimens, imposing strict technical

prerequisites. Although they provide additional phenotypic data,

their inherent delay in detection is a drawback. By contrast, non-

destructive methods offer advantages such as reduced costs,

heightened detection accuracy, and the ability to evaluate produce

without damaging it (Arunkumar et al., 2021). Both domestic and

international scholars have extensively investigated various non-

destructive testing methods for fruits and nuts, including X-ray

techniques, acoustic methods (Cobus and van Wijk, 2023), and

machine vision approaches (Chakraborty et al., 2023). However, it

is worth noting that although these methods excel in detection

accuracy, X-ray detection can be expensive, and acoustic methods

may be limited to single-target fruit detection, potentially restricting

their applicability to primary processing firms.

Deep learning, a non-destructive approach, can swiftly detect

issues in one or two phases, offering precise detection and quality

control for all types of nuts through computer vision technologies and
1 h t t p s : / /opens td . s amr .gov . cn /bzgk /gb /newGb In fo?hcno=

11E65C73CF8B9E071CE76716628F2F80]
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robotics. The integration of deep learning technology can significantly

enhance the production efficiency and qualitymanagement within nut

processing enterprises by refining the classification and grading

processes, automating quality management procedures, and

effectively identifying nut defects and abnormalities.

In recent years, researchers have explored a two-stage deep

learning approach for fruit and nut detection. For instance, Rika

Sustika et al. (2018) investigated the impact of various deep

convolutional neural network structures (AlexNet, MobileNet,

GoogLeNet, and Xception) on the accuracy of a strawberry

grading system (appearance quality detection), with VGGNet

demonstrating the highest accuracy (Sustika et al., 2018). Costa

et al. (2021) combined machine vision techniques with the Mask-

RCNN algorithm (Costa et al., 2021) to detect and semantically

segment pecan peel and hull. Fan et al. (2021) proposed an improved

rapid R-CNN algorithm (Fan et al., 2021) for the precise detection of

green pecans in natural environments. The enhancements included

batch normalization, an improved RPN with bilinear interpolation,

and the integration of a hybrid loss function. For robot recognition

and the picking of walnuts in complex environments, the model

achieved an accuracy of 97.71%, a recall rate of 94.58%, an F1 value

of 96.12%, and faster detection times. However, these two-stage

approaches, which are capable of high accuracy, tend to have slower

detection speeds and require lengthy training periods, making them

challenging to implement in actual industrial production settings. By

contrast, the one-stage approach, represented by the YOLO series

algorithm, offers advantages such as fast real-time detection, high

accuracy, and robustness. Hao et al. (2022) used an improved

YOLOv3 deep learning method for the real-time detection of

green walnuts in a natural environment. They pre-trained the

model network using the COCO dataset, optimized the

performance with data augmentation and K-means clustering, and

selected the MobileNetV3 backbone for high accuracy and rapid

detection. This approach achieved an average accuracy (mAP) of

86.11% and provided technical support for intelligent orchard

management and yield estimation of walnut orchards (Hao et al.,

2022). Recognizing the widespread acceptance of the YOLOv5

model as a faster, more accurate, and more efficient target

detection model, Yu et al. (2023) proposed an improved walnut

kernel impurity detection model based on the YOLOv5 network

model. Their model included a small target detection layer, a

transformer-encoder module, a convolutional block attention

module, and a GhostNet module, leading to enhanced recognition

accuracy for small and medium impurities in pecan kernels (Yu

et al., 2023). In general, the two-stage target detection algorithm

applied to pecans struggles to balance recognition accuracy and

detection speed. On the other hand, one-stage algorithm research is

tailored to green walnut recognition scenarios. These models and

methods cannot be directly applied to the recognition of good- and

bad-dried walnuts because of differences in image datasets, such as

variations in field orchard backgrounds and occlusion, lighting

conditions, or diffractive indices. Additionally, there is limited

research on target detection based on deep learning for the

classification of dried walnut quality after degreening, washing,

and drying during the initial processing stage. Detecting dried

walnuts of various target sizes within a wide field of vision
frontiersin.org
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presents a challenging task. Therefore, achieving efficient and precise

sorting of good and bad dried walnuts using deep learning models

has become an urgent matter, significantly impacting the

advancement of the entire walnut primary processing industry.

This study introduced an enhanced YOLOv5s_AMM multi-

target sorting model tailored for walnuts. (1) The M3-Net network

replaced YOLOv5s’ C3 structure with MobileNetV3. This

substitution has advantages, such as faster inference, heightened

accuracy, reduced memory usage, and improved feature

representation. Consequently, it emerges as a superior option for

target detection in devices with resource constraints. (2) The model

achieved enhanced classification accuracy, adaptive mixture

modelling, rapid training and inference, and robustness against

noise and outliers by incorporating the novel ACMIX paradigm.

ACMIX integrates convolution with self-attentiveness after an SPP

(spatial pyramid pooling) layer (He et al., 2015). (3) In the neck

layer, the CBM module replaced the activation function of the

conventional Conv2d convolution layer with MetaAconC. This

substitution results in performance enhancements, adaptive

activation, non-linear and smoothing behavior, computational

efficiency, and robustness against noise and outliers. Finally, the

improved YOLOv5s_AMM detection model, when practically

applied to differentiate between good and bad walnuts of various

sizes, achieved real-time and efficient classification. This

advancement has significant practical value for enhancing walnut

detection efficiency, quality, and market competitiveness. This is

particularly beneficial to primary processing enterprises aiming to

increase the value of their walnut products and contributes to the

growth of a more intelligent and integrated walnut industry.
2 Materials and methods

2.1 Image sample acquisition

In this study, walnuts were sourced from Fengqing County,

Lincang City, Yunnan Province, China. The RGB images used for

the analysis were collected at the Agricultural Material

Characterization Laboratory at the Kunming University of

Technology. These images were captured from 9:00 a.m. to 6:00

p.m. on December 24–26, 2022. For image acquisition, we

employed a Hikvision industrial camera (model MV-CA050-

20GC) with a 5-megapixel resolution and a CMOS Gigabit

Ethernet industrial surface array camera capable of producing

images at a resolution of 2592×2048. The images were saved in

the JPEG format. The camera was securely mounted at a height of

195 cm above the ground and positioned 95 cm above the surface

level using an adjustable aluminium mount. All images were

captured under consistent conditions, including the same camera

height, uniform light source brightness, consistent background, and

roller guide profile phase. The image capture date was December 24,

2022. During the image capture process, we used an exposure time

of 4,000 μs and frame rate of 1 in the continuous mode of the

camera. This setup allowed us to capture images of walnuts in their

natural state, as depicted in Figure 1, with the walnuts evenly

distributed on the moving part of the profiled roller-wheel guide.
Frontiers in Plant Science 03
According to the national standard classification GB/T20398-

