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Climate influences net primary productivity (NPP) either directly or indirectly via

phenology. Therefore, clarifying the indirect effects of climate on NPP through

phenology is of utmost importance.However, theunderlyingmechanismsbywhich

phenology indirectly affects NPP are unknown and poorly studied. Based on

different structural equation models, this study analyzed the influence of

phenology on the relationship between climate and NPP, and the results were as

follows: (1) Temperature and solar radiation directly affect the end and beginning of

the growing season, respectively, while precipitation indirectly affects the beginning

of the growing season. (2) Spring phenologymainly affects the relationship between

subsequent precipitation and net primary productivity, while autumn phenology

mainly affects the relationship between temperature and net primary productivity.

(3) Solar radiation is the most important direct influence factor on phenology and

NPP, and the relationship between it and NPP is hardly disturbed by vegetation

phenology. This researchholds significant scientific and applied values in enhancing

our understanding of the effects of global warming, forecasting ecosystem

responses in the future, and formulating adaptation strategies.

KEYWORDS

net primary productivity, phenology, global warming, structural equation modeling,
remote sensing
1 Introduction

Net primary productivity (NPP) is defined as the amount of carbon fixed by plants

through photosynthesis minus the amount used for respiration. It is a crucial indicator of

plant community productivity and a major component of the terrestrial carbon cycle

(Michaletz et al., 2014). NPP determines the net carbon input to terrestrial ecosystems,
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playing an important role in regulating global carbon (CO2)

concentrations (Wang et al., 2021). Vegetation phenology refers

to the recurring timing of plant life cycle events like germination,

defoliation, flowering, and senescence. It signifies subtle changes

throughout the vegetation growth cycle that are crucial for plant

function, ecosystem services, and their biophysical and

biogeochemical feedback to the climate system (Piao et al., 2019).

Climate refers to the overall statistical characteristics of long-term

atmospheric states and weather phenomena, such as precipitation,

temperature, humidity, wind, and solar radiation. Studies have

shown that climate is one of the main factors that directly impact

vegetation phenology and NPP (Piao et al., 2019; Wu et al., 2021;

Liu et al., 2022; Sun et al., 2022). Climate can strongly influence

NPP by altering environmental conditions such as resource

availability (nutrients, thermoregulation, water, and light)

required for plant growth and photosynthesis; and also affecting

the timing, duration, and magnitude of recurrent plant life cycle

events (phenology), leading to changes in vegetation responses to

seasonal fluctuations. For example, higher temperatures can

stimulate plant metabolism and increase photosynthetic rates and

NPP (Piao et al., 2019; He et al., 2022). Wang et al. (2023) found

that NPP in Chinese forests showed a significant positive

correlation with both mean annual temperature and mean annual

precipitation, but this positive correlation gradually weakened over

time. In addition, all plant phenological changes are almost highly

correlated with temperature changes, especially in the months

before seasonal life cycle events (Peñuelas and Filella, 2001).

Warmer temperatures in spring can trigger earlier bud break,

which extends the growing season and contributes to even greater

plant productivity (Buermann et al., 2018; Zhou et al., 2020).

Similarly, warmer temperatures in autumn may lead to delayed

leaf senescence and extended periods of growth (Piao et al., 2019;

Shen et al., 2022). However, higher temperatures increase

respiration, which can wholly or partially offset productivity

(Ruehr et al., 2023). On the other hand, lower temperatures can

reduce photosynthetic rates, limiting plant growth. They can also

delay critical events like bud break, ultimately shortening the

available growing season for plants (Shen et al., 2022). And, this

increased exposure to frost and cold temperatures may become a

problem in colder regions (Piao et al., 2019). Furthermore, water

limitation often decreases plant productivity, although not in all

cases. Many ecosystems are becoming more sensitive to changes in

water availability, in terms of productivity and greenness (Ruehr

et al., 2023). Moreover, drought conditions and lower humidity can

lead to plant water stress, causing earlier leaf senescence and a

shorter growing season (Piao et al., 2019). For example, Ge et al.

(2021) found that preseason droughts at the start of the vegetation

growing season (SOS) are essential to vegetation productivity in the

Yungui Plateau, southwest China.

