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Introduction: Ordinal traits are important complex traits in crops, while

genome-wide association study (GWAS) is a widely-used method in their gene

mining. Presently, GWAS of continuous quantitative traits (C-GWAS) and single-

locus association analysis method of ordinal traits are the main methods used for

ordinal traits. However, the detection power of these two methods is low.

Methods: To address this issue, we proposed a new method, named MTOTC, in

which hierarchical data of ordinal traits are transformed into continuous

phenotypic data (CPData).

Results: Then, FASTmrMLM, one C-GWAS method, was used to conduct GWAS

for CPData. The results from the simulation studies showed that, MTOTC

+FASTmrMLM for ordinal traits was better than the classical methods when

there were four and fewer hierarchical levels. In addition, when MTOTC was

combined with FASTmrEMMA, mrMLM, ISIS EM-BLASSO, pLARmEB, and

pKWmEB, relatively high power and low false positive rate in QTN detection

were observed as well. Subsequently, MTOTC was applied to analyze the

hierarchical data of soybean salt-alkali tolerance. It was revealed that more

significant QTNs were detected when MTOTC was combined with any of the

above six C-GWAs.

Discussion: Accordingly, the new method increases the choices of the GWAS

methods for ordinal traits and helps to mine the genes for ordinal traits in

resource populations.

KEYWORDS

ordinal trait, genome-wide association study, salt-alkali tolerance, soybean,
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1 Introduction

The hierarchical data (HData), phenotypic data for ordinal

traits, is commonly used to describe many important traits in

crop germplasm resources. This includes count data for

quantitative traits and hierarchical data for resistance traits, such

as the number of main stem nodes (Chang et al., 2018), the number

of branches (Shim et al., 2019), and disease resistance (Megerssa

et al., 2020). Ordinal traits are important in crop breeding and have

a considerable impact on crop yield and quality. Genome-wide

association studies (GWAS) for ordinal traits can further promote

the mining of relevant excellent genes, which plays a key role in

molecular design breeding and gene cloning. Cuevas et al. (2018)

divided the degree of infection of anthracnose-inoculated sorghum

leaves into five levels and identified three loci for anthracnose

resistance in chromosome 5 using the GWAS methods. Chang

et al. (2018) detected three loci significantly associated with “the

number of nodes on the main stem” in 368 soybean cultivars with

62,423 SNPs. Meanwhile, Shim et al. (2019) identified five

quantitative trait nucleotides (QTNs) for soybean branch number

via GWAS and linkage analysis and mined a candidate

gene Glyma.06g210600.

Ordinal traits are discrete traits that are controlled by multiple

genes. However, their phenotypic data is hierarchical and non-

continuous and contains relatively limited information;

accordingly, GWAS for ordinal traits is more complex than that

for continuous quantitative traits. The threshold model represents a

reasonable method for the genetic analysis of ordinal traits, and

most association mapping methods are developed under this

framework (Xu et al., 2005; Osval et al., 2015). Generalized linear

model is based on the threshold model and link phenotypic data

with latent variables through a link function. They are widely used

for genetic analysis of ordinal traits and can deal with non-normal

data (Feng et al., 2013; Song et al., 2016; Wang et al., 2018). The

logistic regression model is another classical way for dealing with

association studies of ordinal traits (Tan et al., 2007; Hoggart et al.,

2008; Wu et al., 2009; Jiang et al., 2021). When sample size is

limited, the application of a set-valued (SV) system model can

improve the statistical power and the accuracy of parameter

estimation (Bi et al., 2015). Bayesian and maximum likelihood

methods are both widely used for parameter estimation in GWAS

(Xu et al., 2005; Hoggart et al., 2008; Wang et al., 2018), while

several studies have also employed non-parametric methods for

association analysis of ordinal traits (Sun et al., 2016; Wang et al.,

2017; He and Kulminski, 2020). However, most of them were either

single-locus or were only suitable for the analysis of binary traits,

and they had very few applications in crop. GWAS for continuous

quantitative traits and single-locus methods are currently the main

methods used for association analysis of ordinal traits; however,

both have low power in QTN detection.

Accordingly, in this study, we proposed a method for

transforming ordinal phenotypes into continuous phenotypes

(MTOTC). First, the hierarchical phenotypic data for ordinal

traits (HData) was transformed into continuous phenotypic data

(CPData). Subsequently, FASTmrMLM (Tamba and Zhang, 2018),

one GWAS method suitable for continuous quantitative traits, was
Frontiers in Plant Science 02
used to perform GWAS for CPData. In Monte Carlo simulation

studies, we validated the feasibility of the new method through the

statistical power, false-positive rate in QTN detection and the

accuracies for the estimates of QTN effects and positions, and

obtained the number of hierarchical levels suitable for MTOTC

+FASTmrMLM. The new method was validated by re-analyzing the

salt-alkali resistance traits in soybean germplasm resource

population of Zhang et al. (2014) and Zhou et al. (2015). This

study provides more choices for association analysis of ordinal traits

and helps to identify excellent genes for important complex traits

in crops.
2 Theory and methods

Here we proposed a method, named MTOTC, to transform the

discrete hierarchical data (HData) of ordinal traits into continuous

phenotypic data. Then, GWAS for continuous quantitative traits

(C-GWAS) are used to analyze the transformed continuous

phenotypic data. The new method was described as below.
2.1 Genetic mapping population

In Monte Carlo simulation studies, 199 Arabidopsis thaliana

lines harboring 10,000 SNPs with a minimum allele frequency >0.1

(Atwell et al., 2010) were selected as the genetic mapping

population. For real data analysis, the population was comprised

of 286 soybean cultivars assessed for salt-alkali tolerance, the

phenotypic data consisted of the main root length index in 2009

and 2010 (Zhang et al., 2014), and the marker data were 54,296

high-quality SNP markers present in Zhou et al. (2015).
2.2 Method for transforming ordinal
phenotypes into continuous phenotypes

To transform ordinal phenotypes into continuous phenotypes,

we proposed the MTOTCmethod. In detail, the Chi-square test and

logistic regression were used to initially select the SNPs that were

significantly related to the trait. Subsequently, these significant

SNPs and ordinal phenotypes were used to construct a multi-

locus model, Bayesian method was used to estimate the SNP

effects, and the effect estimates were used to predict the

continuous phenotypic data (CPData). This is MTOTC. Then, the
FIGURE 1

Technology framework of the MTOTC method in this study.
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predicted CPData is analyzed by C-GWAS methods, such as

FASTmrMLM (Figure 1).