2021 for walnut quality grades, our evaluation considered various

factors such as walnut uniformity, shell integrity, color, and suture

line tightness. Based on these criteria, we classified walnuts into two

categories: (1) good walnuts (Figure 2A), characterized by intact

shells and primarily exhibiting a yellow-white color, and (2) bad

walnuts (Figures 2B, C), including walnuts with black spots

(Figure 2B) and walnuts with broken shells (Figure 2C). In this

study, 120 original images with a resolution of 2,592×2,048 were

acquired, and multi-target walnuts with excellent walnuts and bad

walnuts (black spots and broken) were randomly inserted into

this dataset.
2.2 Dataset construction

During the data processing phase, we divided the initial dataset

of 120 images, each with a resolution of 2,592×2,048, into 2,000

images with a resolution of 640×640. We employed LabelImg

software for manual annotation, marking the location boxes, and

categorizing walnuts as either good or bad within the original

images. This annotation process produced corresponding

annotation files. Upon completing the image annotation, we

randomly divided the entire dataset into three sets: training,

validation, and test. The distribution ratio was 8:1:1, ensuring

adequate data for training and model evaluation. In statistical

terms, each image in this study contained 5–40 walnuts, resulting

in a total of 53,301 labels within the walnut dataset. Among these

labels, 25,099 were associated with good walnuts, whereas 28,208

were assigned to bad walnuts. This distribution indicates a

reasonably balanced dataset, with a ratio of approximately 0.88

between the two image categories.

Before commencing model training, we subjected the walnut

training set to a combination of offline data enhancement

techniques, including contrast adjustment, scaling, luminance

modification, pretzel noise, and Gaussian noise (Taylor and

Nitschke, 2018). These techniques were applied randomly. As

shown in Figure 3, They encompassed four specific methods; (1)
FIGURE 1

Map of the walnut image acquisition environment.
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random contrast enhancement within the range of 0.7 to 1.4 with a

gradient of 0.05; (2) random scaling of the training set within the

range of 0.5 to 1.5 with a gradient of 0.1; (3) random luminance

adjustment for the training set within the range of 0.6 to 1.4; and (4)

random modification of the training set’s luminance to either 50–

150% of random Gaussian noise or random pretzel noise within the

same range. As shown in Table 1, these data enhancement

procedures resulted in a 25% increase in the number of training

sets. Consequently, the walnut dataset contained a total of 2,000

image data entries after data enhancement.
2.3 YOLOv5 network model and
optimization structure

2.3.1 YOLOv5 model
The YOLO Network Series provides a rapid and efficient

solution for real-time target detection tasks, delivering high
Frontiers in Plant Science 04
accuracy and the capability to identify targets of various sizes. Its

versatility extends to a wide range of applications, including

autonomous vehicles, robotics, and surveillance systems.

YOLOv5 outperforms YOLOv3 and YOLOv4 in terms of rapid

and precise real-time target detection. It achieves this superiority

while maintaining a lighter, more efficient, and more easily

deployable profile on resource-constrained devices. These

improvements encompass several key aspects. (1) Enhanced

backbone network: YOLOv5 adopts the CSP-Darknet53

architecture (Bochkovskiy et al., 2020) as its backbone network.

This innovation improves feature extraction while reducing the

computational cost. (2) Innovative neck layers: The model

incorporates SPP and PAN neck layers. These layers combine

features from different layers, thereby enhancing both the accuracy

and efficiency of the model. (3) Optimized training process: YOLOv5

benefits from the optimized training process. This includes a new

hyperparameter search algorithm that efficiently tunes model

settings, a novel loss function, improved data augmentation

techniques, and AutoAugment, which automatically identifies the

optimal hyperparameters. The amalgamation of these enhancements

enables YOLOv5 to deliver cutting-edge target detection performance

while maintaining a real-time processing speed.

The official code allows for the training of four distinct object

detection models with varying depths and widths. In the YOLOv5

series, YOLOv5s serves as the baseline with the smallest depth and

width. The other three networks build on this foundation, becoming

deeper and more complex. These networks incorporate additional
FIGURE 2

Types of walnuts. (A–C) Good walnuts (A) and defective walnuts (black spots [B] and broken [C]).
FIGURE 3

Schematic of the image enhancement of the walnut dataset.
TABLE 1 Classification of the walnut image dataset.

Dataset Original image Enhanced image

Training set 1200 1598

Validation set 150 201

Test set 150 201

Total 1500 2000
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convolutional layers and residual modules in the backbone and

employ more channels in the head module to enhance accuracy.

Table 2 provides a comparison of the accuracy, model size, and

detection performance across the four distinct YOLOv5 models. In

terms of detection accuracy, YOLOv5s exhibited a slightly lower

mAP than YOLOv5m (1.67% lower), YOLOv5l (3.47% lower), and

YOLOv5x (3.36% lower). However, when considering the model

size, YOLOv5s stood out because of its compact size of 27.1 MB,

which was notably smaller than YOLOv5m, offering a reduction of

53.5 MB. This size advantage makes YOLOv5s a cost-effective

choice, particularly for deployment on embedded devices, where

storage constraints are critical. In terms of detection speed,

YOLOv5s outperformed the other models, detecting 7.85 frames

per second more than YOLOv5m, 17.13 frames more than

YOLOv5l, and 25.97 frames more than YOLOv5x. This superior

inference speed position of YOLOv5s is an excellent option for real-

time detection scenarios and applications demanding rapid

responses. Given the emphasis on low latency and cost-effective

deployment for lightweight multi-target kernel peach detection,

YOLOv5s presented a compelling proposition with a detection

accuracy of 78.97%, a model size of 27 MB, and a detection speed

of 47 FPS. It effectively balances accuracy, model size, and inference

speed, making it a well-suited base model for further enhancement.

2.3.2 MobileNetV3: lightweight
backbone network

The concept of a lightweight backbone pertains to neural

network architectures optimized for target detection tasks. This
Frontiers in Plant Science 05
optimization involves a reduction in the number of network

parameters and layers, while maintaining high accuracy in the

target detection tasks. The core objective was to curtail the

computational burden and memory requirements of the network.

The integration of lightweight backbone networks into target

detection models yields substantial advantages, including

enhanced computational efficiency, reduced memory demand,

accelerated inference speed, and increased robustness.

Consequently, they have gained popularity, particularly for

resource-constrained applications. In this context, Andrew

Howard et al. (2019) proposed the “MobileNetV3” architecture in

their research titled “Searching for MobileNetV3” (Howard et al.,

2019). Their work demonstrated that MobileNetV3 outperforms

alternatives such as ShuffleNet (Bhattacharya et al., 2006) and

MobileNetV2 (Sandler et al., 2018) in terms of accuracy,

advanced features, and efficient training. This renders

MobileNetV3 a versatile and effective option, particularly for

resource-constrained devices. Figure 4 illustrates the structure of

MobileNetV3, which includes 1×1 convolutional layers to adjust

channel numbers, deep convolutions in high-dimensional spaces,

SE attention mechanisms for feature map optimization, and 1×1

convolutional layers for channel number reduction (employing

linear activation functions). The network employs residual

connections when the step size is 1, and the input and output

feature maps have the same shape, whereas in the downsampling

stage (step size = 2), the downsampled feature maps are directly

output. MobileNetV3’s architectural contributions are primarily

grouped into the following categories:
FIGURE 4

Structural diagram of the MobileNetV3 network.
TABLE 2 Comparison of the prediction results from YOLOv5 models.