Meanwhile, vegetation NPP is highly related to the timing

of phenological onset, particularly in spring and autumn (Wu

et al., 2021). The early SOS in spring and the delayed end of the

vegetation growing season (EOS) in autumn, caused by climate

warming, are major factors that increase plant productivity (Zhang

et al., 2022). Seasonal changes in vegetation phenology can adjust
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photosynthesis and other ecosystem processes leading to changes in

the timing and magnitude of NPP, which in turn has significant

implications for terrestrial carbon cycling (Wu et al., 2021; Sun

et al., 2022). For instance, the early SOS at the regional level can

significantly boost terrestrial ecosystems’ carbon uptake in spring

and potentially offset some of the increased atmospheric CO2 (Shen

et al., 2022). Chen and Zhang (2023) found that SOS of vegetation

phenology was negatively correlated with NPP in Yunnan, while

EOS and LOS were positively correlated with NPP. Meanwhile, Sun

et al. (2022) found a significant positive correlation between NPP

and LOS in forests. With the increasing research on vegetation

phenology and NPP, it has become evident that climatic factors can

directly impact plant community NPP by regulating metabolic

processes such as photosynthesis and respiration (Michaletz et al.,

2014; Sun et al., 2022). Simultaneously, these factors also indirectly

influence plant community NPP by governing phenological and

growth status aspects, such as growing season length and plant size

(Michaletz et al., 2014; Wu et al., 2021; Sun et al., 2022). Although

Gao et al. (2023) found that in China, the direct effect of climate

factors on NPP was stronger than the indirect effect, in some

specific cases, these indirect effects can even contribute more to

variation than direct effects (Zheng et al., 2020). For instance, in a

study by Zhou et al. (2020), researchers found that spring vegetation

growth across forests and grasslands was primarily determined by

SOS rather than climatic factors. Additionally, Piao et al. (2019)

observed that the extended duration of the vegetation growing

season was the main factor contributing to enhanced productivity

in boreal ecosystems since the 1980s. And Dang et al. (2023) also

found that LOS was the most important factor driving vegetation

productivity in the Northern Hemisphere ecosystems.

Finally, as mentioned above, climate change can indirectly affect

the net primary productivity (NPP) of vegetation by influencing

vegetation phenology changes (Wu et al., 2021). However, few

studies have examined the relationship between climate change,

phenology, and NPP (Sun et al., 2022). In particular, almost no

studies have been conducted on climate affecting NPP indirectly

through influencing phenology. Due to the diversity of vegetation

phenology trends, the exact mechanism of how climate acts on

phenology and thus indirectly affects NPP remains unclear (Yu

et al., 2022). It remains challenging to properly assess the impact of

climate change on vegetation phenology and NPP, and to quantify

the relationship between vegetation phenology and NPP (Piao et al.,

2019). Therefore, there is an urgent need to study how vegetation

phenology affects the relationship between climate and NPP, i.e., the

mechanism of how climate indirectly affects NPP by influencing

phenology. This research finding can contribute significantly to our

understanding of how phenology regulates NPP, thereby facilitating

practices for carbon neutralization in China and globally (Sun et al.,

2022; Yu et al., 2022). In this study, we aimed to investigate the

temporal trends and variability of vegetation phenology in Yunnan

under global warming conditions from 2001 to 2018, and to

examine the mechanisms of NPP response to phenological

changes under global warming. We aim to address the following

key scientific questions: (1) What are the vegetation phenology

patterns in Yunnan over the past two decades? (2) What are the
frontiersin.org
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mechanisms by which NPP responds to vegetation phenology

changes? In particular, how does vegetation phenology impact the

effects of climate change on NPP?
2 Data and methods

2.1 Research area

Yunnan province (Figure 1), situated in the southwestern

region of China, is renowned for its rich plant diversity and

endemism. It encompasses a wide range of vegetation types,

ranging from tropical rainforests to alpine shrublands. The

distinct geographic location of Yunnan, where the Himalayan

mountains and the Southeast Asian peninsula converge, makes it

a critical area for studying the impacts of climate change on

vegetation phenology. Firstly, Yunnan plays a vital role in the

global carbon cycle, given its vast expanse of forests and other
Frontiers in Plant Science 03
vegetation acting as carbon sinks (Yuan et al., 2017; Ding et al.,

2021). Secondly, Yunnan exhibits a high sensitivity to variations in

temperature and precipitation, which can profoundly impact

vegetation phenology and ecosystem function (Ge et al., 2021).

