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Estimating yield-contributing
physiological parameters of
cotton using UAV-based imagery

Amrit Pokhrel1*, Simerjeet Virk1, John L. Snider1,
George Vellidis1, Lavesta C. Hand1, Henry Y. Sintim1,
Ved Parkash1, Devendra P. Chalise1, Joshua M. Lee1

and Coleman Byers2

1Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States, 2College of
Engineering, University of Georgia, Athens, GA, United States
Lint yield in cotton is governed by light intercepted by the canopy (IPAR),

radiation use efficiency (RUE), and harvest index (HI). However, the

conventional methods of measuring these yield-governing physiological

parameters are labor-intensive, time-consuming and requires destructive

sampling. This study aimed to explore the use of low-cost and high-resolution

UAV-based RGB and multispectral imagery 1) to estimate fraction of IPAR (IPARf),

RUE, and biomass throughout the season, 2) to estimate lint yield using the

cotton fiber index (CFI), and 3) to determine the potential use of biomass and lint

yield models for estimating cotton HI. An experiment was conducted during the

2021 and 2022 growing seasons in Tifton, Georgia, USA in randomized complete

block design with five different nitrogen treatments. Different nitrogen

treatments were applied to generate substantial variability in canopy

development and yield. UAV imagery was collected bi-weekly along with light

interception and biomass measurements throughout the season, and 20

different vegetation indices (VIs) were computed from the imagery.

Generalized linear regression was performed to develop models using VIs and

growing degree days (GDDs). The IPARf models had R2 values ranging from 0.66

to 0.90, and models based on RVI and RECI explained the highest variation (93%)

in IPARf during cross-validation. Similarly, cotton above-ground biomass was

best estimated by models fromMSAVI and OSAVI. Estimation of RUE using actual

biomass measurement and RVI-based IPARf model was able to explain 84% of

variation in RUE. CFI from UAV-based RGB imagery had strong relationship (R2 =

0.69) with machine harvested lint yield. The estimated HI from CFI-based lint

yield and MSAVI-based biomass models was able to explain 40 to 49% of

variation in measured HI for the 2022 growing season. The models developed

to estimate the yield-contributing physiological parameters in cotton showed

low to strong performance, with IPARf and above-ground biomass having

greater prediction accuracy. Future studies on accurate estimation of lint yield

is suggested for precise cotton HI prediction. This study is the first attempt of its

kind and the results can be used to expand and improve research on predicting

functional yield drivers of cotton.

KEYWORDS

fraction of intercepted photosynthetically active radiation, radiation use efficiency,
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1 Introduction

Cotton (Gossypium sp.) is one of the most important crops to

the global textile and clothing industry (Sui et al., 2017; Lu, 2022).

Cotton production supports the trillion dollar fashion industry,

attracts revenues for countries, and provides employment

opportunities to millions of people (Voora et al., 2020). The

United Sates is a prime producer as well as exporter of this

natural fiber, producing around 3 MT of cotton ($6 billion worth

of value) and providing around 30% of global exports (USDA, 2022;

USDA, 2023). Because of its significance, the majority of breeding

and crop management efforts in the United States and Australia

have been focused on lint yield improvements and yield stability

(Conaty and Constable, 2020; Snider et al., 2021b). Physiologically,

yield is a function of the cumulative amount of photosynthetically

active radiation intercepted by the canopy during the growing

season (IPAR), the efficiency with which a crop converts

intercepted radiation into biomass (RUE), and the fraction of

total biomass allocated to the economically important part of the

crop, or harvest index (HI) (Monteith, 1972). Thus, yield

improvements or declines resulting from breeding or

management efforts can be attributed to alterations in any or all

of the aforementioned traits. Nitrogen is one of the most important

yield-governing factors that influences cotton growth and

development. For example, nitrogen deficiency decreases leaf area

expansion and canopy development (Wullschleger and Oosterhuis,

1990), which could reduce IPAR (Wajid et al., 2010). Reductions in

single-leaf and whole-canopy photosynthetic rates commonly occur

under nitrogen deficiency (Bondada and Oosterhuis, 2001; Snider

et al., 2021a; Parkash et al., 2023), and previous reports have

documented positive associations between N application rates and

whole-canopy RUE (Bange and Milroy, 2000). Due to a reduction in

the ability of the canopy to support fruit development under N

deficiency or due to excessive vegetative growth and low fruit

retention under N excess, yield can be significantly reduced

(Gerik et al., 1994). As a result, it is important to understand the

response of underlying physiological parameters (IPAR, RUE, and

HI) to yield-altering N application rates. Traditionally in small-plot

research, IPAR is calculated by measuring above and below canopy

light intensity, RUE estimation requires above ground dry weight

samples, and HI measurement needs hand harvested samples of

cotton. However, these traditional methods of measuring the

physiological parameters are both time and labor intensive, and

require destructive sampling of plants (Ermanis et al., 2020).

Due to most physiological measurements being laborious and

time-consuming, remote sensing has the potential of becoming a

rapid and efficient non-destructive method for characterizing crop

and vegetation bio-physical properties (Wiegand et al., 1991;

Kumar et al., 2002). Over the years, remote sensing platforms

have evolved from low-resolution orbital satellites in the 1970s to

advanced unmanned aerial vehicles (UAVs) in recent years. In

comparison to satellites, UAVs provide many improved features

such as stability, reliability, autonomy, affordability, flights at lower

altitudes, optimum data quality, high spatial and temporal

resolution (Sankaran et al., 2015; Barbedo, 2019). While UAVs

also have some limitations such as short battery life, technical
Frontiers in Plant Science 02
knowledge, and limited airspace authorization (Jafarbiglu and

Pourreza, 2022) they still provide an opportunity for rapid,

reliable, and non-destructive measurement of crop biophysical

characteristics. Furthermore, the availability of reliable and high

spectral resolution sensors, such as Red Green Blue (RGB) (Bendig

et al., 2015), multispectral (mainly red, blue, green, red-edge, and

near-infrared spectral bands) (Deng et al., 2018), hyperspectral (a

wide range of spectral bands) (Zhang et al., 2018), thermal

(Gonzalez-Dugo et al., 2013), and depth (LiDAR) (Sun et al.,

2018) have greatly expanded the capabilities of UAVs in

agriculture. Low-cost sensors such as RGB and multispectral

sensors on small, light-weight UAVs are commonly used by

agricultural researchers because of their dependability,

affordability, and ease of image processing and analysis (Jafarbiglu

and Pourreza, 2022). RGB imagery has primarily been used for

extracting soil or crop characteristics of interest (Huang et al., 2016;

Li et al., 2019), and estimating crop heights (Bendig et al., 2015). By

comparison, multispectral imagery incorporates red-edge (670-760

nm) and near-infrared (760-900 nm) wavebands that are

inaccessible when using traditional RGB imagery (Ashapure et al.,

2019). As a result, multispectral imagery has been widely used to

generate vegetation indices (VIs) in many crops, which are used to

estimate canopy cover (Xu et al., 2019), biomass (Yue et al., 2019;

Wang et al., 2021), leaf area index (Boegh et al., 2002; Gutierrez

et al., 2012), chlorophyll content (Raper and Varco, 2014),

evapotranspiration (Hunsaker et al., 2003), nutrient status (Zhao

et al., 2005; Ballester et al., 2017), and yield (Zhao et al., 2007b;

Vatter et al., 2021).

Currently, limited studies have attempted to correlate VIs

derived from UAV-based multispectral imagery to IPAR in

cotton. However, VIs derived from satellite imagery, ground

spectro-radiometers, and hyperspectral sensors have been shown

as a suitable proxy for the fraction of incident PAR (IPARf)

intercepted by the canopy. For example, multiple studies have

reported the Normalized Difference Vegetation Index (NDVI) to

be a good predictor of IPARf for cotton (Prasad et al., 2021), garlic

(Campoy et al., 2019), wheat (Tan et al., 2018; Pellegrini et al., 2020;

Lv et al., 2021), corn (Tan et al., 2013), and soybean (Hatfield and

Prueger, 2010). Furthermore, IPARf is highly dependent on crop

canopy structure and architectural traits like leaf area index (LAI),

and several studies have shown that the Ratio Vegetation Index

(RVI), Green Normalized Difference Vegetation Index (GNDVI),

Enhanced Vegetation Index (EVI) and NDVI can be used to predict

cotton LAI (Zhao et al., 2007a; Gutierrez et al., 2012; Chen, 2019)

with a moderate to high accuracy (R2 = 0.70 to 0.93).