Model mAP@0.5 (%) Parameters Model size (MB) FPS

YOLOv5s 78.97 7,276,605 27.1 47.22

YOLOv5m 80.64 7,276,605 80.6 39.37

YOLOv5l 82.44 7,276,605 178 30.09

YOLOv5x 82.33 7,276,605 333 21.25
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Fron
(1) MobileNetV3 leverages deeply separable convolutions and

residual blocks to reduce parameters and computations,

thereby enhancing the computational efficiency.

(2) Fewer layers are used to minimize the memory

requirements and facilitate deployment on resource-

constrained devices.

(3) MobileNetV3 incorporates an SE attention mechanism and

a hard-swish activation function to support data

representation capabilities, while maintaining a modest

parameter count and computational load.

(4) The utilization of hybrid precision training and knowledge

distillation techniques further enhances the training

effectiveness while reducing memory and computational costs.
MobileNetV3 attains state-of-the-art performance across

various tasks while retaining its lightweight and efficient nature.

This results in substantial reductions in computational and memory

costs, rendering it an ideal choice for target detection in resource-

constrained devices. This study refined the MobileNetV3 model to

enhance its suitability as a lightweight backbone network, thereby

achieving higher accuracy and improved network performance.
2.3.3 Acmix: attention-based convolutional
hybrid structure

The Acmix architecture (attention-convolution hybrid),

introduced in 2021, represents a novel neural network

architecture comprising primarily three fundamental modules: an

attention module, a convolution module, and a hybrid module.

The attention module is responsible for capturing essential features

within the input image. Both global and local attention modules

are utilized in the Acmix architecture. The global attention module

captures the image’s broader contextual information, whereas the

local attention module focuses on capturing intricate details

within the image. The primary function of the convolution

module is the feature extraction from the input image. To

achieve this, the Acmix architecture combines the conventional

convolutional layers with depth-separable convolutional layers.
tiers in Plant Science 06
This integration significantly reduces the computational cost and

memory requirements of the network, thereby enhancing its

overall efficiency. The hybrid module serves as the nexus where

the features extracted by the attention module and convolution

module converge and interact. In this context, the Acmix

architecture uses both global and local hybrid modules. The

global hybrid module harmonizes characteristics from the global

attention module and convolutional module, whereas the local

hybrid module fuses attributes from the local attention module and

convolutional module.

Figure 5 illustrates the hybrid module proposed by Acmix.

The left diagram shows the flowchart of the conventional

convolution and self-attention module. (a) The output of the

3×3 convolutional layer can be decomposed into a summation

of shifted feature maps. Each of these feature maps was generated

by applying a 1×1 convolution with kernel weights at specific

positions, denoted by s(x,y). (b) The self-attention process

involves projecting the input feature maps into queries, keys,

and values, followed by 1×1 convolution. The attention weights

computed through the query-key interaction were used to

aggregate the values. Conversely, the diagram on the right

delineates the pipeline of our module. (c) Acmix operates in

two stages. In stage one, the input feature map underwent

projection using three 1×1 convolutions. Stage two employs

intermediate features using two examples. The characteristics

extracted from both paths are fused to generate the final output.

The computational complexity of each operation block is shown

in the upper corner (Pan et al., 2022). The Acmix architecture has

demonstrated state-of-the-art performance across various

benchmark datasets for image classification tasks, while

maintaining a lightweight and efficient design. The attention and

hybrid modules within Acmix are strategically designed to capture

both global and local features within walnut images, with a

particular emphasis on identifying black spots and damaged

areas on walnuts. Consequently, the Acmix module is

introduced after the SPP module during the feature fusion

phase of the improved model to enhance its performance,

particularly on intricate datasets.
B C

A

FIGURE 5

Structure of the hybrid module network in Acmix.
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2.3.4 MetaAconC activation function

MetaAconC = (p1 − p2)Xd b c(p1 − p2)X½ � + p2X, bc

= dW1W2o
H

h=1
o
W

w=1
Xc,h,w (1)

In Eq. (1), X represents the input feature map, where X (c,h,w)

denotes the feature input with dimensions of C × H ×W. W1 andW2

represent the computed weights; p1 and p2 represent adjustable

learning parameters; b signifies the adaptive function; and d
represents the sigmoid activation function (Nan et al., 2023).

MetaAconC (Ma et al., 2021) is a novel activation function proposed

in 2021 to address the limitations of conventional activation functions.

This is achieved by combining the Meta-AC and CAN functions,

which are known to be vulnerable to the gradient vanishing problem

and can lead to neuron inactivity. The Meta-AC function is capable of

concatenatingmultiple activation functions and adapting to the specific

input data distribution. The CAN function non-linearly transforms the

output generated by theMeta-AC function, enabling it to capture more

intricate and abstract features. Empirical evidence has shown the

superiority of the MetaAconC activation function over traditional

alternatives, such as ReLU and sigmoid. It offers distinct advantages,

including adaptivity, computational efficiency, and robustness against

noise and outliers. These attributes were substantiated in subsequent

ablation experiments. In the context of our enhanced model, the

original SiLU activation function was replaced by the MetaAconC

activation function. The experimental data underscore its suitability for

walnut image detection.

2.3.5 Improved Yolov5s network structure
In this study, we built upon the architecture of YOLOv5s,

version 5.0, as the foundation for model improvement. The

objective was to address issues related to accuracy, model size,

and detection speed to develop a more appropriate model for the

detection of good and bad walnut fruit targets during the primary

processing stage. The overall enhanced network structure is shown

in Figure 6. In this model refinement, we opted to replace the

original focus layer with CBH and the C3 backbone network
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structure with MobileNetV3 from the M3-Net network. This

alteration was made with the aim of reducing the model size and

ensuring a lightweight and efficient design. Furthermore, we

introduced the attention convolutional hybrid (Acmix) structure

into the neck layer. This addition reduced the computational cost

and memory requirements of the network. The attention and

hybrid modules within the Acmix architecture are strategically

designed to capture both global and local image features, thereby

enhancing the model’s performance on complex datasets. Finally,

we replaced the two Conv2d modules in the neck layer with the

CBM modules. In addition, the SiLU activation function found in

the original Conv layer was substituted with the MetaAconC

activation function. This adjustment is implemented to improve

the input-specific data distribution for tuning, ultimately enhancing

the feature detection across different image scales.