2.2.1 The Chi-square test and logistic regression
The Chi-square test in R 4.0.5 (function “chisq.test”) was used

to scan the SNPs in the whole genome using a single marker method

(P-value ≤0.05). To further improve the quality of the significant

correlated SNPs in the initial screening for reducing interference

and improving detection accuracy, logistic regression was used as a

secondary SNP screening method. Logistic regression was

performed using function “glm” (2 hierarchical levels) and “polr”

(the number of hierarchical levels greater than 2) with a P-value

≤0.05. The aim of this step was to further eliminate SNPs that were

not associated with the traits for simplifying the iterations in the

following multi-locus genetic model.

2.2.2 Multi-locus genetic model
Based on the potentially associated markers identified in the

above-described initial screening, a multi-locus model was

established to transform ordinal phenotypes into continuous

phenotypes. The linear model is expressed as:

y = Wa +oq
i=1Xibi + ϵ (1)

where y represents n� 1 ordinal phenotype vector, with n

representing sample size; W = (w1,  w2,  …,  wc)  represents n� c

matrix of covariates (fixed effects), including a column vector of 1

and population structure, and represents c � 1vector offixed effects,

including intercept; Xiand represent respectively n� 1genotype

vector and effect of the i-th potential associated SNP; q represents

the number of SNPs selected in the initial screening step; ϵ eMVNn

(0,  s 2
e In)  represents n� 1error vector.

The population structureQmatrix used in the linear model was

calculated using Structure software (Pritchard et al., 2000). Based on

the Q matrix, the population is divided into corresponding

subgroups, and the optimal subgroup number K value is

determined according to the corresponding standard, yielding the

final Q matrix. The optimal value of the Arabidopsis population

structure was calculated as K=2, and the optimal value of the salt-

alkali tolerant soybean population structure in the actual study

was K=3.

2.2.3 Parameter estimation
In the second step of the novel method, a multi-locus linear

mixed model for transforming ordinal phenotypes into continuous

phenotypes was established, based on the empirical Bayesian

algorithm (Xu, 2010). And significant loci were screened in

threshold value LOD=3.0.

In model (1), set bi to obey the following prior normal

distribution:

P(bijs 2
i ) = N(0js2

i )

P(s 2
i jt ,  w) ∝ (s 2

i )
−1
2(t+2) � exp −

w
2s 2

i

� �
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The parameters were estimated using empirical Bayes, as

follows, and the Newton–Raphson method.

s 2
i =

E(bT
i bi) + w
t + 3

a = (WTV−1W)−WTV−1y

s 2
e =

1
n
(y −Wa)T y −Wa −oq

i=1XiE(bi)
� �

E(bi) = s 2
i X

T
i V

−1(y −Wa)

Among them,

E(bT
i bi) = E(bT

i )E(bi) + tr½Var(bi)�

Var(bi) = Is 2
i − s 2

i X
T
i V

−1Xis
2
i

(t ,  w) = (0,   0)

V =oq
i=1XiX

T
i s

2
i + Is 2

e

Then, the empirical Bayesian estimates of these SNPs effects

were obtained in the multi-locus model (1) based on the selected

significant SNP markers and ordinal phenotype, and estimates of

these effect were used to predict the phenotype, obtaining the

continuous phenotypic data (CPData) of ordinal trait.
2.3 GWAS with MTOTC method for ordinal
trait

When continuous phenotypic data was obtained by the above

MTOTC method, a C-GWAS method could be used to detect

significant loci. In this work, FASTmrMLM, one C-GWAS method,

was used. So loci significantly associated with ordinal traits were

detected by FASTmrMLM using the obtained continuous

phenotypic data and the potential associated markers identified in

the above-described initial screening. The GWAS method is

henceforth referred to as MTOTC+FASTmrMLM. Moreover, the

effects of five other C-GWAS (FASTmrEMMA, mrMLM, ISIS EM-

BLASSO, pLARmEB, and pKWmEB) methods are also discussed

based on the MTOTCmethod for ordinal trait, in order to verify the

feasibility of MTOTC.
2.4 Monte Carlo simulation datasets for
ordinal trait

We conducted six simulation studies to evaluate the feasibility

of the new method. For each study, the loci 278, 2143, 2054, 3698,

1716, 6178, and 8501, located on chromosomes 1, 2, 2, 2, 1, 4, and 5,

respectively, were selected as the causal loci related to the simulated

trait. There were three types of phenotypic data in the simulation

experiment—original data (OData), which were continuous and
frontiersin.org
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generated by Monte Carlo simulation; HData, which were

generated from the above OData according to specific

distribution proportions (i.e., classification proportion of

phenotype distribution); and CPData, which were generated from

the above HData by MTOTC. Then, FASTmrMLM, one multi-

locus C-GWAS algorithm, was used to conduct GWAS for CPData.
3 Results

3.1 Monte Carlo simulation studies

3.1.1 Threshold value in the initial screening
To determine the most suitable threshold value for the Chi-

square test and logistic regression in the initial screening, four

probability thresholds (0.0001 [i.e., 1/SNP number], 0.01, 0.05, and

0.10) were set for the Chi-square test in the first simulation study,

while three probability thresholds (0.0001 [i.e., 1/SNP number], 0.01,

and 0.05) were set for logistic regression. The Chi-square test can

eliminate a large number of SNPs that are not significantly related to

a given phenotype. However, the simulation study showed that some

SNPs screened in the above Chi-square test (those with a P-value

>0.98 and an unusually large absolute value of effect estimate in

logistic regression) were not truly related to the phenotype and

interfered greatly with subsequent association analysis. Therefore,

to further improve the quality of the screened significantly related

SNPs and detection accuracy, logistic regression was used as a

secondary screening method for SNPs in MTOTC.