Reports on the relationship between multispectral VIs and RUE

are also limited in cotton. Most studies on RUE estimation for leaf

and canopy have used Photochemical Reflectance Index (PRI) and

Sun-Induced Fluorescence (SIF) estimates, obtained from narrow-

band hyperspectral reflectance data and fine resolution

spectrometers, respectively (Garbulsky et al., 2011; Zhang et al.,

2016; Zhang et al., 2018; Merrick et al., 2020; Fu et al., 2022). PRI

uses reflectance data obtained from 531 and 570 nm wavelengths

that measures changes in xanthophyll cycle and pigment ratios

(chlorophyll/carotenoid), (Hilker et al., 2008; Garbulsky et al., 2011;

Zhang et al., 2016), while SIF estimates the fluorescence emission in
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the far-red region (650-850 nm) from excited chlorophyll (Zhang

et al., 2018; Merrick et al., 2020; Porcar-Castell et al., 2021), both of

them ultimately relating to photosynthetic efficiency and RUE at

leaf and canopy levels. For example, recent studies have used PRI or

SIF or both to estimate RUE in crops like corn (Cheng et al., 2013)

and wheat at the canopy level (Robles-zazueta et al., 2021), and

cotton at the leaf level under water stress conditions (Zhang et al.,

2018). However, obtaining SIF and hyperspectral VIs remains a

challenge due to its high cost instruments, sensitivity to noise, and

complex analytical procedures (Hilker et al., 2008; Porcar-Castell

et al., 2021). Because chlorophyll content per unit leaf area can

influence the quantum efficiency of primary photochemistry

(Porcar-Castell et al., 2021), it is possible that multispectral VIs

related to chlorophyll content are predictive of canopy-level RUE in

cotton. Few studies have investigated the potential of multispectral

VIs to estimate chlorophyll content, where Red-edge Chlorophyll

Index (RECI) and Simplified Canopy Chlorophyll Content Index

(SCCCI) are shown to be related to chlorophyll content in cotton

and other crops (Raper and Varco, 2014; Ballester et al., 2017;

Barbedo, 2019; Wang et al., 2021). Furthermore, previous research

has shown that certain multispectral VIs, including NDVI, RVI,

NIR, Normalized Difference Red-edge Index (NDRE), Modified Soil

Adjusted Vegetation Index (MSAVI), Wide Dynamic Range

Vegetation Index (WDRVI) can be used to estimate cotton

biomass (Zhao et al., 2007a; Hatfield and Prueger, 2010; Gutierrez

et al., 2012; Brandão et al., 2015; Chen and Wang, 2020). Because

biomass is the product of IPAR (IPARf × PAR) and RUE (Conaty

and Constable, 2020), the estimation of IPARf and biomass using

multispectral VIs could potentially be used to derive RUE.

While the studies mentioned above have linked multispectral

VIs to cotton LAI, biomass, and chlorophyll content, most of these

relationships have been developed for a specific point in time or at a

specific growth stage in these studies. As a result, the previously

developed relationships are only predictive of these characteristics

when measured at that specific time or growth stage. Reports have

indicated that the relationship between VIs and crop growth

characteristics such as LAI and biomass change with the

phenological stage of the crop (Pinter et al., 2003; Gutierrez et al.,

2012; Li Z. et al., 2022). A recent study from Li Z. et al. (2022)

demonstrated significant improvements (R2 = 0.83) in estimating

the above-ground biomass of wheat throughout the season using

multispectral VIs when used in conjunction with a well-established

crop staging system such as growing degree days (GDD) or heat

units. For cotton, crop growth and development are strongly tied to

GDD accumulation (Ritchie et al., 2004; Sharma et al., 2021).

Consequently, integrating GDD into VI-based functions can also

be potentially used for predicting canopy-specific, yield-driving

traits for cotton at any time during the season.

As crop biomass and yield can be predicted from aerial imagery

(Gutierrez et al., 2012; Huang et al., 2016), it is likely that HI can be

predicted from VIs used to derive these two traits. However, the

authors are not aware of studies that have used multispectral

imagery to capture in-field variation in HI for field-grown cotton.

As discussed earlier, multiple VIs derived from multispectral

imagery have shown a strong relationship with cotton biomass.

Similarly, several studies have also suggested that multispectral
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imagery-based VIs such as NDVI, SCCI, NDRE and RVI as well

as the individual reflectance bands including red and red-edge

collected during the growing season have the potential to explain

variation in lint yield (Yang et al., 2001; Zarco-Tejada et al., 2005;

Zhao et al., 2007b; Gutierrez et al., 2012; Huang et al., 2013; Ballester

et al., 2017). However, results from these studies indicate some

discrepancies in the appropriate growth stage at which these VIs are

effective, with few studies suggesting the relationship was better at

the early flowering stage and others at the peak bloom stage. Huang

et al. (2016) developed an alternate method to estimate cotton lint

yield (R2 = 0.83) after defoliation and before harvesting, based on

the detection of white cotton pixels in an aerial RGB imagery. Feng

et al. (2020) later named this ratio as Cotton Fiber Index (CFI) and

showed a similar performance of CFI (R2 = 0.90) in estimating

cotton lint yield. CFI is the ratio of the number of white pixels

(cotton bolls) to the total number of pixels in a given area and can

be obtained from UAV-based RGB imagery following some image

enhancement procedures.

Based on the available literature on the use of VIs to predict

crop biophysical characteristics, VIs derived from UAV-based aerial

imagery can potentially be utilized to predict yield-governing

physiological parameters in field-grown cotton. However, studies

predicting IPARf, RUE, and HI for field-grown cotton using UAV-

based RGB and/or multispectral imagery have not been published.

Thus, the main objectives of our study were to: 1) develop and

validate models to estimate IPARf, RUE, and biomass of cotton

throughout the season using VIs derived from UAV-based

multispectral imagery and GDDs; 2) estimate cotton lint yield

using cotton fiber index (CFI) extracted from UAV-based RGB

imagery; and 3) investigate the potential of using biomass and lint

yield estimates obtained from UAV-based RGB and multispectral

imagery, respectively, to estimate cotton HI.
2 Materials and methods

2.1 Study site details and
experimental design

The study was conducted at the Lang-Rigdon Farm (Figure 1) of

the University of Georgia Tifton Campus in Tifton, Georgia, USA

(31° 52’ N, 83° 55’ W) where the predominant soil type is classified

as Tifton loamy sand (fine-loamy, kaolinite, plinthic kandiudults)

(Soil Survey Staff, Natural Resources Conservation Service and

United States Department of Agriculture, no date). During the

2021 and 2022 growing seasons, a field experiment was arranged in

a randomized complete block design with five replications using a

cotton cultivar DP 1646 B2XF and five nitrogen application rates of

0, 44, 89, 135, and 179 kg N ha-1. DP 1646 B2XF was the most

widely grown cotton cultivar in the southeastern US during the time

of this experiment (USDA Agricultural Marketing Service, 2020),

and the five nitrogen application rates were implemented to create

variability in crop growth and yield. N was applied as granular urea

(46-0-0): 25% at planting and 75% at the initiation of floral bud

development (squaring stage). All other agronomic management

practices, except N application, were conducted based on the
frontiersin.org
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recommendations outlined in the University of Georgia Cotton

Production Guide (Hand et al., 2022). The cotton crop was sown on

June 1, 2021 and April 26, 2022, and machine harvested on October

25, 2021 and September 22, 2022. The weather data which includes

daily maximum and minimum temperatures, and daily solar

radiation (Supplementary Figure 1) for the study site from

planting until harvest was obtained from the University of

Georgia Weather Network (http://www.georgiaweather.net/). The

2022 growing season had higher average daily minimum and

maximum temperatures by 0.15°C and 1.16°C, respectively than

the 2021 growing season. The 2021 growing season had cloudier

days with daily solar radiation below 10 MJ m-2 than the 2022

growing season. Daily maximum and minimum temperatures were

used to calculate GDDs throughout the season for cotton during

both years.

The accumulated GDDs of cotton over time is a predictor of

growth and phenological stage during the season. The GDDs is

calculated based on the average daily temperatures and base

temperature of cotton using equation 1 (Ritchie et al., 2004).