Table 3 provides an overview of the replacement lightweight

backbone network used in this study, with a primary focus on the

incorporation of the M3-Net network to construct the backbone

network of the enhanced model. Table 3 presents detailed

information on various parameters and components. Specifically,

“Input” represents the features of the input layer feature matrix;

“#Out” represents the number of channels in the output layer feature

matrix; “S” represents the step size of the DW convolution; “exp size”

represents the size of the first up-convolution; “SE” indicates whether

the attention mechanism is employed; “NL” represents the activation

function used; “HS” represents the hard-swish activation function; and

“RE” represents the ReLU activation function. Within the modified

backbone layer of M3-Net, there are primarily four types

of MobileNet_Block:
MNB1_1: CBH + SE attention mechanism + CB

MNB1_3: CBR + SE attention mechanism + CB

MNB2_1_1: CBH + CB + SE attention mechanism + HCB

MNB2_2_4: CBR + CBR + CB.
First, the original focus layer was replaced with the

Conv_Bn_Bswish layer, resulting in improved model accuracy,
FIGURE 6

Overall network structure of the improved YOLOv5s-AMM model.
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accelerated inference, and architectural simplification. Moreover, the

Conv and C3 components of the original dark2 layer were replaced

with MNB1_3 and MNB2_2_4, while the Conv and C3 components

of the dark3 layer were replaced with two consecutive MNB2_2_4

structures. This replacement strategy employed MobileNetV3_Block

to construct a lightweight backbone network, which not only

enhanced the accuracy in identifying the walnut dataset but also

boosted the network performance efficiency, facilitating faster

convergence and superior generalization effects. Subsequently, we

introduced the Acmix structure after applying the SPP structure to

the output of the final layer. This involved a combination of standard

convolutional layers and deeply separable convolutional layers to

reduce the neocortex size. Consequently, network performance

efficiency was further enhanced, leading to faster convergence. As a

result, when the input image size was set to 640×640, the improved

backbone network generated output feature maps with dimensions of

(20 × 20×1,024), (40×40×512), and (80×80×256). The role of the

neck is to integrate the walnut characteristics extracted from the

backbone into a format suitable for object detection. This component

plays a pivotal role in improving the accuracy of the walnut target

detection model by capturing the walnut features at various scales

and combining them effectively. This enhances the model’s ability to

detect objects of varying sizes and aspect ratios. In addition, when

replacing the corresponding conv2d module with a CBM module

after the (20×20×1024) and (40×40×512) walnut feature maps,

the MetaAconC activation function in the CBM module surpasses

the performance of the sigmoid function. It is not only adaptive but

also capable of learning based on the specific walnut data distribution.

This is in contrast with the traditional sigmoid function, which

remains fixed and unalterable during the training process. The

MetaAconC function offers high computational efficiency, leading

to an improved detection performance for walnut images at various

scales. Furthermore, it reduces the computational load and memory

usage of the network, resulting in shorter inference times and reduced

hardware requirements. Finally, the head layer produced output

feature maps with dimensions of 80×80×(3×(num_classes+5)),

40×40×(3×(num_classes+5)), and 20×20×(3×(num_classes+5)).
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Here, “num_classes” denotes the number of detected walnut object

classes in the training network, and “3” denotes the number of anchor

boxes used for walnut object detection within each grid cell.

2.3.6 Training the multi-target detection model
for walnuts (good and bad fruits)

To impart the model with more relevant and informative

features, the initial image was segmented into 640×640 pixels,

aligned with the model’s input image size of 640×640 pixels.

Building on this foundation, the model was enhanced using the

proposed improvement methodology. Subsequently, the labelled

walnut dataset was employed for training within the PyTorch deep

learning framework, whereas the validation dataset served as a

means to evaluate the effectiveness and performance of the model

training process.

Table 4 lists the experimental settings used in this study.

Initially, the dataset containing annotations in the VOC format

was converted into a format compatible with the YOLOv5 model.

Subsequently, the parameters governing the training procedure

were configured meticulously. The enhanced YOLOv5s detection

network was then subjected to training with an initial learning

rate of 0.01, eta_min at 1 × 10-4, last_epoch at −1, momentum
TABLE 3 Backbone network with the improved model.

Input Operator Exp size #out SE NL S

6402×32 Conv_Bn_Hswish – 64 – – 1

3202×64 MobileNet_Block,3×3 64 64 √ RE 2

1602×64 MobileNet_Block,3×3 384 128 – RE 2

1602×128 MobileNet_Block,3×3 448 128 – RE 1

802×128 MobileNet_Block,5×5 512 256 √ HS 2

402×256 MobileNet_Block,5×5 960 256 √ HS 2

402×256 MobileNet_Block,5×5 512 512 √ HS 1

202×512 MobileNet_Block,5×5 512 512 √ HS 2

202×512 SPP – 512 – – –

202×256 Acmix – 512 – – 1

202×256 MobileNet_Block,5×5 512 256 √ HS 1
TABLE 4 Experimental settings for this study.

Name Value

CPU AMD Ryzen 9 5900HX with Radeon Graphics octa-core

Memory 32 GB

Storage SSD 1024GB

Graphics card NVIDIA GeForce RTX 3080

Graphics memory 16GB

Operating System Windows11

CUDA version 11.6

PyTorch version 1.8.0
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parameter at 0.937, delay parameter at 5 × 10-3, batch size at 8,

and T_max at 250. The optimization during the training

procedure was executed using an SGD optimizer. Multi-threaded

model training harnessed the computational power of the four

processors, whereas the cosine annealing learning rate was

dynamically updated for optimization during training.

Furthermore, four offline enhancement techniques, including

contrast adjustment, scaling, luminance modification, and the

introduction of pepper and Gaussian noise to the walnut image

data, enrich the contextual information for detecting walnut

objects. These augmentations enhance the perception of

distinguishing between good and bad walnut features, thereby

bolstering the model’s robustness and generalization capabilities.

Notably, the data augmentation network required approximately

6 h and 52 min to complete the training process.

The entire training process was segmented into two distinct phases,

namely, the “freezing phase” and the “thawing phase”, in alignment

with the underlying model structure. During the freezing phase, the

spine of the model remained unaltered and was held constant. No

modifications were made to the ad hoc extraction network. During this

phase, the focus was on training the weight parameters of the

prediction network until they reached a state of saturation and

convergence. Subsequently, the model entered the thawing phase,

wherein the core of the model was no longer constrained and the

weight parameters of the feature extraction network were subjected to

training to optimize the entire set of network weights.

The loss curve in target detection serves as a crucial indicator of

the training progress of the model by monitoring the value of the

LOSS function. This function is a mathematical construct that

quantifies the disparity between the model’s predicted output,

given an input image, and the actual output (i.e., the true value).

Within the context of YOLOv5, the loss function comprises several

integral components, including localization, confidence, and class

loss. The localization loss is responsible for assessing the precision

with which the model predicts the coordinates of bounding boxes

around objects within an image, whereas the confidence loss

quantifies the level of confidence in the model’s prediction. The

class loss measures the capacity of a model to classify images.

The loss curve indicates the model’s learning progress in

generating accurate predictions after being trained on the dataset.

As the model acquires knowledge from the training data, the loss

progressively diminishes. The objective of training is to minimize

this loss, which indicates that the model makes accurate predictions

on the training data.

As depicted in Figure 7, the initial model observed a notable

reduction in the loss value during the fifth iteration. Subsequently, from

the fourth to the tenth iteration, the loss value stabilized, hovering at

approximately 0.32. Notably, there was no discernible alteration in the

thawing stage, even as the model progressed to the 50th iteration.

Following the unfreezing of the model, the loss decreased

notably between the 50th and 53rd iterations,.from 0.36 to 0.29.