In the Chi-square test, the single-locus retention rate decreased

with decreasing P-values (i.e., threshold values) (Figure 2A). For

instance, the single-locus retention rate at loci 278 and 2143 with P-

values of 0.05 and 0.10 was as high as 96.62%~99.68%, which are

very close. When the P-value was 0.01, the single-locus retention

rate began to decrease, and when the P-value was 0.0001, the

retention rate dropped to between 59.06% and 68.45%. Moreover,

the total retention rate (i.e., the proportion of retained loci among

the total loci after chi-square test screening) was the lowest when

the P-value was 0.0001, followed by 0.01, 0.05, and 0.10 (Figure 3A).

In logistic regression after the Chi-square test, the single-locus

retention rate was the highest when the P-value was 0.05
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(Figure 2B). For instance, the retention rates of loci 278 and 2143

were as high as 97.56%~99.68% when the P-value was 0.01 or 0.05;

when the P-value was 0.0001, the retention rate dropped to between

60.51% and 69.88%. Additionally, the total retention rate was the

lowest (only 0.22%) when the P-value was 0.0001, followed by 0.01

and 0.05 (Figure 3B).

Owing to too low single-locus retention rate at the P-values of

0.01 and 0.0001, the two P-values were unsuitable as a threshold for

initial screening. Although the total retention rate was high when

the P-value was 0.10, this P-value retains more loci that are not

associated with the trait, in which it did not contribute to

simplifying the model. Therefore, the probability threshold

P=0.05, which is commonly used in statistics, was selected as the

probability threshold for the Chi-square test and logistic regression

of the initial screening in this study. In addition, we also

investigated the effect of threshold value on the single-locus

retention rate and the total retention rate under different

proportions distribution in binary data and the similar results

were observed.

3.1.2 MTOTC+FASTmrMLM displayed greater
power than other classical mapping methods

In Monte Carlo simulation studies, the GWAS results of

hierarchical data using MTOTC+ FASTmrMLM were compared

with those using two classical mapping methods (Chi-square test

and logistics regression) (Table 1). The results showed that these

methods had greater power at the three loci 278, 2143, and 3698, but

had less power (<10%) at the other four loci. Compared with the

two classical mapping methods, MTOTC+FASTmrMLM had

higher power at the three loci 278, 2143, and 3698, and lower

false-positive rate, when the number of hierarchical levels of HData

was ≤4. The power of the classical methods was higher in a few

instances, it was less than 1.5-fold that of MTOTC+FASTmrMLM,

but their false-positive rates were 6.8–9.5-fold higher than that of

MTOTC+FASTmrMLM. In addition, the results showed that when

the number of hierarchical levels was<5, MTOTC+FASTmrMLM

was more suitable for HData analysis as compared with

FASTmrMLM alone. Moreover , in Table 1 , MTOTC

+FASTmrMLM had a relatively higher F1 score, especially for

binary data (HData with two hierarchical levels). Here the F1
BA

FIGURE 2

The effect of threshold value on the single-locus retention rate after the initial screening. (A) is the single-locus retention rate after chi-square test
screening; (B) is the single-locus retention rate after logistic regression screening.
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score combines the precision and recall, it is used to effectively

measure the accuracy of the statistical methods and balance power

and FPR. Therefore, MTOTC is recommended for the analysis of

HData under four or fewer hierarchical levels.

3.1.3 The effect of the number of hierarchical
levels on the new method

The third simulation study investigated the effect of the number

of hierarchical levels on MTOTC. Based on symmetrical

distribution, the number of hierarchical levels was set to 2, 3, 4,

and 5, respectively, and the number of replicates was 10,000.
Frontiers in Plant Science 05
Meanwhile, we compared the results of OData, HData and

CPData using FASTmrMLM.

Compared with CPData from the other hierarchical levels, the

distribution of CPData2 (i.e., the CPData converted from the HData

of 2 hierarchical levels by MTOTC) was closer to the original data

(OData). First, the frequency distribution of the CPData was closer

to that of the OData when the hierarchical level was low, especially

when it was equal to 2 (Figure 4). As the number of hierarchical

levels increased, the peak of CPData began to shift to the right and

was far from the peak of the OData, which was expected to affect the

GWAS results. The frequency distribution of the OData and the
BA

FIGURE 3

The effect of threshold value on the total retention rate after the initial screening. (A) is the total retention rate in chi-square test; (B) is the total
retention rate in logistic regression.
TABLE 1 Comparison of different genome-wide association study methods.

Hierarchical number Locus Chi-square test logistic regression FASTmrMLM
MTOTC+

FASTmrMLM

2

Power(%)

278 66.20 22.50 41.85 57.38

2143 57.70 19.40 28.62 55.98

3698 18.40 10.10 9.89 22.76

Mean of Power (%) 20.87 7.60 13.84 19.54

FPR (‰) 7.27 0.07 0.44 0.77

F1 score 0.04 0.13 0.16 0.17

3

Power(%)

278 62.00 71.30 53.41 70.87

2143 56.40 57.20 45.76 66.64

3698 20.00 26.90 19.66 36.82

Mean of Power (%) 20.47 23.30 22.06 26.53

FPR (‰) 6.15 4.77 0.45 0.70

F1 score 0.04 0.06 0.24 0.24

4

Power(%)

278 68.40 80.30 65.70 75.98

2143 58.50 65.40 58.71 71.83

3698 20.80 37.30 27.76 45.69

Mean of Power (%) 21.77 27.37 28.29 28.53

FPR (‰) 8.11 5.90 0.45 0.63

F1 score 0.03 0.06 0.29 0.26
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corresponding CPData with different hierarchical levels in the 10th

and 613th replicates, randomly selected out of the 10,000 replicates

using the uniformly distributed random number generator in R, is

shown in Figure 4. Second, the range of the coefficient of variation

(CV) of the OData was between 29.5% and 55.5%. Among the

10,000 replicates, the number of replicates beyond the CV range of

the OData (4.09%, 18.94%, 21.47%, and 25.37% of CPData2,

CPData3, CPData4, and CPData5, respectively) also increased

with increasing hierarchical level. Thus, the CV range of CPData2

was the closest to that of the OData. Third, among the 10,000

replicates, the skewness range between the CPData and the OData

was the closest at 2 hierarchical levels. Among them, the skewness

range of the OData was between −1.00 and 0.46 and the range of

CPData2 was between −1.28 and 0.35. As the number of

hierarchical levels increased, the skewness of the CPData

gradually deviated from that of the OData; the kurtosis showed

the same tendency as the skewness.