GDDs =o
n

i=1

 Max: Temperature  ° Ci +Min: Temperature  ° Ci

2
− Base Temperature  ° C

� �
 

(1)

where i =1 signifies first day of planting and n is each sampling

date. For cotton, the base temperature is 15.6°C (Snider et al., 2021b;

Hand et al., 2022) and the upper threshold of maximum

temperature is 33.9°C (Hand et al., 2022). The growth and

development of cotton plants is assumed to be zero below the

base temperature and above the upper threshold temperature.
2.2 Data collection

Physiological measurements and UAV-based imagery were

collected on the same dates, beginning 5 weeks after planting,
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throughout the 2021 and 2022 growing seasons in approximately

two-week intervals, depending on weather conditions on target

sampling dates. The actual dates of data collection along with the

GDD for each sampling date are provided in Table 1.

2.2.1 Physiological parameters and
yield measurements

An AccuPAR LP-80 ceptometer (METER Environment,

Pullman, WA) was used for light interception measurements

from the middle two rows of each plot between 1000 and 1400 h

under cloudless conditions. An integrated linear sensor and an

attached external sensor to a tripod stand were used to measure

below-canopy photosynthetically active radiation (PAR below) and

above-canopy photosynthetically active radiation (PARabove),

respectively. The PARbelow is an average value from the linear

sensor positioned perpendicular and parallel to the row. These

values were used to calculate the fraction of intercepted

photosynthetically active radiation (IPARf) on a given day using

equation 2.

IPARf = (PARabove – PARbelow)=PARabove (2)

Furthermore, cumulative incident PAR from planting until a

specific sampling date was calculated by summing incident daily

PAR (assuming PAR is 45% of solar radiation) for all days included

in the defined time frame. Finally, cumulative IPAR (MJ m-2) at the

sampling date was the product of IPARf and cumulative

incident PAR.

Above-ground dry biomass in 2021 was obtained by harvesting

all plants from a one-meter length of the row from one of the

middle two rows of each plot, while in 2022, the sample size was

increased to a two-meter length of the row. The fresh samples were

dried in a forced-air oven at 80°C for 72 hours and then weighed to

obtain above-ground dry biomass in g m-2.

Radiation use efficiency (RUE) (g MJ-1) was determined by

dividing the change in above-ground dry biomass (g m-2) by the
TABLE 1 Information on sampling date and types of measurements taken during the 2021 and 2022 growing seasons.

Year DAP Date GDDs Measurements UAV-based imagery

2021 44 July 14 465 LI, AGB RGB and multispectral

57 July 27 614 LI, AGB RGB and multispectral

70 August 9 763 LI, AGB RGB and multispectral

94 September 2 1045 LI, AGB RGB and multispectral

116 September 24 1252 LI, AGB RGB and multispectral

144 October 25 1458 Lint Yield RGB

2022 43 June 7 372 LI, AGB RGB and multispectral

59 June 23 569 LI, AGB RGB and multispectral

75 July 9 768 LI, AGB RGB and multispectral

100 August 3 1060 LI, AGB RGB and multispectral

114 August 17 1220 LI, AGB RGB and multispectral

150 September 22 1588 Lint Yield RGB
DAP, Days after planting; GDDs, Growing degree days; LI, Light Interception; AGB, Above-ground biomass; UAV, Unmanned Aerial Vehicle; RGB, Red Green Blue.
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change in cumulative IPAR (MJ m-2), where the first sampling date

was taken as a reference point as shown in equation 3.

RUE = (Dry biomassn − Dry biomass1)=(Cumulative IPARn

− Cumulative IPAR1) (3)

where, dry biomass 1 and cumulative IPAR 1 are the reference

measurements of the first sampling date, and n represents each

subsequent sampling date in the season.

Further, the harvest index (HI) for each plot was calculated as

the ratio of lint yield (kg ha−1) to the highest above-ground dry

biomass obtained during the season (kg ha-1). For lint yield (kg ha-

1), the middle two rows from each plot during both years were

mechanically harvested using a two-row spindle cotton picker (John

Deere 9930 (John Deere, Moline, IL)), and the harvested seed-

cotton was ginned at the University of Georgia MicroGin (Li et al.,

2011) to obtain a realistic measure of gin turnout and lint yield (kg

ha-1).

2.2.2 UAV data collection and image processing
Both RGB and multispectral imagery were acquired during

1000 to 1400 h using a flight altitude of 45 m. The RGB aerial

imagery was acquired using an integrated RGB sensor on DJI

Phantom™ Pro 4 V2.0 (Shenzhen, China) in 2021 and on DJI

Mavic™ Air 2 (Shenzhen, China) in 2022. The DJI Mavic Air 2 was

used on the September 22, 2022 sampling date (prior to harvesting)

because of its higher resolution. Multispectral images were acquired

during both years using a MicaSense RedEdge-MX™ (Seattle, WA)

sensor mounted on a DJI Inspire™ 2 (Shenzhen, China) UAV

platform. Detailed information on the sensors and the flight settings

used for aerial imagery data collection is provided in Table 2. Prior

to any data collection each year, ground control points (GCPs) were

placed at four corners of the field and were georeferenced using a

handheld Trimble GNSS Unit (Sunnyvale, CA) with a GPS/GNSS

RTK correction ( ± 0.50 cm) enabled. All flights were created and

implemented using the Pix4Dcapture® software (Pix4D,

Lausanne, Switzerland).
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After each UAV flight, all images were downloaded and

processed in the Pix4Dmapper® software (Pix4D, Lausanne,

Switzerland) using the GCPs and pre-flight calibration to create

one orthorectified mosaic images per bands for each sampling date.

The Pix4Dmapper® software uses modified structure-from-motion

(SFM) approach to create the orthorectified mosaic images. For

radiometric calibration of multispectral images, before each flight

the MicaSense RedEdge-MX™ multispectral sensor was used to

capture reference images of a MicaSense Calibrated Reflectance

Panel provided by the manufacturer. These captured reference

images for each multispectral band are used act as an input in

Pix4Dmapper processing options to perform radiometric

calibration and correction for each of the five bands.

2.2.3 Reflectance values and image
feature extraction

Orthorectified mosaic multispectral images were used to extract

raw reflectance values for each plot. The reflectance values for each

band (red, green, blue, red-edge, and near-infrared) for all sampling

dates were extracted in ArcMap® 10.7.1 (ESRI, Redlands, CA).

Cotton canopy and soil were segmented in each image using a

classification index: multiplication of the Normalized Difference

Vegetation Index (NDVI) and Excessive Greenness Index (ExG)

(Moghimi et al., 2018). A global threshold (pixel values greater than

0.02) was applied to the classified image to obtain a binary mask

layer to separate the canopy from bare soil. The binary mask layer

was applied to the orthorectified mosaic image for each reflectance

band. A polygon specifying the region of interest (ROI) – the

middle two rows of each plot – was created and used to extract the

averaged reflectance values for all multispectral bands for each plot.

The reflectance values for each band were further used to compute

several VIs as shown in Table 3 using Microsoft Excel®

(Redmond, WA).

RGB images taken immediately before harvest during each year

were used to compute cotton fiber index (CFI) values for each plot

(Huang et al., 2016; Feng et al., 2020). CFI estimates the total open

cotton bolls in an ROI and is calculated using equation 4.
TABLE 2 Flight plan details and technical specifications for the RGB and multispectral sensors used for aerial imagery collection in the study sites for
the 2021 and 2022 growing seasons.

Flight details and specifications DJI’s Phantom™ Pro 4 V2.0 DJI’s Mavic™ Air 2 MicaSense RedEdge-MX™

Flight Altitude 45 m 45 m 45 m

Spatial Resolution 1.33 cm 1.62 cm 3.29 cm

Image Overlap Side 70%
Front 80%

Side 70%
Front 80%

Side 80%
Front 80%

Flight Speed 4.11 m s-1 4.91 m s-1 3.81 m s-1

Sensor 1-inch CMOS; 20 Megapixel 1/2-inch CMOS; 48 Megapixel RedEdge-MX sensor

Bits per pixel 16 16 12

Spectral Range RGB RGB Blue (475 nm ± 20 nm)
Green (560 nm ± 20 nm)
Red (668 nm ± 10 nm)
Red-edge (717 nm ± 10 nm)
Near Infrared (840 nm ± 40 nm)
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CFI = Number of white pixels in the ROI=

Total number of pixels in the ROI

(4)

As Feng et al. (2020) and Huang et al. (2016) suggested, a simple

global threshold to RGB image was unable to completely

differentiate white cotton pixels from background pixels of

defoliated vegetation and soil. Therefore, a series of image

filtering and image enhancing techniques (Figure 2) were

performed in MATLAB® 2022b 9.13.0 (The MathWorks Inc.,

Natick, MA) and ArcMap® 10.7.1 (ESRI, Redlands, CA) for

accurate detection of white pixels. First, a bilateral filter (Figure 2:

Step 2), using a non-linear filtering method was applied for

smoothing the images to remove background leaves and soil

surface noises, while preserving the shapes and high-intensity

values of cotton pixels. Then, a 5 x 5 Laplacian filter (Figure 2:

Step 3) was applied to increase the contrast and sharpness to

enhance the edges of white cotton pixels. An additional

smoothing filter, with arithmetic mean (Figure 2: Step 4), was

further utilized to remove the extra noise introduced by the

Laplacian filter. Finally, a threshold (pixel values greater than

150) was applied to separate white cotton pixels, and a zonal
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histogram tool was used to obtain white pixel counts from each

ROI to calculate CFI.