Moreover, between the 60th and 210th iterations, the loss remained

consistently lower than that of the original model. Subsequently, a

comparison between the original and improved models’ loss values

from iteration 210 onwards revealed that the improved model

exhibited a swifter decline in losses between iterations 210 and
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300. Ultimately, the loss values of the improved model stabilized at

approximately 0.142, a reduction of 0.01 points compared with the

original model. These results highlight the superior performance of

the enhanced model in distinguishing between good and bad

walnuts during the convergence.
3 Results

3.1 Model evaluation indicators

To conduct a thorough evaluation of the model’s performance

on multi-target walnut images, we employed eight widely accepted

evaluation metrics that are commonly used in classical target

detection algorithms. These metrics included precision (P), recall

(R), F1 score, average precision (AP), average accuracy (mAP),

network parameters, model size, and detection speed. Throughout

the experimental period, an IoU value of 0.50 was used. To assess

real-time detection performance, this study employed frames per

second (FPS) as the key metric. A higher FPS indicates a higher

model detection rate. Equations (1)–(5) illustrate the specific

formulas for calculating P, R, F1, AP, and mAP.

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

F1 −  score  =
2PR
P + R

(4)

AP(k) =
Z 1

0
P(R)dR (5)

mAP = o
N
1 AP(k)

N
(6)
FIGURE 7

Comparison of epochs trained using original and improved models.
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where TP represents the number of correctly identified walnuts

(true positives); FP represents the instances in which the classifier

incorrectly predicted positive samples among the actual negative

samples (indicating the number of false negative samples); TN

represents the number of correctly identified negative samples;

and FN represents the number of negative samples that were

incorrectly predicted by the classifier.

The F1 value serves as a comprehensive measure of the overall

accuracy of the detection model and is calculated as the average sum

of precision and recall. AP represents a measure of the precision and

recall trade-off for a given detection model by calculating the area

under the recall curve. Higher AP values indicate a better

performance. In equation (6), “N” represents the number of

object categories, “AP (k)” is the average precision for a specific

category (in this study, k=2), and “∑” signifies the sum across all

categories. mAP consolidates accuracy and recall across multiple

object categories, offering a global assessment of the object detection

model’s performance. The scores range from 0 to 1, with higher

scores indicating superior performance. Given the need to evaluate

an integrated object detection network with multiple object

categories and the superiority of the mAP over the F1 score, we

chose to use the mAP score for our assessment.
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3.2 Experimental results

Table 5 presents the evaluation results of the enhanced model

using the 201-objective walnut test dataset. The empirical findings

revealed that the improved YOLOv5s model achieved an overall

mAP of 80.78% on the test dataset. Additionally, it attained an F1

score of 0.77, a model size of 20.90 MB, and an average detection

rate of 40.42 frames per second, thus satisfying the real-time

detection requirements. The precision-recall gap across each

category ranged from 2.62 to 4.46%. Furthermore, the cumulative

mAP for both excellent and bad walnuts was 80.78%. In summary,

the enhanced model proposed in this study for the detection of good

and bad walnut fruits demonstrates superior accuracy, minimal

computational overhead, and rapid inference capabilities.
3.3 Effect of the detection performance of
attention mechanisms at various positions

In the context of the original YOLOv5s network, we introduced

the attentional convolutional hybrid Acmix module into both the

backbone and neck layers, as depicted in Figure 8, to explore the
TABLE 5 Experimental results.

Class P/% R/% mAP@0.5 (%) F1-score Model size
(MB)

FPS

Good 75.11 70.65 86.79 0.73

20.9 40.42Bad 82.13 79.51 74.78 0.81

All 78.62 75.08 80.78 0.77
FIGURE 8

Integration of attention mechanisms at different locations in the original YOlOv5s model.
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impact of integrating the attentional mechanism at different

locations within the model. Specifically, after pyramidal pooling

in the SPP space, the final dark5 module at location 1 in the

backbone layer incorporated the Acmix module. The Acmix

module received the output feature maps from the SPP layer and

calculated the channel weights, which were subsequently applied to

the input feature maps. This process emphasized significant regions

while suppressing insignificant ones. Additionally, at position 2,

located after each upsampling and downsampling operation in the

neck layer, another Acmix module was applied.

Table 5 presents the results of comparing the effects of adding

the attention mechanism at various locations. Notably, the addition

of Acmix at location 1 improved the model’s mAP by 1.38%,

increased the model size by a mere 3.2 MB, and reduced the

detection speed by only 4.08 frames per second. However, when

added at location 2, the model’s mAP experienced a marginal

decrease of 0.07%, accompanied by a more significant reduction

in detection speed by 18.83 frames per second. This suggests that

the Acmix attention mechanism may not be universally applicable

to all layers. The reason for this discrepancy lies in the fact that

introducing too many attention mechanisms in location 2 of the

neck layer may diminish the model’s mAP. In addition, the

excessive incorporation of attention mechanisms at location 2

introduces a surplus of additional parameters, potentially

resulting in network overfitting and deterioration in network

performance. The most pronounced enhancement was observed

when Acmix was added at location 1, particularly when compared

with location 2, or when both locations received attention

mechanisms. This is due to the multifaceted scale features

generated by SPP, which aid in the detection of targets of varying

sizes but have weaker interrelationships. Adding the Acmix

attention mechanism after SPP explicitly constructs relationships

between features of different scales, enabling the network to better

leverage these features and subsequently enhance its performance.

Additionally, because SPP generates a surplus of features, some of

which may be irrelevant, the Acmix attention mechanism effectively

filters out these irrelevant features, focusing on the most pertinent

features to reduce feature redundancy. Furthermore, it enables the

learning of novel feature expressions based on the features

generated by SPP, thereby improving the overall feature

representation. Incorporating Acmix attention at position 1

effectively compensated for the limitations of SPP and resulted in

more potent feature expressions.
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3.4 Effect of various attention mechanisms
on detection performance

In the context of the original YOLOv5s model, we introduced

various attention mechanisms from position 1 in Figure 8 to

investigate their impact on the performance of the target

detection model. As shown in Table 6, the addition of the Acmix

attention mechanism exhibited the most substantial improvement

in the mAP performance compared with the original model,

achieving a notable increase of 1.38%. By contrast, the ECA,

CBAM, and SE attention mechanisms displayed comparatively

less improvement in the mAP performance. This observation

underscores that merely applying an attention mechanism after

SPP does not inherently improve model accuracy; rather, its

effectiveness depends on the structural properties of the network

and characteristics of the recognition objects. In this study, we

selected the Acmix attention mechanism due to its superior

performance. Acmix possesses the unique capability of

dynamically adjusting channel weights by calculating the global

attention map for each channel. By contrast, ECA (Wang et al.,

2023), CBAM (Woo et al., 2018), and SE (Hu et al., 2018) employ

fixed channel weights. This dynamic adjustment allows Acmix to

highlight critical channel information more precisely, effectively

enhancing the features of the walnut images. Additionally, Acmix

can concurrently capture a more comprehensive spatial-frequency

feature representation by combining location and channel attention

information. The introduction of location attention further

promotes channel attention, thereby enhancing the extraction of

pertinent location features from walnut images. Conversely, ECA,

CBAM, and SE consider only a single type of attention, whether it is

location, position, or channel. Moreover, although model size and

inference speed are crucial considerations, accuracy remains

paramount. As depicted in Table 6, the additional model burden

introduced by Acmix was a mere 3.2 MB, and the reduction in FPS

was a modest 4.08 frames per second. The increase in the

parameters, although present, does not overly complicate the

model. Given that the Acmix hybrid mechanism comprehensively

captures information, combining both spatial and channel

contextual insights and significantly enhancing mAP, the slight

reduction in computational efficiency and detection speed remains

acceptable. Although the task of simultaneously increasing

detection accuracy while maintaining model efficiency is

inherently challenging, the experimental findings suggest that
TABLE 6 Comparison of target detection model capabilities with the addition of various focus mechanisms.