MTOTC performed well for the estimates of QTN position

under different numbers of hierarchical levels. The position

estimates via MTOTC+FASTmrMLM (i.e., the position estimates

of the CPData via FASTmrMLM) were unbiased at loci 278, 2143,

and 3698 (Supplementary Table 1). Although the position estimates

at loci 2054 and 8501 in CPData2, and at loci 1716 and 6178 in all

the CPData were biased, the relative mean absolute deviations of

their position estimates were all less than 8.96E-05. The accuracy of

the estimates of QTN positions for ordinal traits was significantly

improved by MTOTC when the number of hierarchical levels was

less than 5, i.e., the estimates of QTN positions for the CPData were

better than those for the HData when FASTmrMLM was used

(Supplementary Table 1).

The effect of MTOTC on the relative power at loci 278, 2143,

and 3698 was the greatest when the number of hierarchical levels is

equal to 2 (Supplementary Figure 1). Here, “the effect of MTOTC
Frontiers in Plant Science 06
on the relative power” refers to the increment of the relative power

of CPData compared to the relative power of HData. The relative

power of the CPData (50%~100%) was significantly higher than

that of the HData (22%~88%) and was relatively closer to the power

of the OData. When the number of the hierarchical levels of the

CPData was less than or equal to 5, the relative power exhibited an

increasing trend with increasing the number of hierarchical levels

and was significantly superior to that of the HData.

The false-positive rates of CPData2, CPData3, CPData4, and

CPData5 via MTOTC+FASTmrMLM were 0.77‰, 0.70‰, 0.63‰,

and 0.55‰, respectively.

3.1.4 The effect of the number of replicates on
the new method

The fourth simulation study assessed the impact of the number

of replicates on the estimates of QTN effects and positions, relative

power, and false-positive rate using MTOTC+FASTmrMLM. Based

on the results of CPData2 (1:1), CPData3 (1:3:1), and CPData5

(1:2:4:2:1), 10 replicates were set at equal intervals from 1,000 to

10,000. As a result, the results across various numbers of replicates

at each locus and for each hierarchical levels (CPData2, CPData3,

and CPData5) were insignificant (Figure 5). This indicated that the

number of replicates did not affect the power, false-positive rate,

and the estimates of QTN effects and positions. Therefore, 1,000

replicates were used in subsequent simulation studies.

3.1.5 The effect of distribution proportion
skewness on the new method

In the fifth simulation study, we investigated the effect of

distribution proportion skewness on the new method under three

hierarchical levels. Here the distribution proportion skewness were

set as symmetrical distribution (distribution proportion, 1:2:1),

uniform distribution (1:1:1), and skewed distribution (4:2:1). The
B C D

E F G H

A

FIGURE 4

The frequency distribution of the OData and the corresponding CPData for different hierarchical levels in the 10th and 613th repetition. (A–D) is the
10th repetition, (E–H) is the 613th repetition. CPData2 transformed from HData of two hierarchical levels by MTOTC; CPData3 transformed from
HData of three hierarchical levels by MTOTC; CPData5 transformed from HData of five hierarchical levels by MTOTC.
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indicators were the relative power, false-positive rate, the estimates

of QTN effects and positions. The skewed distribution had the

lowest relative power at loci 278, 2143, and 3698, followed by the

uniform distribution, and the symmetrical distribution

(Supplementary Figure 2). The MAD and mean squared error

(MSE) of QTN position estimates showed unbiasedness under the

three distribution proportion skewness. The skewed distribution

(7.09‰) was slightly higher false-positive rate than symmetrical

distribution (6.71‰) and uniform distribution (6.82‰). When the

kurtosis values of the three distributions for the CPData and the

OData were compared, it was found that the steepness of the

CPData under 1:2:1 was closer to that of the OData (the kurtosis

values for the OData, 1:2:1 CPData, 1:1:1 CPData, and 4:2:1 CPData

ranged from 2.163–5.415, 1.963–5.412, 1.958–5.196, and 1.980–

3.830, respectively). The CPData under 1:2:1 and 1:1:1 and the

OData were relatively close in terms of skewness (the skewness of

OData, 1:2:1 CPData, 1:1:1 CPData, and 4:2:1 CPData were in the

range of −1.001~0.462, −1.466~0.319, −1.256~0.282, and

−0.812~0.777, respectively). The skewness of the CPData under

4:2:1 and the OData differed markedly. Therefore, the accuracy of

symmetric distribution via MTOTC+FASTmrMLM was higher

than that of uniform distribution and skewed distribution.

3.1.6 The effect of distribution proportion
kurtosis on the new method

Here we studied the effect of distribution proportion kurtosis on

the new method. The proportions were set as 1:2:1, 1:4:1, and 1:5:1.

The association detection results of the 1:2:1 proportion had the
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best, e.g., the relative powers of the 1:2:1 proportion at loci 2143,

278, 3698, and 1716 via MTOTC+FASTmrMLM was better than

those under others distribution proportion (Figure 6A). The MSE

and MAD of effect estimates at locus 278, 2143, and 3698 were

lower at 1:2:1 than at 1:4:1 and 1:5:1; however, the differences were

insignificant (Figures 6B, C), while the trends at the other loci were

unclear. Under the three distribution proportions, the MSE and

MAD of QTN position estimates were all unbiased at loci 278, 2143,

2054, and 3698. However, a lower false-positive rate was observed

with the 1:2:1 distribution proportion (Figure 6D). Moreover, the

steepness of the CPData under distribution proportion 1:2:1 was

closer to that of the OData (the kurtosis values of the OData, 1:2:1

CPData, 1:4:1 CPData, and 1:5:1 CPData were 2.163~5.415,

1.963~5.412, 1.967~7.343, and 1.974~7.920, respectively). The

skewness showed the same tendency as the kurtosis (the skewness

ranges of the OData, 1:2:1 CPData, 1:4:1 CPData, and 1:5:1 CPData

were −1.001~0.462, −1.466~0.319, −1.788~0.142, and

−1.796~0.150, respectively). In summary, the distribution of the

CPData at the 1:2:1 proportion was closer to that of the OData, and

MTOTC worked be t t e r , c ompa red w i th th e o th e r

distribution proportions.