2.2.4 Vegetation indices
Based on the previous literature, 20 different vegetation indices

(VIs) that showed strong relationships with leaf area index,

biomass, chlorophyll content, plant height, canopy cover, and lint

yield of cotton were selected and computed using various

combinations of different multispectral bands. These indices are

presented in Table 3. Further, the relationship of these VIs along

with the individual multispectral reflectance bands (green, blue, red,

red-edge, and near-infrared) with functional yield-governing

parameters in cotton were examined.
2.3 Model development and
statistical analysis

2.3.1 Variable selection
As noted in section 2.2.1, the response (independent) variables

included measured physiological parameters such as IPARf,
TABLE 3 List of 20 different vegetation indices (VIs) computed in this study from the raw RGB and Multispectral bands.

Vegetation Indices Formulation References

ExG (Excessive Greenness Index) (2×G)−R−B Woebbecke et al. (1995)

NDVI (Normalized Difference Vegetation Index) (NIR−R)/(NIR+R) Rouse (1974)

GNDVI (Green Normalized Difference Vegetation Index) (NIR−G)/(NIR+G) Gitelson et al. (2003a)

NDRE (Normalized Difference Red Edge Index) (NIR−RE)/(NIR+RE) Gitelson and Merzlyak (1997)

RVI (Ratio Vegetation Index) NIR/R Tucker (1979)

SCCCI (Simplified Canopy Chlorophyll Content Index) NDRE/NDVI Raper and Varco (2014)

SAVI (Soil Adjusted Vegetation Index) (1 + 0.5)((NIR−R)/(NIR+R+0.5)) Huete (1988)

EVI (Enhanced Vegetation Index) (2.5×NIR−R)/(NIR+6×R−7.5×B+1) Huete et al. (2002)

EVI2 (Enhamced Vegetation Index2) (2.5×NIR−R)/(NIR+2.5×R+1) Jiang et al. (2008)

MSAVI (Modified Soil Adjusted Vegetation Index) [(2NIR+1)−√((2NIR+1)2−8(NIR−R))]/2 Qi et al. (1994)

VARI (Visible Atmospherically Resistant Index) (G−R)/(G+R−B) Gitelson et al. (2002)

WDRVI (Wide Dynamic Range Vegetation Index) (0.2×NIR−R)/(0.2×NIR+R) Gitelson (2004)

RECI (Rededge Chlorophyll Index) (NIR/RE)-1 Gitelson et al. (2003b)

RE/R (Redegde to Red ratio) RE/R Ballester et al. (2013)

NIR/G (Near infrared to Green ratio) NIR/G Sripada et al. (2005)

RGBVI (Red Green Blue Vegetation Index) (G−B×R)/(G2 +(B×R)) Bendig et al. (2015)

GRVI (Green Red Vegetation Index) (G−R)/(G+R) Falkowski et al. (2005)

TCARI (Transformed Chlorophyll Absorption Reflectance Index) 3[(RE−R)−0.2(RE−G)×(RE/R)] Haboudane et al. (2002)

OSAVI (Optimized Soil Adjusted Vegetation Index) (1 + 0.16)[(NIR−R)/(NIR+R+0.16)] Rondeaux et al. (1996)

TCARI/OSAVI TCARI/OSAVI Haboudane et al. (2002)
R, G, B, RE, and NIR represents Red, Green, Blue, Red-edge, and Near-infrared bands, respectively, and were obtained from multispectral imagery collected at different sampling dates during the
2021 and 2022 season.
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above-ground biomass, and HI, as well as RUEn which is

expressed as biomass produced (g) per PAR intercepted (MJ) by

the canopy in reference to the first sampling date during the

growing seasons, and vegetation index as the predictor (dependent

variable). Initially, individual scatter plots were created for 20

different vegetation indices using pooled data from both growing

seasons, with IPARf and above-ground biomass on the Y-axis

versus VIs derived from multispectral imagery throughout the

growing season on the X axis (Supplementary Figures 2, 3).

Similarly, for RUE, RUEn was plotted on the Y-axis versus the

average of VIs for the period during which RUEn was determined

on the X-axis (Supplementary Figure 4). These plots between

IPARf, above-ground biomass, and VIs revealed a non-linear

relationship with higher variation for IPARf and above-ground

biomass as VI values increased. The non-linear association
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between IPARf and biomass indicated the necessity for an

additional predictor in addition to the VIs. In a study to predict

above-ground wheat biomass throughout the season, Li et al.

(2022) suggested a strong linear relationship of VI’s with

biomass at each GDD, and the overall relationship throughout

the season evolved with GDD. Similarly, changes were seen in our

study where the slope and intercept of standard linear

relationships between IPARf or above-ground biomass and VIs

changed at different GDD throughout the season (Figure 3).

Therefore, along with VI, GDD was added as a dependent

variable (predictor) of IPARf, and biomass throughout the

season in the model as shown in equation (4). In contrast, the

association between RUEn and the average of VIs was found to be

linear with constant variance and the average of VI during a

specified time in the season was used as a single predictor of RUE
FIGURE 1

Geographical location of the study sites for the 2021 and 2022 growing seasons (A, B). Aerial imagery of the field sites and layout of the
experimental plots during the 2021 (C) and 2022 (C) growing seasons. A solid yellow box depicts the experimental area; black dashed lines separate
replications, and yellow dashed lines separate each plot. Values in (C, D) are the nitrogen application rates in kg N ha-1.
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(equation 5).

IPARf  or above-ground biomass

= f (instantaneous VI and GDD) (4)

RUEn = f (average of VI within the RUE calculation period) (5)
2.3.2 Model selection
For model development, generalized linear regression (GLR)

modeling was performed which assumes that the response variables

can have a variety of distributions depending on their

characteristics and the predictors. Generalized linear models

(GLMs) from GLR consist of three components: the random

component, the systematic component, and the link function to

connect the random and systematic components (Nelder and

Wedderburn, 1972; Dunn and Smyth, 2018). The random

component represents the distribution of the response variable

given the predictors. IPARf is a fractional value that always lies

between 0 and 1. As a result, the beta distribution with a logistic link

function, which is effective for continuous data ranging from 0 to 1,

was chosen as a random component for IPARf. Biomass throughout

the season is a positive value; therefore, gamma distribution that

includes an exponential relationship with a log link function was

chosen as a random component for above-ground biomass. RUE

seems to be linearly related to the average of VIs with constant

variance; therefore, normal distribution with identity link function
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(equivalent to standard linear regression) was chosen as the random

component. The systematic component of GLM represents the

linear predictors which were identified in equations 4 and 5.
2.3.3 Model validation
The 2021 and 2022 growing seasons had different planting and

harvesting times, resulting the cotton plants with seasonal variances

in growth and development that can be captured in the UAV

imagery. As a result of distinct growth patterns, all data collected

throughout the season from both growing seasons for IPARf, RUE,

and biomass were pooled together, and the pooled data were

randomly stratified by the sampling date in JMP® Pro 16.0.0

(SAS, Cary, NC) where 60% of the data (training data) was used

for model generation and the remaining 40% (validation data) for

cross-validation. Outliers were identified using histogram, boxplot,

and interquartile range methods and were removed from the data

before generating training models. There were only two data points

identified as outliers, which could have been introduced by noise

during reflectance measurement. Cross-validation was performed

for each model by plotting predicted versus measured fit for the

validation dataset. The models generated from GLR using different

VIs were ranked based on the generalized coefficient of

determination (R2), Akaike information criterion value (AICc),

and Bayesian information criterion value (BIC) for training

dataset, and the coefficient of determination (R2cv) and root

mean sum square error (RMSEcv) for cross-validation. Higher R2
FIGURE 2

Flowchart to illustrate the different steps (1-5) followed for computing cotton fiber index (CFI) from aerial RGB images using various image filtering
and enhancing tools in Matlab® and ArcMap®. The top orange box (Steps 1 and 2; Images A–C) shows the steps performed in Matlab®, and the
bottom blue box (Steps 3, 4, and 5; Images D–F) shows the steps performed in ArcMap®.
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and R2cv values along with lower AICc, BIC, and RMSEcv values

were viewed as better model performance qualities.