Attention
mechanisms

mAP0.5 (%) Parameters Model size (MB) FPS

None 78.97 7,276,605 27.1 47.22

ECA 79.15 7,276,866 27.1 50.95

CBAM 78.90 7,278,751 27.1 51.88

SE 79.69 7,277,629 27.1 51.03

Acmix 80.35 8,106,537 30.3 43.14
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incorporating attention mechanisms can mitigate this challenge to

some extent. For instance, Table 6 illustrates that the inclusion of

attention modules (e.g., Acmix, ECA, etc.) can effectively improve

the mAP with minimal expansion in model size. Among these

mechanisms, Acmix attention stands out by achieving the best

accuracy improvement, driven by its ability to integrate spatial and

channel contextual information. Considering all factors related to

model accuracy, size, and detection speed, the Acmix attention

mechanism emerges as the optimal choice, striking an excellent

balance between accuracy enhancement, model size, and

detection speed.
3.5 Enhancing detection performance for
varied target sizes

The classification of good and bad walnuts was notably affected

by the degreening and drying process. Walnuts typically sold fall

within the size range of 20–50 mm, and the initial processing of

walnuts after degreening and drying significantly influences their

classification. It is particularly crucial to ensure a sufficiently large

field of view in the context of multi-target walnuts to improve

grading efficiency. Additionally, evaluating the recognition

performance of the model for multi-target walnuts in an actual

mixed forward conveying scenario represents a rigorous test of its

capabilities. To investigate the performance of the detection model

for multi-target walnuts of varying sizes in a mixed scene, as

illustrated in Figure 9, we employed 30 small target walnuts
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measuring 20–30 mm, 30 medium target walnuts ranging from

30–40 mm, and 30 large target walnuts spanning 40–50 mm. Each

size category included 10 good walnuts and 20 bad walnuts (10 with

black spots and 10 broken fruits). Additionally, we incorporated 30

walnuts ranging in size from 20 to 50 mm (10 walnuts per size),

featuring 3 good walnuts and 7 bad walnuts in each size (4 with

black spots and 3 broken walnuts). Comparing the small-target

detection results in Figures 9E, I, it becomes evident that the

improved model identified good walnuts within the small-target

category. This improvement can be attributed to the replaced

MobileNetV3 module, which effectively captures multiscale

information through depth-separable convolution, enhancing the

recognition of key features, such as the morphology of small target

walnuts. Upon comparing the target images in Figures 9F, J, the

large target images in Figures 9G, K, and the mixed target detection

images in Figures 9H, L, it becomes apparent that the original

model struggled to identify good walnuts, particularly in the case of

multiple targets, in which simultaneous identification was

problematic. By contrast, the improved model adeptly identified

each individual walnut, significantly enhancing the detection

accuracy of healthy fruits. This improvement can be attributed to

the addition of the Acmix attention mechanism after the SPP layer,

which effectively captures spatial feature information related to

walnut fruit shape and surface texture across multiple scales.

Meanwhile, the MetaAcon activation function is more effective at

expressing non-linear features than SiLU, enabling the extraction of

complex features, such as walnut fruit color, and aids in the

identification of walnuts of varying sizes. Therefore, the improved
B C D
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FIGURE 9

Comparison between the original and improved models for detecting various sizes of mixed walnuts.
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YOLOv5s_AMM model demonstrates enhanced recognition

performance in the mixed recognition of multi-target walnuts at

different scales, maintaining a high recognition count and rate.

Although a single false detection occurred in the small-target scene,

the overall false detection rate remained below 3%. Future research

efforts will address this issue by refining the structure of the model

to detect small-sized targets.
3.6 Ablation experiments

Ablation experiments were performed on the original YOLOv5s

model to assess the impact of various enhancement strategies on the

detection performance. All improvement procedures were trained

and validated using identical training and validation datasets, and

evaluated using the same test dataset. The experimental results are

presented in Table 7. The original YOLOv5s model achieved an

mAP of 78.97% based on 201 test images. It featured a parameter

count of 7,276,605, model size of 27.1 MB, and FPS of 47.22 frames

per second, as detailed in Table 7. Notably, the three enhancements

proposed in this study yielded positive effects on multiple facets of

the original model. First, replacement of the C3 structure in

MobileNetV3’s backbone network resulted in a notable mAP

increase of 1.54%, reaching 80.51%. This enhancement also

significantly reduced the footprint of the model by 37.6%,

decreased the number of parameters by 39.6%, and boosted the

frame rate by 3.42 frames per second. Subsequently, the addition of

the Acmix module further improved the mAP and frame rate of the

model, albeit not to the same extent as the inclusion of

MobileNetV3 alone. Finally, the integration of the MetaAconc

module into the model facilitated an adaptability to specific input

data during training, culminating in an enhanced performance

across various tasks. This configuration achieved an mAP of

80.78%, featuring 5,424,971 parameters, a model size of 20.9 MB,

and a frame rate of 40.42 frames per second. Following network

optimization, the mAP experienced a 0.59% improvement, with no

changes in the total number of model parameters and detection

speed. Compared with the original YOLOv5 model, the enhanced

model demonstrated a 1.81% improvement in mAP, a substantial

22.88% reduction in model size, and a notable 25.45% decrease in
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the number of parameters. In conclusion, the method proposed in

this study delivers a rapid high-accuracy detection performance

across small and large scales. This meets the requirements for real-

time detection while maintaining a compact model size.
3.7 Comparative experiments

In this study, we retrained several conventional network models

to assess the performance differences between the improved models

and their established counterparts. We employed a control-variable

approach to ensure the accuracy of the computational results.