3.1.7 The performance of MTOTC with different
GWAS methods

The HData of ordinal trait were transformed by MTOTC, and

the obtained CPData were found to be suitable for association

analysis via FASTmrMLM when there were five or fewer

hierarchical levels, owing to high power. Meanwhile, similar
B

C D
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FIGURE 5

The impact of repetition number of simulation experiment on the association analysis results of CPData (2143 Locus). (A, B) MSE and MAD of QTN
effect at 2143, respectively; (C) false-positive rates; (D) relative power.
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results were obtained when MTOTC was combined with others

methods in the mrMLM software (Zhang et al., 2020)

(Supplementary Figure 1; Supplementary Table 1). They were also

suitable for GWAS for the CPData of ordinal traits, having the

characteristics of high relative power, low false-positive rates, and

high accuracy of position and effect estimates. Moreover, similar

trends from FASTmrMLM in the simulation experiments with the

number of the hierarchical levels and their distribution proportions

were observed as well (Supplementary Figure 2). MTOTC +

FASTmrMLM had the best performance, followed by mrMLM

(Wang et al., 2016), ISIS EM-BLASSO (Tamba et al., 2017), and

FASTmrEMMA (Wen et al., 2018); and finally by pLARmEB

(Zhang et al., 2017) and pKWmEB (Ren et al., 2018). Therefore,

MTOTC can be integrated with different methods to conduct

GWAS for ordinal traits. Considering the diversity and

complexity of phenotypic data in ordinal traits in practice,

multiple methods might be simultaneously used in a

complementary manner. Accordingly, MTOTC improves the

performance in identifying significant loci for ordinal traits.
3.2 Real data analysis

To validate the new method, the salt-alkali tolerant data in 286

soybean accessions obtained in 2009 and 2010 from Zhang et al. (2014)

was re-analyzed in this study. The experiments were conducted in a

completely randomized Design, and the number of high-quality SNP
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markers in this population was 54,296 (Zhou et al., 2015). First,

MTOTC was applied to obtain the CPData. Then, the index data,

HData5 [hierarchical data generated from the index data by 1:1:1:1:1

(Shao, 1986)], CPData2 (continuous phenotypic data generated from

HData2 by MTOTC), and CPData5 (continuous phenotypic data

generated from HData5 by MTOTC) for salt-alkali tolerance in

soybean were analyzed using the mrMLM, ISIS EM-BLASSO,

pLARmEB, FASTmrEMMA, pKWmEB, and FASTmrMLM methods.

3.2.1 QTNs significantly associated with soybean
salt-alkali tolerance

For the four types of phenotypic data of salt-alkali tolerance, a

greater number of significant QTNs were detected in CPData than

in the index data or HData. Six GWAS methods mapped 65 and 99

QTNs in CPData2 and CPData5 of salt tolerance traits, respectively,

and 134 and 60 QTNs in CPData2 and CPData5 of alkali tolerance

traits, respectively. pLARmEB detected a greater number of QTNs

in CPData (116 for salt tolerance traits and 166 for alkali tolerance

traits) compared with the other five GWAS methods, which may be

related to its relatively higher false-positive rate. Additionally, the

numbers of significant QTNs detected by pKWmEB, mrMLM, and

FASTmrMLM in CPData (44, 25, and 14 for the salt tolerance trait

and 25, 21, and 19 for the alkali-tolerance trait, respectively) were

second only to the number of QTNs detected with pLARmEB.

Four QTNs (locus 9682 on chromosome 2 [Chr2-9682], Chr11-

54042, Chr13-64738, and Chr13-65248) for salt tolerance were

simultaneously detected in the index data and at least one CPData;
frontiersin.o
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FIGURE 6

The effect of phenotype distribution kurtosis on the association detection results of MTOTC+FASTmrMLM. (A, B) MSE and MAD of QTN effect at
2143, respectively; (C) false-positive rates; (D) relative power.
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however, none of them was detected in HData5. For instance, Chr13-

64738 was simultaneously detected in CPData2 by five methods and

in the salt tolerance index data by two methods. Chr13-65248 was

detected in CPData5 by four methods and in both CPData5 and the

index data by FASTmrMLM. Three QTNs (Chr7-34669, Chr13-

67342, and Chr20-105040) for alkali tolerance were simultaneously

detected in the index data and in at least one CPData, two of them

were also detected in HData5.

The results of six GWAS methods for the CPData of salt-alkali

tolerance showed that only a few significant QTNs were coincident

between 2009 and 2010, which can be explained by the differences

in environmental influences between the two years. For salt
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tolerance, no QTNs were found to overlap between 2009 and

2010 in the six methods. For alkali tolerance, only Chr1-5051 and

Chr16-82333 were detected in both years. There was indeed an

environmental (year) effect according to variance analysis of the

phenotypic results for the two years (Zhang et al., 2014).

3.2.2 Candidate genes for salt-alkali tolerance
Potential candidate genes were mined from 100 kb upstream to

100 kb downstream (Liu et al., 2020) of significant QTNs that were

detected in at least two types of data or by two methods (Tables 2

and 3). Functional annotation information in the SoyBase database

(Error! Hyperlink reference not valid. http://www.Soybase.org/)
TABLE 2 Salt stress-related candidate genes from six genome-wide association study methods.

Candidate
genes

QTN
positions

Methods Functional annotation
Arabidopsis
homologous

Glyma02g38320 43804331 mrMLM1**, pLARmEB3** transmembrane transport AT5G22900

Glyma02g38350 43804331 mrMLM1**, pLARmEB3** Pentatricopeptide repeat (PPR
-like) superfamily protein

AT5G37570

Glyma02g38370 43804331 mrMLM1**, pLARmEB3** zinc ion binding AT2G40770

Glyma02g38380 43804331 mrMLM1**, pLARmEB3** catalytic activity AT5G05200

Glyma02g38395 43804331 mrMLM1**, pLARmEB3** respiratory burst involved in
defense response

AT5G05190

Glyma04g13670 13441084 FASTmrEMMA3**, mrMLM3**, pLARmEB3** oxidoreductase activity AT4G25240

Glyma05g25331 # 31519270 FASTmrEMMA3*, ISIS EM-BLASSO3*, mrMLM3*, pKWmEB3*,
pLARmEB3*