HI was estimated as the ratio of predicted lint yield to predicted

above-ground biomass. For lint yield estimation, standard linear

regression was performed between the machine-harvested lint yield

and CFI. The cross-validation for lint yield modeling could not be

performed due to the limited number of data points (N=50).

Finally, the estimated HI was compared to the observed HI

(Section 2.3.1) to obtain the coefficient of determination (R2) and

RMSE values. All modeling and statistical analyses were performed

in JMP® Pro 16.0.0 (SAS, Cary, NC) and graphs were prepared

using Sigma Plot 14.0 (Systat Software Inc., San Jose, CA).
3 Results

3.1 Fraction of intercepted
photosynthetically active radiation

The IPARf models generated using training data had

generalized R2 values ranging from 0.66 to 0.90 (Table 4). The

model equations are provided in the Supplementary Table 1. Upon

comparing the model performance for both training and cross-

validation, RVI, RECI, NDRE, and SCCCI were the top four VIs

with the highest R2 and R2cv values, and lowest AICc, BIC, and
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RMSEcv values. The predicted IPARf from these four models was

able to explain 89% to 93% of the variation in measured IPARf with

RMSEcv ranging from 0.080 to 0.097 during cross-validation

(Figure 4). Compared to the VIs, models from near-infrared and

red reflectance bands explained 85% and 87% of measured IPARf;

however, the RMSEcv was higher for these raw bands (0.139, and

0.115, respectively).
3.2 Above-ground biomass

For above-ground biomass, models developed from the training

dataset had generalized R2 values ranging from 0.69 to 0.87

indicating a moderate to strong relationship with the VIs

(Table 5). These model equations are provided in Supplementary

Table 2. Based on the model performance, MSAVI, OSAVI, RVI,

and SAVI were the four VI-based models with the highest R2 and

R2cv values, and the lowest AICc, BIC, and RMSEcv values. The

estimated above-ground biomass from these models was able to

explain 83-84% of variation with RMSEcv ranging from 240.64 to

251.34 g m-2 during cross-validation (Figure 5). GNDVI and NIR/G

had the highest R2 values of 0.86 and 0.87, respectively, during

training, but the R2 values reduced to 0.75 and 0.76, respectively

during cross-validation. Out of the five raw bands, the model with
FIGURE 3

Graphs illustrating linear relationship between the fraction of light interception (IPARf) and above-ground biomass for few selected VIs at different
growing degree day (GDD). Different colors and symbols represent different GDDs and are specified in the legend at the top of the graph. Solid lines
represent linear regression functions.
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the NIR band was able to explain 79% of the variation in the

measured above-ground biomass during cross-validation.
3.3 Radiation use efficiency

The models created using training data to predict RUE

explained 2% to 43% of the variation in RUE indicating a poor to

low relationship of VIs to the RUE (Table 6). The model equations

are provided in Supplementary Table 3. While some of the VIs such

as WDRVI, OSAVI, MSAVI, and TCARI explained as much as 43%

variation in the RUE for the training data, they did not perform well

during validation (Rcv = 25-33%). RECI, NIR/G, NDRE, and

SCCCI performed best during training and cross-validation with

lower AICc, BIC, and RMSEcv values, and the highest R2cv value. A
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plot of predicted versus measured RUE using validation data

(Figure 6) showed that the above-mentioned models explained

37% to 40% of the variation in cotton RUE with around 0.4 g MJ-

1 RMSEcv. Among the five raw reflectance bands, the RUE

prediction model using the red-edge and green bands explained

37% and 34%, respectively, of variation in RUE during

cross-validation.

Based on the model identified for IPARf and biomass in sections

3.1 and 3.2, the models that performed the best during validation

were used to derive RUE using equation 3. The estimated RUE from

MSAVI-based biomass model and RVI-based IPARf model only

explained 18% of the variation in measured RUE with an RMSE of

0.462 (Figure 7A). However, replacing the MSAVI-based biomass

model with the ground-measured biomass increased the prediction

accuracy to 84% with the RMSE of 0.207 (Figure 7B).
TABLE 4 Model performance parameters for predicting fraction of Intercepted Photosynthetically Active Radiation (IPARf) using different vegetation indices
(VIs) and raw reflectance bands for the studies conducted in the 2021 and 2022 growing seasons (model equations provided in Supplementary Table 1).

VIs R2 AICc BIC R2cv RMSEcv

RVI 0.90 -359.43 -347.69 0.93 0.080

RECI 0.89 -351.13 -339.39 0.92 0.084

NDRE 0.88 -332.31 -320.57 0.91 0.091

SCCCI 0.87 -318.60 -306.87 0.89 0.097

WDRVI 0.85 -297.40 -285.66 0.90 0.099

MSAVI 0.83 -278.31 -266.58 0.91 0.100

NIR/G 0.86 -307.54 -295.80 0.88 0.101

OSAVI 0.82 -275.32 -262.59 0.90 0.103

SAVI 0.81 -261.05 -249.31 0.90 0.105

VARI 0.82 -269.98 -258.25 0.90 0.106

NDVI 0.82 -272.21 -260.47 0.88 0.107

RE/R 0.82 -270.38 -258.65 0.89 0.107

EVI2 0.79 -246.48 -234.74 0.89 0.109

EVI 0.79 -247.96 -236.22 0.89 0.110

GRVI 0.80 -257.86 -246.12 0.89 0.111

REDEDGE 0.83 -271.05 -259.37 0.84 0.111

GNDVI 0.81 -265.86 -254.13 0.86 0.113

RED 0.81 -255.02 -243.34 0.87 0.115

RGBVI 0.79 -247.66 -235.93 0.87 0.115

TCARI 0.77 -245.89 -234.15 0.87 0.116

TCARI/OSAVI 0.78 -240.74 -229.01 0.86 0.119

GREEN 0.77 -227.54 -215.86 0.82 0.126

BLUE 0.73 -207.82 -196.14 0.82 0.134

NIR 0.70 -191.24 -179.56 0.85 0.139

ExG 0.66 -178.21 -166.48 0.77 0.148
fr
R2, AICc, and BIC represent the generalized coefficient of determination, Akaike Information Criterion and Bayesian Information Criterion values, respectively, for the training data (N = 149).
R2cv and RMSEcv represent the coefficient of determination and root mean sum square error, respectively, for cross-validation (N = 100).
ontiersin.org

https://doi.org/10.3389/fpls.2023.1248152
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pokhrel et al. 10.3389/fpls.2023.1248152
3.4 Lint yield and harvest index

Cotton fiber Index (CFI) from UAV-based RGB imagery

showed a linear relationship with machine-harvested lint yield

and explained 69% of the variation (RMSE = 244.07 kg ha-1) in

the lint yield (Figure 8). However, the estimated harvest index (HI)

utilizing the CFI-based lint yield model and the four models that

performed the best in predicting above-ground biomass (Figure 9)

wasn’t significant (p-value > 0.05) in explaining measured HI. A

plot of predicted versus measured HI for the two growing seasons

(2021 and 2022) (Figure 9) shows that the estimated HI was able to

explain 40% to 49% of the variation in cotton HI, for the 2022

growing season, while only 1% to 4% for the 2021 growing season.
4 Discussion

The yield-driving physiological parameters – intercepted

photosynthetically active radiation (IPAR), radiation use efficiency

(RUE), and harvest index (HI), are the key contributors to yield in

cotton under different management conditions (Conaty and

Constable, 2020). However, the current methods of ground

measurement for these parameters are resource intensive and

require destructive sampling of plants. Remote sensing using

UAVs and low-cost sensors have proven to be an efficient

approach in estimating crop biophysical traits such as biomass,

chlorophyll content, and leaf area index (Gutierrez et al., 2012;
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Raper and Varco, 2014; Wang et al., 2021). Therefore, this study

investigates the use of low-cost and high-resolution UAV-based

RGB and multispectral imagery to predict the aforementioned

yield-driving physiological parameters [IPAR, RUE, and HI]

of cotton.
4.1 Estimation of IPARf, RUE, and biomass

The first objective of this study was to develop and validate

models to estimate the fraction of IPAR (IPARf), RUE, and biomass

of cotton throughout the season using reflectance data (which

includes multispectral vegetation indices (VIs) and raw

reflectance bands) and growing degree days (GDD). Past research

has demonstrated that the relationship between crop biophysical

characteristics and VIs can be altered by growth stage (Gutierrez

et al., 2012; Li Z. et al., 2022). For example, during cotton growth

and development, biomass distribution, specific leaf nitrogen and

chlorophyll contents in the canopy change, resulting in varied

spectral responses throughout the season (Snider et al., 2021b).