Subsequently, we compared the detection results of the various

network models using the same test dataset. The comparative

results are presented in Table 8, highlighting the disparities in the

mAP detection performance, model size, and detection speed. For

multi-target kernel detection, our improved model achieved the

highest recognition accuracy, surpassing the original YOLOv5s

model. Specifically, it outperformed the YOLOv4_tiny (75.47%),

EfficientNet_YOLOv3 (75.95%), MobileNetV1_YOLOv4 (73.77%),

YOLOv3 (80.56%), and YOLOv4 (80.52%) models by 1.81%, 5.31%,

4.83%, 7.01%, 0.22%, and 0.26%, respectively. Concerning

parameter count, our improved model stood out with only

5,424,971 parameters, which was significantly lower than the

other comparison models. In terms of model size, our model’s

footprint was merely 20.9 MB, making it the most compact, in stark

contrast to the YOLOv4 model’s size of 244 MB and the YOLOv3

model’s size of 235 MB. Furthermore, our improved model

achieved a detection frame rate of 40.42 frames per second,

surpassing the YOLOv4 model by 7.77 frames per second and

EfficientNet_YOLOV3 by 8.32 frames per second. In summary, our

enhanced lightweight walnut detection model excels in recognition

accuracy, boasts a compact model size, and demonstrates superior

inference speed compared with its counterparts.

As shown in Figure 10, We selected images captured from the

actual primary processing grading equipment to represent different

sizes of walnuts, including small targets (20–30 mm), medium

targets (30–40 mm), Each size category comprised 10 good and

20 bad fruits, with 10 each of black spots and broken fruits.

Additionally, we included 30 walnuts ranging from 20 to 50 mm
TABLE 7 Impact of various enhancement strategies on model performance.

Model mAP@0.5 (%) Parameters Model size (MB) FPS

YOLOv5s 78.97 7,276,605 27.1 47.22

+Acmix 80.35 8,106,537 30.3 43.14

+MobileNetV3 80.51 4,395,327 16.9 50.64

+MetaAconc 80.18 47,098,541 27.2 49.64

+Acmix+MobileNetV3 80.19 5,412,267 20.8 39.34

+Acmix+MetaAconc 79.90 7,908,875 30.3 42.33

+MobileNetV3+MetaAconc 79.91 4,595,039 17.7 52.26

+Acmix+MobileNetV3+MetaAconc 80.78 5,424,971 20.9 40.42
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(comprising large, medium, and small sizes of 10 each), featuring 3

good and 7 bad fruits (4 with black spots and 3 broken fruits) for

each size. Subsequently, we compared and examined the true results

for each walnut size and category (Table 9). The experimental

findings, in terms of the identification of good, bad, unchecked, and

incorrectly detected walnuts, affirm the improved YOLOv5s_AMM

model’s efficacy and precision in discerning good and bad walnuts

across large, medium, and small targets. Remarkably, there were

minimal instances of unchecked and incorrectly detected walnuts of

different sizes. Notably, the detection of small target walnuts,

characterized by a complex surface morphology and small size,

poses a significant challenge. Although the YOLOv5s,

YOLOv4_tiny, and YOLOv4 models exhibited relatively similar

recognition results to the improved model, occasional cases of non-

detection and incorrect detection were observed, underscoring the

improved model’s superiority. Comparatively, the YOLOv4_tiny

and EfficientNet_YOLOv3 models displayed slightly better results

than the improved model, but with a notable increase in false

detections and non-detections. Conversely, models such as

YOLOv3 and the original YOLOv5s demonstrated ineffectiveness

at detecting good fruits, with a significant number of non-detections

and false detections. In conclusion, the enhanced YOLOv5s_AMM

model consistently demonstrated its effectiveness and precision in

identifying good and bad walnut fruits across varying sizes, as

assessed by a composite set of criteria encompassing good and bad

fruit identification and unchecked and incorrectly detected walnuts.
4 Discussion

This study introduces a rapid non-destructive detection model

designed to enhance the performance of the original YOLOv5s

network for the detection of good and bad fruits within multi-target

samples of dried walnuts. The dataset encompassed specimens that

exhibited both desirable attributes and imperfections, including

instances of black spotting and breakage. It is worth noting that

extant research concerning walnuts predominantly centers on fresh

green walnuts or kernels obtained from orchard trees, as shown in

Table 10. Historical limitations have constrained access to extensive

repositories of high-resolution imagery depicting good and bad
Frontiers in Plant Science 14
dried walnuts, thereby constraining the scope of deep learning

investigations in this domain. Recently, there has been a prevalent

shift towards machine learning and convolutional neural networks

in the context of kernel defect detection. The datasets used in related

literature predominantly consist of single-object images captured

within controlled laboratory environments or images featuring

multiple object sets against the backdrop of orchard settings. In

the interest of equitable assessment pertaining to image

composition, network architecture, and detection efficacy within

the chosen dataset, the findings presented in Table 10 elucidate

discernible enhancements in detection performance achieved

through the deployment of various optimized network

configurations relative to the original model. Consequently, these

results underscore both the effectiveness and necessity of

augmenting the detection capabilities of networks tasked with

discerning multiple objects of diverse sizes.

In this study, we analyzed the experimental results obtained

from the improved YOLOv5s_AMM detection model. The primary

focus of this study was to address the challenge of discerning good

and bad fruit images among multi-target walnuts of varying sizes.

Moreover, we assessed the recognition performance of the

improved model across walnut images with different dimensions.

Within this analysis, we explored the impact of various attention

mechanisms (Table 11) and the influence of different positions of

improvement (Table 6) on the model’s recognition capabilities.

Notably, the enhancements made to the original YOLOv5s model

encompassed the incorporation of the Acmix structure, which

introduces convolutional mixing, following the SPP layer. In

addition, the activation function within the neck layer

convolution was replaced with the MetaAconC activation

function. These improvements were substantiated by the ablation

(Table 7) and comparative experiments (Table 8). The experimental

results presented in this study demonstrate the ability of the

enhanced YOLOv5s_AMM detection model to swiftly and

accurately identify good and bad walnuts within mixed images of

dried walnuts, encompassing multiple targets of varying sizes.

Furthermore, comparative experiments involving diverse

improved modules and different typical target detection networks

contribute to a comprehensive evaluation of the proficiency of the

model in recognizing good and bad walnut fruits.
TABLE 8 Detection results of various target detection algorithms on walnut images.

Model mAP@0.5 (%) Parameters Model size (MB) FPS

YOLOv5s_Acmix_
MobileNetV3_MetaAconc (ours)

80.78 5,424,971 20.9 40.42

YOLOv5s 78.97 7,276,605 27.1 47.22

YOLOv4_tiny 75.47 6,056,606 22.4 111.48

EfficientNet_YOLOv3 75.95 10,776,233 60 32.1

MobileNetV1_YOLOv4 73.77 12,692,029 51.1 57.06

YOLOv3 80.56 61,949,149 235 48.23

YOLOv4 80.52 64,363,101 244 32.65
The bold values indicate the optimal values corresponding to the four groups of data: map@0.5(%)80.78 has the highest precision and is marked with bold; The number of parameters is 5,424,971,
with the minimum marking thickness; Model size 20.9MB, minimum size; FPS11.48, the fastest detection speed.
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In essence, our proposed enhanced network exhibits improved

detection performance, reduced model size, and accelerated

inference speed when tasked with identifying mixed multi-target

dried walnut fruits of varying sizes. This characteristic holds a

significant promise for deployment in resource-constrained edge

devices. In future research endeavours, we plan to prioritize the

refinement of recognition accuracy and the model’s generalization

capabilities. This will entail extending its applicability to encompass

a broader spectrum of walnut variety recognitions. Subsequently,

we aim to implement an improved model within the grading

equipment used in the primary processing stages of walnuts. This
Frontiers in Plant Science 15
deployment is envisaged to not only augment the value of walnut

products but also enhance the efficiency of the walnut industry’s

grading processes.
5 Conclusions and future work

This study focused on using photographs of walnuts collected

after degreening, cleaning, and drying as the research dataset. In

response to the distinctive visual attributes of walnuts within the

primary processing context, we developed and implemented a
FIGURE 10

Detection performance of mainstream detection networks for good and defective walnuts of various sizes.
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TABLE 9 Number of good and bad walnuts detected by mainstream target detection networks for various walnut sizes.