WRKY DNA-binding domain AT2G34830

Glyma05g25420 # 31519270 FASTmrEMMA3*, ISIS EM-BLASSO3*, mrMLM3*, pKWmEB3*,
pLARmEB3*

zinc ion binding AT5G37930

Glyma05g25450 # 31519270 FASTmrEMMA3*, ISIS EM-BLASSO3*, mrMLM3*, pKWmEB3*,
pLARmEB3*

catalytic activity AT5G44440

Glyma05g25460 # 31519270 FASTmrEMMA3*, ISIS EM-BLASSO3*, mrMLM3*, pKWmEB3*,
pLARmEB3*

catalytic activity AT2G34790

Glyma08g13260 9687628 FASTmrEMMA3**, FASTmrMLM3**, ISIS EM-BLASSO3**,
mrMLM3**, pKWmEB3**, pLARmEB3**

Serine/threonine protein kinase AT3G16030

Glyma10g40400 # 47864560 FASTmrMLM2*, ISIS EM-BLASSO2*, mrMLM2*, pKWmEB2*,
pLARmEB2*

zinc ion binding AT5G67450

Glyma10g40510 # 47864560 FASTmrMLM2*, ISIS EM-BLASSO2*, mrMLM2*, pKWmEB2*,
pLARmEB2*

zinc ion binding AT4G15090

Glyma10g40520 # 47864560 FASTmrMLM2*, ISIS EM-BLASSO2*, mrMLM2*, pKWmEB2*,
pLARmEB2*

oxidoreductase activity AT4G33910

Glyma11g14030 # 10094063 mrMLM1**, pKWmEB1**, pLARmEB3** protein serine/threonine kinase
activity

AT3G20830

Glyma11g14040 # 10094063 mrMLM1**, pKWmEB1**, pLARmEB3** sequence-specific DNA binding
transcription factor activity

AT1G51190

Glyma11g14050 # 10094063 mrMLM1**, pKWmEB1**, pLARmEB3** zinc ion binding AT1G51200

Glyma11g14081 # 10094063 mrMLM1**, pKWmEB1**, pLARmEB3** catalytic activity AT3G18080

Glyma11g14090 # 10094063 mrMLM1**, pKWmEB1**, pLARmEB3** transmembrane transport AT3G20870

Glyma11g14100 # 10094063 mrMLM1**, pKWmEB1**, pLARmEB3** zinc ion binding AT1G51220

Glyma11g14110 # 10094063 mrMLM1**, pKWmEB1**, pLARmEB4** Zinc finger, C3HC4 type (RING
finger)

AT3G63530

(Continued)
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was also used to screen candidate genes. A total of 34 potentially

candidate genes for salt tolerance and 25 potentially candidate genes

for alkali tolerance were mined.

For salt tolerance, 19 candidate genes were detected

simultaneously in the index data and CPData5. Among them,

Glyma05g25331 , Glyma05g25420 , Glyma05g25450 , and

Glyma05g25460 were all detected by five GWAS methods in

CPData5 in 2009. Only one gene, Glyma13g25266, was detected

in both the index data and CPData2 detected by five GWAS

methods in CPData2 and two methods in the index data in 2010.

In addition, five candidate genes were detected only in CPData2 by

five methods, and nine candidate genes were detected only in

CPData5 by three or more methods. No overlapping genes were

found between HData5 and the index data or the CPData (Table 2).

For alkali tolerance, 7 candidate genes for alkali stress were

concurrently detected in the index data and CPData5. For instance,

Glyma07g20380 was simultaneously detected by 2, 1, and 6 GWAS

methods in the index data, HData5, and CPData5 in 2010,

respectively (Table 3). Two candidate genes were detected in the

index data and CPData2. Ten candidate genes were simultaneously

detected in CPData2 and CPData5. Glyma10g02920 was detected by

one GWAS method in CPData2 and five GWAS methods in
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CPData5 in 2009. Glyma07g20380 was detected by all six

association analysis methods in CPData5 in 2010.

3.2.3 QTN based haplotype and phenotypic
difference analysis

Based on the above 34 salt stress-related candidate genes and 25

alkali stress-related candidate genes, Haploview software was used

to perform haplotype block analysis. And the phenotypic

differences across haplotypes were examined using the t-test in

SAS9.4. Four stable QTNs for salt tolerance and six stable QTNs for

alkali resistance were screened to form haplotype blocks based on

linkage disequilibrium (Supplementary Figures 3 and 4).

In haplotype block with the significant QTNs Chr13-64738 for

salt tolerance, t-test showed significant phenotypic differences

between haplotypes ACAT and AATT (P=0.0341 in 2009 and

P=0.0083 in 2010), between haplotypes TCAT and AATT

(P=0.0091) in 2010, and between haplotypes TCAT and TCTT

(P=0.0471) in 2010. However, for haplotype blocks of other salt

tolerance QTNs, it was showed that the significant phenotypic

differences existed between haplotypes only in a single year, and

the haplotype pairs with significant differences included haplotype

AGTGC and TACCC (P=0.0348), AGTGC and TGTCA (P=0.0345)
TABLE 2 Continued

Candidate
genes

QTN
positions

Methods Functional annotation
Arabidopsis
homologous

Glyma12g03490 2356018 FASTmrEMMA3*, FASTmrMLM3*, ISIS EM-BLASSO3*,
mrMLM3*, pKWmEB3*, pLARmEB3*

transmembrane transporter AT2G21050

Glyma12g03570 2356018 FASTmrEMMA3*, FASTmrMLM3*, ISIS EM-BLASSO3*,
mrMLM3*, pKWmEB3*, pLARmEB3*

catalytic activity AT4G34980

Glyma12g03580 2356018 FASTmrEMMA3*, FASTmrMLM3*, ISIS EM-BLASSO3*,
mrMLM3*, pKWmEB3*, pLARmEB3*

transmembrane transporter AT5G09220

Glyma13g25266 # 28469311 FASTmrEMMA2**, FASTmrMLM1,2**, ISIS EM-BLASSO2**,
pKWmEB2**, pLARmEB1,2**

hyperosmotic salinity response AT1G61120

Glyma13g27630 # 30845044 FASTmrEMMA3**, FASTmrMLM1,3**, mrMLM3**, pKWmEB3** protein serine/threonine kinase
activity

AT3G20530

Glyma13g27680 # 30845044 FASTmrEMMA3**, FASTmrMLM1,3**, mrMLM3**, pKWmEB3** transmembrane transport AT1G61800