Gutierrez et al. (2012) showed the need of separate models to

explain above-ground biomass and LAI of cotton plants at different

days after planting. In this study, the inclusion of the GDD term as a

predictor helped in addressing the above limitation and allowed us

to directly account for the changes in the spectral reflectance of

cotton plants at different growth stages during the growing season.
FIGURE 4

Predicted versus measured fraction of Intercepted Photosynthetically Active Radiation (IPARf) for the four models that performed the best in
predicting IPARf. Blue circles represent the training data, and red triangles represent the validation data. R2cv and RMSEcv represent the coefficient
of determination and root mean sum square error, respectively, for cross-validation. The diagonal line is a reference line with a slope equal to 1.
GDD, Growing Degree Days; RVI, Ratio Vegetation Index; RECI, Red-edge Chlorophyll Index; NDRE, Normalized Difference Red-edge Index; SCCCI,
Simplified Canopy Chlorophyll Content Index.
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The proposed model of VIs along with GDD can be used to estimate

the IPARf and aboveground biomass throughout the season.

During cross-validation, the developed models explained up to

93% of the variation in measured IPARf of the cotton canopy

(Table 4), where RVI, RECI, NDRE, and SCCCI had the highest

coefficient of determination (Figure 4). Past studies have relied on

either a physical radiative transfer model (Clevers et al., 1989) or

hyperspectral VIs (Tan et al., 2013; Tan et al., 2018) to estimate the

fraction of light absorption by crop canopies. However, there is

limited information on the relationship between multispectral VIs

and IPARf. The amount of light intercepted by a cotton canopy is

highly influenced by canopy structure and architectural traits such

as leaf area index (Brodrick et al., 2013; Bhattacharya, 2019).

Multiple studies have reported the association between cotton leaf

area index (LAI) and multispectral VIs (Hatfield et al., 1984; Zhao

et al., 2007b; Gutierrez et al., 2012), and insights on the relationship
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between IPARf and VIs can be drawn from these studies. RVI, the

ratio of near-infrared to red reflectance, has been shown to be

effective (R2 = 0.69 to 0.93) in explaining cotton LAI (Zhao et al.,

2007a; Gutierrez et al., 2012; Chen, 2019). In the visible and near-

infrared wavelength region, the near-infrared is reflected by the

canopy and is sensitive to green photosynthetically active

vegetation, whereas the red band is strongly absorbed by

chlorophyll, making RVI a good predictor of LAI (Tucker, 1979).

In this study, models based on raw bands of near-infrared and red

reflectance were also able to moderately estimate IPARf throughout

the growing season, further highlighting the importance of these

two reflectance bands in explaining the variability in IPARf. NDVI,

which is also a function of near-infrared and red reflectance bands,

has been used to predict cotton LAI and canopy cover (Ritchie et al.,

2010; Adams et al., 2021). Guillen-Climent et al. (2012) also

reported that out of several VIs, NDVI was best correlated with
TABLE 5 Model performance parameters for predicting above-ground biomass using different vegetation indices (VIs) and raw reflectance bands for
the studies conducted in the 2021 and 2022 growing seasons (model equations provided in Supplementary Table 2).

Vis R2 AICc BIC R2cv RMSEcv

MSAVI 0.87 1896.01 1907.75 0.84 240.64

OSAVI 0.87 1895.28 1907.01 0.84 243.22

RVI 0.86 1904.01 1915.75 0.84 246.96

SAVI 0.86 1909.57 1921.31 0.83 251.34

EVI 0.84 1924.82 1936.56 0.82 260.19

EVI2 0.84 1924.57 1936.30 0.82 260.26

WDRVI 0.86 1906.92 1918.66 0.81 263.85

NIR 0.82 1910.56 1922.24 0.79 267.15

NDVI 0.85 1917.75 1929.48 0.79 278.17

NDRE 0.85 1915.79 1927.53 0.79 280.39

VARI 0.80 1958.09 1969.83 0.78 284.61

RECI 0.84 1925.15 1936.89 0.78 286.98

GRVI 0.80 1962.05 1973.78 0.77 290.94

SCCCI 0.84 1928.49 1940.23 0.77 293.92

NIR/G 0.87 1896.81 1908.55 0.76 295.95

RE/R 0.82 1939.01 1950.75 0.76 300.85

RED 0.82 1903.43 1915.11 0.70 303.97

GNDVI 0.86 1910.01 1921.75 0.75 305.15

TCARI 0.82 1942.01 1953.75 0.70 330.58

TCARI/OSAVI 0.82 1944.09 1955.83 0.70 333.46

RGBVI 0.78 1971.23 1982.97 0.69 339.64

BLUE 0.78 1935.68 1947.36 0.62 344.66

REDEDGE 0.77 1943.90 1955.58 0.61 348.08

GREEN 0.78 1938.76 1950.44 0.56 362.22

ExG 0.69 2022.66 2034.39 0.56 405.25
fr
R2, AICc, and BIC represent the generalized coefficient of determination, Akaike Information Criterion and Bayesian Information Criterion values, respectively, for the training data (N = 147).
R2cv and RMSEcv represent the coefficient of determination and root mean sum square error, respectively, for cross-validation (N = 100).
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IPARf for crops with homogenous canopies such as wheat, maize,

and soybean. However, in the current study, NDVI saturated after

the third sampling date (800 GDD) with strong absorption of red

wavelength light by the canopy (red reflectance moved closer to

zero) and couldn’t explain the variation in IPARf during the latter

part of the season. A similar trend of NDVI saturating at high LAI

was reported by Chen (2019) and Gutierrez et al. (2012). The other

best performing VIs, RECI, NDRE, and SCCCI, are also reported to

explain LAI and canopy chlorophyll content. RECI has been found

to be closely related to maize LAI (R2 = 0.95), even at higher LAI

values (0 to > 6), without reaching saturation. Similarly, RECI

performed the best without saturation even at higher GDD in this

study. This is because RECI is based on near-infrared and red-edge

reflectance, and the red-edge wavelength of light is not strongly

absorbed by chlorophyll compared to the red wavelength (Gitelson

et al., 2003b). In a similar manner, NDRE, and SCCCI are also based

on near-infrared and red-edge reflectance and have been found to

be associated with leaf and canopy chlorophyll content (Gitelson

et al., 2003a; Raper and Varco, 2014; Ballester et al., 2017), which

explains their effectiveness in explaining IPARf in this study.

The developed models using reflectance data and GDD were

able to explain 55% to 84% of the variation in above-ground

biomass for the validation dataset (Table 5). MSAVI, OSAVI,

RVI, and SAVI were the best performing VIs with the highest

coefficient of determination (Figure 5). The near-infrared band

explained the most variation (79%) in above-ground biomass out of

the five raw bands. For crops and other vegetation, the red band is
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highly absorbed by chlorophyll, whereas the near-infrared is

reflected from the outer leaf surfaces and spongy mesophyll cells.