Model 20mm–30mm
good/bad/

uninspected/
misinspected

30mm–40mm
good/bad/

uninspected/
misinspected

40mm–50mm
good/bad/

uninspected/
misinspected

20mm–50mm
good/bad/

uninspected/
misinspected

YOLOv5s_Acmix_MobileNetV3_MetaAconc (ours) 10/20/0/0 10/20/0/0 9/21/0/1 8/22/0/2

YOLOv5s 9/21/0/1 5/23/2/3 2/27/1/8 3/26/1/4

YOLOv4_tiny 13/26/1/3 10/20/0/4 8/21/1/1 8/20/2/3

EfficientNet_YOLOv3 2/8/20/0 8/16/6/0 9/20/1/3 6/14/10/3

MobileNetV1_YOLOv4 1/7/22/2 2/19/9/3 1/21/8/1 1/14/15/1

YOLOv3 1/20/9/1 0/22/8/3 0/25/5/0 0/23/7/3

YOLOv4 8/22/0/2 6/23/1/3 4/24/0/5 2/27/1/5
F
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The bold values represent the best case for each of these four sets of cases [best for good, bad, undetected, false (quantity) data in different sizes (20-30\30-40\40-50\20-50 \20-50).
TABLE 10 Recent research on target detection in walnut studies.

Objects Networks Dataset conditions mAP F1 Accuracy

Walnut foreign body
(Rong et al., 2019)

Machine vision combines two
different convolutional neural
networks

Walnuts, natural foreign objects, and
artificial foreign objects

— — 95%

Pecan abscission, shell,
and embryo area (Costa
et al., 2021)

Machine vision combined with
Mask-RCNN

Abscission, shell, and embryo areas in both
small (young) and large (old) pecans at
multiple growth stages

— 95.3%
~100%

—

Green walnut in natural
environments (Fan et al.,
2021)

Improved and faster R-CNN Detection of green walnuts in natural
environments (uniform light, uneven
light, overlapping objects, shading, and
varying target sizes)

97.71% 96.12% —

Green walnut in natural
environments (Hao et al.,
2022)

Improved YOLOv3 (MobileNetV3) Green walnuts on trees in the orchard
(large targets, small targets, and
backlighting conditions)

86.11% — —

English walnut kernel
pericarp colour (Donis-
Gonzalez et al., 2020)

Machine vision combined with a
stepwise logistic regression method

English walnut kernels with different
coloured peels

— — “Chandler” model (88.8%),
seedling model (80.4%), and
“Howard” model (75.1%)

Walnut impurities (Yu
et al., 2023)

Improved YOLOv5 (Transformer
and GhostNet)

Small impurities within walnut kernels 88.9% — —

Walnut fresh fruit (Zhang
et al., 2016)

Machine vision combining hybrid
features with the least squares
support vector machines

Identification of fresh pecan fruits under
natural scenes, considering downlight
backlighting and branch shading

— — 92.48%
TABLE 11 Comparison of the effects of adding the attention mechanism at different positions.

Applied position mAP0.5 (%) Parameters Model size (MB) FPS

None 78.97 7,276,605 27.1 47.22

Position 1 80.35 8,106,537 30.3 43.14

Position 2 78.90 7,833,645 29.2 28.39

All 79.69 8,663,577 32.4 26.57
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method for detecting multiple good and bad walnut fruit targets. To

support this investigation, we collected a substantial volume of

multi-target walnut images, thereby constructing a corresponding

dataset. To enhance the efficiency of the model while maintaining

its lightweight architecture, we replaced the C3 network in the

original YOLOv5s with MobileNetV3, resulting in an M3-Net

network. Subsequently, we explored the impact of various

attention mechanisms and improvement positions on the walnut

images. Notably, the Acmix structure after the SPP layer was

introduced, integrating attention and hybrid modules to capture

both global and local image features. This strategic modification

reduces network computational costs while augmenting

performance on complex datasets. Furthermore, the MetaAconC

activation function of the CBM module in the neck layer was

replaced with an SiLU activation function from the original Conv

layer. This adaptation improved the distribution of input-specific

data for fine-tuning, thereby enhancing feature detection across

various image scales. Additionally, we assessed the effectiveness of

the model across the walnut images in varying proportions. Finally,

we conducted a comprehensive examination of the different

improvement modules applied to the detection of walnut datasets

within the backbone and neck layers of the Ai model. The

performance of different target detection networks on walnut

datasets were further investigated. The results of these

experiments successfully validated the performance enhancements

achieved by our improved model.

The principal findings of this study are summarized as follows:
Fron
(1) Compared with other target detection models, our

improved model exhibited superior performance across

multiple metrics, including detection precision, model

size, parameter size, and detection speed. Notably, our

improved model achieved the highest accuracy, with an

mAP of 80.78. Moreover, it boasted the smallest model size,

measuring 20.9 MB, which was notably 11.7 times and 11.2

times smaller than the model sizes of conventional

algorithms such as YOLOv4 and YOLOv3, respectively.

Simultaneously, the model maintained a detection speed of

40.42 frames per second, aligning with the lightweight

nature of the model suitable for rapid walnut detection

scenarios and substantially outperforming the YOLOv4 and

YOLOv3 models in terms of speed. These results

underscore the success of the improved model in

achieving greater recognition accuracy, a compact model

size, and rapid performance.

(2) In practical applications, the enhanced model was

employed to distinguish between good and bad fruits of

multi-target walnuts within the test set. Ablation

experiments were conducted to assess its performance,

which resulted in an mAP of 80.78%. Compared with the

original YOLOv5s model, our enhanced model exhibited an

increase of 1.81% in mAP, a reduction of 22.88% in model

size, and a decrease of 25.45% in parameter count, while

maintaining a negligible difference in FPS. Additionally,
tiers in Plant Science 17
experimental results involving walnut image detection with

varying target sizes indicate improved precision and

robustness.

(3) By leveraging the capabilities of the improved

YOLOv5s_AMM model, which addresses the gap in

detecting walnuts of different sizes after peeling and

drying in the preliminary processing stage, we intend to

apply it to the preliminary processing operations of walnut

processing enterprises. Specifically, the model was

employed for the detection and grading of good and bad

walnut fruits after the peeling, washing, and drying stages.

Our model offers distinct advantages, including a high

recognition accuracy and compact model size.
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