Glyma13g27691 # 30845044 FASTmrEMMA3**, FASTmrMLM1,3**, mrMLM3**, pKWmEB3** zinc ion binding AT4G14220

Glyma13g27701 # 30845044 FASTmrEMMA3**, FASTmrMLM1,3**, mrMLM3**, pKWmEB3** response to oxidative stress AT3G06050

Glyma13g27710 # 30845044 FASTmrEMMA3**, FASTmrMLM1,3**, mrMLM3**, pKWmEB3** response to oxidative stress AT3G06050

Glyma13g27740 # 30845044 FASTmrEMMA3**, FASTmrMLM1,3**, mrMLM3**, pKWmEB3** oxidoreductase activity AT3G06060

Glyma13g27770 # 30845044 FASTmrEMMA3**, FASTmrMLM1,3**, mrMLM3**, pKWmEB3** sequence-specific DNA binding
transcription factor activity

AT1G54830

Glyma15g42440 49869431 FASTmrEMMA2*, mrMLM2*, ISIS EM-BLASSO2*, pKWmEB2*,
pLARmEB2*

Myb-like DNA-binding domain AT2G44430

Glyma15g42460 49869431 FASTmrEMMA2*, mrMLM2*, ISIS EM-BLASSO2*, pKWmEB2*,
pLARmEB2*

Serine/threonine protein kinase AT2G32850
1: index data; 2: continuous phenotypic data (CPData2) generated from HData2 by MTOTC; 3: continuous phenotypic data (CPData5) generated from HData5 by MTOTC; *: 2009; **: 2010, #:
candidate genes were further screened by haplotype block analysis.
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for Chr5-24153; haplotype GCG and ATA (P=0.0408) for Chr10-

52140; haplotypes GTAGA and GTAGT (P=0.0397), GTAGT and

AAGTT (P=0.0540) for Chr11-54042.

There were two significant QTNs Chr16-82333 and Chr3-14262

for alkali tolerance with significant phenotypic differences across

haplotypes in both years. The Chr16-82333 recorded significant
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differences between haplotypes CTGACG and CCGGAG (P=0.0158

in 2009, P=0.0614 in 2010), between haplotypes CTGACG and

CCGGAG (P=0.0005 in 2009), between haplotypes CTGACG and

CCGAAG (P=0.0231 in 2009), between haplotypes TCGAAG and

CCGAAG (P=0.0619 in 2009, P=0.0261 in 2010), and between

haplotypes CCAAAG and CCGGAG (P=0.0296 in 2010). For Chr3-
TABLE 3 Alkali stress-related candidate genes from six genome-wide association study methods.

Candidate
genes

QTN
positions

Methods Functional annotation
Arabidopsis
homologous

Glyma01g41510 # 53035914 pLARmEB2,3* Protein serine/threonine kinase
activity

AT5G60900

Glyma01g41520 # 53035914 pLARmEB2,3* sequence-specific DNA binding
transcription factor activity

AT4G17500

Glyma01g41527 # 53035914 pLARmEB2,3* sequence-specific DNA binding
transcription factor activity

AT5G47230

Glyma01g41560 # 53035914 pLARmEB2,3* zinc ion binding AT5G53110

Glyma01g41581 # 53035914 pLARmEB2,3* sequence-specific DNA binding
transcription factor activity

AT5G47370

Glyma01g41610 # 53035914 pLARmEB2,3* sequence-specific DNA binding
transcription factor activity

AT3G13540

Glyma03g28210 # 36121029 FASTmrEMMA2**, pLARmEB2** F-box family protein AT2G32560

Glyma03g28222 # 36121029 FASTmrEMMA2**, pLARmEB2** F-box family protein AT2G26850

Glyma03g28234 # 36121029 FASTmrEMMA2**, pLARmEB2** F-box family protein AT2G32560

Glyma03g28247 # 36121029 FASTmrEMMA2**, pLARmEB2** F-box family protein AT2G26850

Glyma07g20380 # 20580766 FASTmrEMMA3**, FASTmrMLM1,3**, ISIS EM-BLASSO3**,
mrMLM3**, pKWmEB3**, pLARmEB1,3**

Pentatricopeptide repeat (PPR)
superfamily protein

AT3G48810

Glyma13g44560 # 43999096 FASTmrMLM1*, pLARmEB1,3*, pKWmEB3* transmembrane transport AT3G19640

Glyma13g44570 # 43999096 FASTmrMLM1*, pLARmEB1,3*, pKWmEB3* sequence-specific DNA binding
transcription factor activity

AT4G37850

Glyma13g44582 # 43999096 FASTmrMLM1*, pLARmEB1,3*, pKWmEB3* sequence-specific DNA binding
transcription factor activity

AT2G22760

Glyma13g44594 # 43999096 FASTmrMLM1*, pLARmEB1,3*, pKWmEB3* sequence-specific DNA binding
transcription factor activity

AT4G37850

Glyma13g44640 # 43999096 FASTmrMLM1*, pLARmEB1,3*, pKWmEB3* Serine/threonine-protein kinase
PBS1

AT1G80640

Glyma13g44660 # 43999096 FASTmrMLM1*, pLARmEB1,3*, pKWmEB3* sequence-specific DNA binding
transcription factor activity

AT5G25190

Glyma16g25280 # 29252235 pLARmEB2,3* sequence-specific DNA binding
transcription factor activity

AT2G18350

Glyma16g25310 # 29252235 pLARmEB2,3* transmembrane transport AT1G75220

Glyma16g25320 # 29252235 pLARmEB2,3* transmembrane transport AT1G75220

Glyma19g39270 46014852 FASTmrMLM1*, pKWmEB1*, pLARmEB1* response to oxidative stress AT4G11290

Glyma19g39320 46014852 FASTmrMLM1*, pKWmEB1*, pLARmEB1* oxidoreductase activity AT4G03140

Glyma19g39340 46014852 FASTmrMLM1*, pKWmEB1*, pLARmEB1* Regulation of transcription AT5G62000