(Jackson, 1986). The VIs computed based on these two bands, such

as NDVI and RVI, have been linked to above-ground biomass

previously (Gitelson et al., 2003a; Zhao et al., 2005; Zhao et al.,

2007b; Chao et al., 2019). RVI is one of the best VIs to explain

above-ground biomass in this study, which is similar to previous

findings. NDVI is also widely used VI that has been extensively

related to above-ground biomass. However, it tends to saturate early

with increasing biomass, and is influenced by soil reflectance,

particularly under low vegetation cover (Huete, 1988; Qi et al.,

1994; Gutierrez et al., 2012). VIs such as SAVI, MSAVI, and OSAVI

are all modifications of NDVI which are more sensitive to changes

in vegetation cover and are less influenced by soil reflectance during

the lag phase of vegetative growth (Rouse, 1974; Huete, 1988; Qi

et al., 1994; Rondeaux et al., 1996), which explain their strong

relationship with biomass throughout the season in the current

study. Previous studies have also reported RVI (Gutierrez et al.,

2012), MSAVI (Brandão et al., 2015), and OSAVI (Zhao et al.,

2007b) to be a good predictor of cotton above-ground biomass at

early and peak growth stages. However, recent studies have shifted

their attention towards use of hyperspectral (Junhua et al., no date)

and LIDAR (Sun et al., 2018; Furbank et al., 2019) sensors but these

are currently expensive and require extensive data analysis for crop

aboveground biomass estimation. In our study, we noticed that with

increasing GDD, the estimated above-ground biomass values

moved further away from measured values. This source of error
FIGURE 5

Predicted versus measured above-ground biomass for the four models that performed the best in predicting above-grond biomass models. Blue
circles represent the training data, and red triangles represent the validation data. R2cv and RMSEcv represent the coefficient of determination and
root mean sum square error, respectively, for cross-validation. The diagonal line is a reference line with a slope equal to 1. GDD, Growing Degree
Days; MSAVI, Modified Soil Adjusted Vegetation Index; OSAVI, Optimized Soil Adjusted Vegetation Index; RVI, Ratio Vegetation Index; SAVI, Soil
Adjusted Vegetation Index.
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and uncertainty in the biomass model could be attributed to the

indeterminate growth habit of cotton because the above-ground

biomass during the later season is a combination of reproductive

and vegetative biomass, and the reflectance data cannot fully

capture the reproductive structures in the lower canopy.

The VIs developed from multispectral imagery only explained

up to 40% of the variation in cotton RUE (Table 6). This could be

due to the fact that RUE is affected by various environmental factors

and the interaction of different physiological processes, making it

difficult to accurately assess using multispectral remote sensing

(Furbank et al., 2019). However, the relationship between

multispectral VIs and RUE can help in the identification of

valuable predictors for future modeling. RECI, NIR/G, NDRE,

and SCCCI were the top four VIs in predicting RUE (Figure 6).

Similarly, the red-edge and green raw bands explained 37% and
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34% of the variation in RUE for the validation data set. All the

aforementioned VIs and raw reflectance bands have shown to be

sensitive to canopy chlorophyll content for crops including corn

and cotton (Tumbo et al., 2002; Gitelson et al., 2003a; Bausch et al.,

2008; Ritchie et al., 2010; Raper and Varco, 2014; Ballester et al.,

2017). The specific absorption coefficient of chlorophyll for the

green and red-edge bands is lower than the red and blue bands,

making the VIs based on green and red-edge bands sensitive to

changes in chlorophyll content in plant tissues (Gitelson and

Merzlyak, 1997; Gitelson et al., 2003b). Because the quantum

efficiency of primary photochemistry is influenced by canopy

chlorophyll content per unit leaf area (Porcar-Castell et al., 2021),

the aforementioned VIs may relate to canopy-level RUE. There are

limited studies estimating canopy RUE from multispectral VIs.

However, Robles-zazueta et al. (2021) showed potential of
TABLE 6 Model performance parameters for predicting Radiation Use Efficiency (RUE) using different vegetation indices (VIs) and raw reflectance
bands for the studies conducted in the 2021 and 2022 growing seasons (model equations provided in Supplementary Table 3).

VIs R2 AICc BIC R2cv RMSEcv

RECI 0.38 123.82 131.84 0.40 0.395

NIR/G 0.41 117.46 125.48 0.38 0.401

NDRE 0.39 121.16 129.17 0.37 0.403

SCCCI 0.35 128.72 136.74 0.37 0.405

REDEDGE 0.30 137.61 145.63 0.37 0.402

GNDVI 0.43 113.26 121.28 0.36 0.406

RVI 0.42 115.29 123.31 0.35 0.409

GREEN 0.36 127.07 135.08 0.34 0.412

WDRVI 0.43 114.37 122.39 0.33 0.417

OSAVI 0.43 114.40 122.42 0.32 0.420

EVI 0.42 115.74 123.76 0.32 0.420

NDVI 0.41 117.03 125.04 0.32 0.420

RED 0.40 120.18 128.2 0.32 0.420

SAVI 0.43 114.00 122.02 0.31 0.421

MSAVI 0.43 113.64 121.66 0.31 0.423

EVI2 0.42 114.91 122.93 0.31 0.424

NIR 0.37 125.27 133.29 0.26 0.438

TCARI/OSAVI 0.42 115.41 123.16 0.25 0.439

VARI 0.37 125.89 133.91 0.25 0.441

TCARI 0.43 113.24 121.26 0.24 0.444

RE/R 0.41 118.24 126.26 0.23 0.447

GRVI 0.35 129.39 137.41 0.22 0.452

BLUE 0.30 137.59 145.61 0.19 0.458

RGBVI 0.34 131.01 139.03 0.18 0.460

ExG 0.02 175.65 183.67 0.06 0.493
fr
R2, AICc, and BIC represent the coefficient of determination, Akaike Information Criterion and Bayesian Information Criterion values, respectively, for the training data (N = 115). R2cv and
RMSEcv represent the coefficient of determination and root mean sum square error, respectively, for cross-validation (N = 82).
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hyperspectral VIs and partial least square regression (PSLR)

modelling to predict RUE in wheat, where EVI and PRI predicted

RUE with 70% accuracy.

Additionally, this study showed the potential of using a

mechanistic model (RUE = Biomass/IPAR) from estimated IPAR

and biomass to derive RUE in cotton. The estimated RUE from the

measured biomass and RVI-based IPARf model was able to explain

84% of measured RUE (Figure 7). A similar approach to obtain

RUE from measured biomass and remotely sensed light

interception has been used in corn (Tewes and Schellberg, 2018)
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and soybean (Phillips et al., 2020) as well. Further, in this study,

actual biomass measurements were replaced with estimates from

the MSAVI-based biomass model, which resulted in a reduced

prediction accuracy of 18%. The reason for the reduced

performance could be due to the error and inaccuracies

associated with biomass prediction (Robles-zazueta et al., 2021).

As previously discussed, cotton is an indeterminate crop, and its

above-ground biomass during the season consists of both vegetative

and reproductive structures. Therefore, the spectral VIs may not

represent the biomass contributed by the bolls in lower canopy.
FIGURE 6

Predicted versus measured radiation use efficiency (RUE) for the the four models that performed the best in predicting RUE. Blue circles represent
the training data, and red triangles represent the validation data. R2cv and RMSEcv represent the coefficient of determination and root mean sum
square error, respectively, for cross-validation. The diagonal line is a reference line with a slope equal to 1. RECI, Red-edge Chlorophyll Index; NIR/G,
Near infrared to Green Ratio; NDRE, Normalized Difference Red-edge Index; SCCCI, Simplified Canopy Chlorophyll Content Index.
A B

FIGURE 7

Predicted versus measured plot for the radiation use efficiency (RUE) values obtained using (A) MSAVI-based biomass model/RVI-based IPAR model
and (B) measured biomass/RVI-based IPAR model. R2 and RMSE represent the coefficient of determination and root mean sum square error. The
diagonal line is a reference line with a slope equal to 1. IPAR, Intercepted Photosynthetically Active Radiation; MSAVI, Modified Soil Adjusted
Vegetation Index; RVI, Ratio Vegetation Index.
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Moreover, due to cotton’s indeterminate growth pattern, it is

challenging to uniformly sample above-ground biomass

throughout the season.
4.2 Estimation of lint yield and HI

The second objective of this study was to estimate cotton lint

yield using cotton fiber index (CFI). CFI explained 69% of the

variation in cotton lint yield (Figure 8), which is somewhat lower

than the result reported by Huang et al. (2016) (R2 = 0.83) and Feng

et al. (2020) (R2 = 0.90). However, the performance of CFI in

explaining lint yield variation was better than previous studies that

used in-season vegetation indices to predict yield (R2 = 0.47 to 0.60)

(Gutierrez et al., 2012; Ballester et al., 2017). There are a few

limitations of using CFI from UAV-based RGB imagery which

could introduce some error and possibly the reason for low

accuracy observed in our study. CFI does not consider the cotton

bolls present in the lower and middle of the canopy (Feng et al.,

2020; Siegfried et al., 2023), and there is a potential for

misclassification of soil or background pixels as white cotton

bolls. Also, the UAV flight height can have an influence on the

image resolution for cotton pixel detection. The lower flight height

can increase the detection accuracy but can limit the amount of area

covered as well as increase time for image processing. To increase

the yield-predicting performance of CFI, future research could

focus on identifying low cost remote sensing predictors, such as

UAV-based plant height or white flower detection during the

season, which can account for the cotton bolls in the middle and

below the canopy. Utilizing machine learning and convolutional
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neural networks to accurately delineate cotton pixels from the

surrounding soil pixels could also improve yield prediction (Li F.

et al., 2022; Shi et al., 2022).

Finally, the last objective of this study was to investigate the

utility of the developed models for lint yield and above-ground

biomass in predicting cotton harvest index (HI). No significant

relationship was observed between the measured and predicted HI

when the data from both years was combined. It was also found that

the HI models performed differently for each growing season

(Figure 9), with the estimated HI explaining 40-49% of the

variation in measured HI for the 2022 growing season. The lack

of a significant relationship over the two years of the study could be

attributed to the combined errors in the lint yield and biomass

prediction. As discussed earlier, for an indeterminate crop such as

cotton, nadir UAV imagery cannot fully account for the

reproductive structure or cotton bolls in the lower and middle

canopy that contribute to both above-ground biomass and lint yield

(Shi et al., 2022; Siegfried et al., 2023). Furthermore, previous

studies have reported varying responses of cotton HI (indifferent

to inverse relationship) to different nitrogen levels (Kimball and

Mauney, 1993; Gerik et al., 1994; Li et al., 2017), which could be

another reason for the varied responses observed in the

different seasons.
4.3 Model applications, limitations, and
implication for future efforts

The models developed to estimate the yield-contributing

physiological parameters in cotton showed low to strong
FIGURE 8

Relationship and prediction equation between machine-harvested lint yield and cotton fiber index (CFI) for both the 2021 and 2022 growing
seasons. R2 and RMSE represent the coefficient of determination and root mean square error, respectively, for the relationship. In the given equation,
Y represents lint yield and X represents CFI.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1248152
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pokhrel et al. 10.3389/fpls.2023.1248152
performance. The models developed in this study can estimate the

yield determining physiological parameters throughout the growing

season and are relatively simple with only two required input

predictors- VI from multispectral imagery and GDD (growth

stage parameter). This makes use of these parameters a viable

method to measure the light interception and above-ground

biomass rapidly and accurately during the cotton growing season

and also expands the potential of these models to be used by

researchers and industry in cotton management and breeding.

Previous work showed that low nitrogen stress in cotton

primarily reduces the light interception of the cotton canopy,

resulting in significant yield loss (Pokhrel et al., 2023). The

models, therefore, can be applied to measure light interception

and identify yield-limiting low nitrogen circumstances in-season.

The models have ability to aid in agronomic decision making in

order to prevent significant yield loss. Similarly, excessive irrigation

can cause excessive above-ground biomass resulting in a lower

number of cotton bolls and boll mass, ultimately causing significant

yield loss (Ermanis et al., 2020). The models from this study can be

potentially applied to regulate the irrigation requirement of a cotton

plant during the growing season based on their light interception

and biomass gain to avoid yield loss due to excess growth. For

cotton breeding, the models can be utilized for high-throughput

phenotyping of a large number of cotton genotypes for yield

determining physiological parameters without the need for labor-

intensive and time-consuming manual measurements. Finally,

results attained in this study can be used to expand and improve
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future research on predicting functional yield drivers of cotton from

aerial imagery.

One of the limitations of this study is that the modeling and

validation were limited to data collected within 372 GDD to 1253

GDD, with no extrapolation, and it would be beneficial to test these

models outside this range in future studies. Furthermore, the

models were developed based on a two-year study of a single

cotton cultivar’s response to five different nitrogen application

rates at an experimental site. Inclusion of training data from

different cotton cult ivars across multiple production

environments can enhance model performance. It is suggested

that future research should focus on increasing the model’s

robustness for its transferability across a wide range of genotypes

and environmental conditions. Independent validation from

different locations would also help in determining the model’s

prediction ability. In the future, more robust models can be

created by exposing the crop to a broader range of growth and

yield-altering factors. Additionally, due to the limited number of

data points, validation for the lint yield modeling was not

performed. Validation for the use of CFI in lint yield prediction

can be done in the future. There is also the possibility of

misclassification while separating cotton white pixels and

background soils for CFI calculation. Future research can work

on assessing quality of those filtering techniques to avoid the

misclassifications. Moreover, top-view UAV imagery from 45 m

height may not fully capture the cotton bolls present in the middle

section of cotton plants. Future research can investigate the
FIGURE 9

Predicted versus measured harvest index (HI) using CFI-based lint yield and the highest seasonal biomass obtained from the four models that
performed the best in predicting above-ground biomass. Grey circles represent the 2021 growing season, and orange circles represent the 2022
growing season. R2

2021 and R2
2022 represent the coefficient of determination for predicted versus measured regression for the 2021 and 2022

growing season, respectively. The diagonal line is a reference line with a slope equal to 1. CFI, Cotton Fiber Index; MSAVI, Modified Soil Adjusted
Vegetation Index; OSAVI, Optimized Soil Adjusted Vegetation Index; RVI, Ratio Vegetation Index; SAVI, Soil Adjusted Vegetation Index.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1248152
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pokhrel et al. 10.3389/fpls.2023.1248152
influence of different flight parameters such as flight height and

sensor resolution on accurate estimation of cotton lint yield and

above-ground biomass prediction. This would potentially aid in

increasing the estimation accuracy of the cotton harvest index.

Overall, this study is the first attempt of its kind to use low-cost

UAV RGB and multispectral imagery to predict yield-determining

physiological parameters of cotton throughout the season and the

results obtained here shows a strong potential to utilize and expand

the use of remotely-sensed imagery for estimating yield-driving

functional traits of cotton.
5 Conclusions

The objectives of this study were to predict IPARf, RUE, and

biomass of cotton during the growing season using VIs derived

from UAV-based multispectral imagery and GDD, and to estimate

cotton HI from biomass models and CFI-based lint yield estimates.

Estimated IPARf using models based on RVI, RECI, NDRE and

SCCCI showed strong relationships with actual IPARf values during

cross-validation. RUE was best explained by VIs that used red-edge,

green, and near-infrared bands such as RECI, NIR/G, NDRE, and

SCCCI, which are linked to the chlorophyll content per unit leaf

area in past studies. Models based on MSAVI, OSAVI, RVI, and

SAVI explained most of the variation in above-ground biomass

during cross-validation. CFI had a moderate relationship with the

machine-harvested lint yields. Estimated HI based on CFI-based

lint yield estimates and biomass models showed no significant

relationships with actual HI values and only weak relationships

with actual values during the 2022 growing season. Further research

towards accurate estimation of lint yield and biomass is

recommended to predict cotton harvest index. Thus, we can

conclude that UAV-based RGB and multispectral imagery can be

utilized to predict some yield-determining physiological parameters

in cotton.
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Porcar-Castell, A., Malenovský, Z., Magney, T., Van Wittenberghe, S., Fernández-
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Glossary

AICc Akaike Information Criterion Value

BIC Bayesian Information Criterion

CFI Cotton Fiber Index

EVI Enhanced Vegetation Index

EVI2 Enhanced Vegetation Index 2

ExG Excessive Greenness Index

GCPs Ground Control Points

GDDs Growing Degree Days

GNDVI Green Normalized Difference Vegetation Index

GNSS Global Navigation Satellite System

GPS Global Positioning System

GRVI Green Red Vegetation Index

HI Harvest Index

IPAR Intercepted Photosynthetically Active Radiation

IPARf Fraction of Intercepted Photosynthetically Active Radiation

LAI Leaf Area Index

MSAVI Modified Soil Adjusted Vegetation Index

N Nitrogen

NDRE Normalized Difference Red Edge Index

NDVI Normalized Difference Vegetation Index

NIR Near infrared

NIR/G Near infrared to Green ratio

OSAVI Optimized Soil Adjusted Vegetation Index

PAR Photosynthetically Active Radiation

PRI Photochemical Reflectance Index

R2 Coefficient of Determination

RE/R Redegde to Red ratio

RECI Rededge Chlorophyll Index

RGB Red Green Blue Composite

RGBVI Red Green Blue Vegetation Index

RMSE Root Mean Sun Square Error

ROI Region of interest

RTK Real Time Kinematics

RUE Radiation Use Efficiency

RVI Ratio Vegetation Index

SAVI Soil Adjusted Vegetation Index

SCCCI Simplified Canopy Chlorophyll Content Index

SIF Sun-induced Fluorescence

TCARI Transformed Chlorophyll Absorption Reflectance Index
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UAV Unmanned Aerial Vehicle

VARI Visible Atmospherically Resistant Index

VIs Vegetation Indices

WDRVI Wide Dynamic Range Vegetation Index
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