Glyma20g31790 # 40400845 pLARmEB1,2* zinc ion binding AT3G52300

Glyma20g31800 # 40400845 pLARmEB1,2* transmembrane transport AT2G35800
1: index data; 2: continuous phenotypic data (CPData2) generated from HData2 by MTOTC; 3: continuous phenotypic data (CPData5) generated from HData5 by MTOTC; *: 2009; **: 2010, #:
candidate genes were further screened by haplotype block analysis.
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14262, the haplotype pairs with significant differences were detected

as follows: TTT and TCT (P=0.0217 in 2009, P=0.0085 in 2010),

TTT and GCT (P=0.0102 in 2010), GCT and TCT (P=0.0171). The

other haplotype blocks of alkali tolerance showed significant

phenotypic differences between haplotypes only in a single year

and they include: GTGT and TTAT (P<0.0001), TTGT and TTAC

(P=0.0038), TTAT and TAGT (P=0.0132) for Chr13-67342; CAG

and TGT (P=0.0183) for Chr1-5051; ATCG and GATC (P=0.0009)

for Chr7-34669; TAGGCG and AATGCA (P=0.0157), and

TAGGCG and TATGCG (P=0.0128) for Chr20-105040.

Genes with significant phenotypic differences across haplotypes

were considered as the candidate genes (Tables 2 and 3), including

22 salt stress-related candidate genes and 22 alkali stress-related

candidate genes. Among them, six salt stress-related candidate

genes (Glyma05g25420 , Glyma11g14030, Glyma11g14040 ,

Glyma11g14050, Glyma13g27691, Glyma13g27701) and six alkali

stress-related candidate genes (Glyma03g28222, Glyma03g28234,

G l yma0 3 g 2 8 2 4 7 , G l yma16 g 2 5 3 2 0 , G l yma20 g 3 1 7 9 0 ,

Glyma20g31800) were found in the haplotype block.
4 Discussion

In this study, we established a method for transforming ordinal

phenotypes into continuous phenotypes (MTOTC) based on

hierarchical data for ordinal trait phenotypes and molecular

marker data in resource populations. Therefore, the process of

association analysis for ordinal traits is as follows: first, MTOTC is

used to transform HData into continuous phenotypic data

(CPData), and then a C-GWAS method (i.e. GWAS method for

continuous quantitative traits) is selected to analyze the CPData to

identify the QTNs that are significantly associated with

ordinal traits.

In this study, simulation experiments and soybean saline-alkali

tolerance analysis indicated that the new method, MTOTC, is

suitable for ordinal traits when they are less than five hierarchical

levels. Moreover, the combination of MTOTC with any one of the

proposed C-GWAs methods exhibited high power, low false-

positive rates, and low bias in estimating the positions and effects

of the QTN. The purpose of MTOTC is to provide a different

approach for undertaking GWAS for ordinal traits. The feasibility

of the MTOTC method was verified in real data analysis of soybean

salt-alkaline tolerance using 286 soybean accessions. Compared

with HData5 (i.e., the data classified as five hierarchical levels), a

greater number of significant QTNs was detected concurrently by at

least two GWASmethods or in two years, and more candidate genes

for salt and alkali stress were screened in the CPData for salt and

alkali tolerance traits. A greater number of QTNs was detected

simultaneously by multiple GWAS methods in the CPData than in

the index data and HData for salt-alkaline tolerance. For the three

types of data, the number of QTNs detected simultaneously was

respectively 4, 1, and 1 in salt tolerance and respectively 5, 2, and 3

in alkali resistance.When the phenotype distribution of the CPData

generated by the new method were closer to those from the index
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data of salt-alkali tolerance, the GWAS results were better, and a

greater number of candidate genes could be mined. This may be

beneficial for selecting the appropriate distribution proportion to

obtain hierarchical data of ordinal trait, screening stable QTNs, and

promoting the development of molecular breeding. We also applied

symmetric distribution (1:2:4:2:1) to generate HData5 for the salt

tolerance index data and used MTOTC to generate the

corresponding CPData5. The phenotype distribution of CPData5

with symmetric 1:2:4:2:1 exhibited a large deviation from that of the

index data, and the phenotype distribution of CPData5 with

uniform 1:1:1:1:1 was closer to that of the index data. Under the

six methods, there were no overlapping QTNs in CPData5 and the

index data for salt tolerance, which was far inferior to the above

uniform distribution observed with the distribution proportion

1:1:1:1:1, under which three coincident QTNs were detected in

CPData5 and the index data. This result corresponded precisely to

the results presented in simulation study 5.

MTOTC performed well in the initial SNP screening. After

preliminary screening under a P ≤ 0.05 threshold, a large number of

SNPs that were significantly unrelated to the trait could be

eliminated. Meanwhile, the simulation experiment showed that

the retention rates of related loci remained high. MTOTC serves

to simplify the model and save a substantial amount of computing

time for subsequent association studies.

MTOTC helps to improve association analyses of ordinal traits.

Regarding coefficient of variation, skewness, kurtosis, and frequency

distribution, compared with the HData, the results obtained for the

CPData were closer to those of the OData. Meanwhile, the results

using six GWAS methods showed that the statistical power, the

false-positive rate, and the position estimates in CPData were better

than those in HData. Moreover, MTOTC performed better when

the frequency distribution of the CPData was close to that of

the OData.

The fewer hierarchical levels, the more suitable MTOTC is.

Regarding the relative power in CPData under different hierarchical

levels, a trend of increasing relative power with increasing number

of hierarchical levels was found for all six methods when there were

four or less hierarchical levels. When there were five hierarchical

levels, the power of MTOTC+FASTmrMLM was close to that of

FASTmrMLM in HData, but slightly lower than the power from

logistic regression; only three GWAS methods had higher relative

power in CPData than in HData. In addition, MTOTC had a

tendency to increase variation, especially with increasing numbers

of hierarchical levels. This indicates that MTOTC is more suitable

for ordinal traits with fewer hierarchical levels, especially those with

two or three levels . Among the six GWAS methods,

FASTmrEMMA, FASTmrMLM, and mrMLM are significantly

better when combined with MTOTC. This is partly attributed to

that the distribution and parameter estimation principles set in

MTOTC were relatively consistent with those in these three

GWAS models.

This study will contribute to further research in association

analysis of ordinal traits. This is especially in improving the

retention rate of small-effect loci in preliminary screening,
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reducing the impact on variability when transforming ordinal

phenotypes into continuous phenotypes, and developing novel

methods for association analyses of ordinal traits.
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