Thirdly, Yunnan province is renowned for its remarkable diversity

in phenological patterns (Liu et al., 2022). The major vegetation

types in Yunnan include tropical rainforest, monsoon rainforest,

evergreen broad-leaved forest, coniferous forest, subalpine meadow,

etc., each exhibiting distinct phenological characteristics. Changes

in vegetation phenology and carbon uptake in Yunnan can

therefore have significant implications for regional and global C

cycling and climate. Overall, Yunnan’s rich plant diversity,

sensitivity to climate variability, and ecological importance make

it an ideal study object for advancing our understanding of the

impacts of vegetation phenology on ecosystem function and service.

Moreover, the unique characteristics of Yunnan can also provide

insights into the broader global patterns of plant response and

adaptation to climate change.
FIGURE 1

Location of the study area: inset maps show mean annual temperature (TEMP), mean annual precipitation (PREC), and mean annual solar radiation
(SRAD) during 2001–2018, as well as digital elevation (Elevation).
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2.2 Data

Based on the research objectives of this paper and existing

studies (Lu et al., 2021; Zhang et al., 2021; Chen and Zhang, 2023),

we selected representative influencing factors of climate, phenology

and vegetation growth conditions, respectively. The three

meteorological variables were precipitation (PREC), temperature

(TEMP) and solar radiation (SRAD). The three phenology variables

were the start (SOS), end (EOS) and length (LOS) of the growing

season. The normalized vegetation index (NDVI) was used to

characterize the natural growth of vegetation. Due to the drastic

changes in vertical elevation in Yunnan Province, this study

specifically included elevation above sea level (ELEV) in the

analysis. The researchers downloaded time series data (e.g.,

remote sensing and meteorological data) and non-time series data

(e.g., elevation data) and pre-processed them, including coordinate

alignment, projection transformation and resolution adjustment.

Among them, the meteorological data (1979–2018, spatial

resolution 0.1°) were obtained from the National Meteorological

Data Center (https://data.cma.cn/) and the National Tibetan

Plateau Data Center (https://data.tpdc.ac.cn/). MODIS satellite

data (2001–2019, spatial resolution 500 m) MODIS satellite data

(2001–2019, spatial resolution 500 m), including MOD09A1-

(NDVI), MCD12Q2-(LOS/EOS/SOS) and MOD17A3-(NPP).

Digital elevation data (90 m spatial resolution) were downloaded

from the USGS (https://lpdaac.usgs.gov/data/). Among the data

products, the Terra and Aqua combination Moderate Resolution

Imaging Spectroradiometer (MODIS) Land Cover Dynamics

(MCD12Q2) version 6 data product provides global land surface

phenology metrics for each year from 2001 through 2019. The

MCD12Q2 Version 6 data product is derived from time series of the

2-band Enhanced Vegetation Index (EVI2) calculated fromMODIS

Nadir Bidirectional Reflectance Distribution Function (BRDF)-

Adjusted Reflectance (NBAR). Vegetation phenology metrics at

500 meter spatial resolution are identified for up to two detected

growing cycles per year. Each MCD12Q2 file (multilayer data file

HDF4 format) provides information layers of detected phenological

indicators on an annual basis. For example, total number of

vegetation cycles, green start (i.e., SOS), green rise midpoint,

maturity, green peak, senescence, green fall midpoint, and

dormancy (i.e., EOS). And LOS is obtained by subtracting SOS

from EOS. Due to the limitations of MODIS data and

meteorological data time series, the time span used in this project

is 2001–2018. The temporal resolution of all time series data is in

years. Additionally, given the large number of SEMmodels, the long

computation time, and the spatial resolution of all the data, we used

the “cubic” method to resample the data and increase/decrease the

spatial resolution to 5000 m to improve computational efficiency.
2.3 Methods

2.3.1 Pearson correlation
We used Pearson correlation to detect the correlation between

the factors. The Pearson correlation formula can be seen in Eq. (1):
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r =
no​xy − (o​x)(o​y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½no​x2 − (o​x)2�½no​y2 − (o​y)2�
q , (1)

where r is the Pearson correlation coefficient, x represents the

values in the first set of data, y represents the values in the second set

of data, and n is the total number of values. The r is a number

between −1 and +1 that measures the strength and direction of the

relationship between two variables.

2.3.2 SEM
We use Structural equation modeling (SEM) to decompose the

direct and indirect effects of the factors. SEM combines traditional

path analysis and factor analysis perfectly and enables the

decomposition of direct and indirect effects of one variable on

another, representing them as standardized path coefficients (Sun

et al., 2022). In the model, the path coefficient represents the

magnitude of the direct effect, whereas the product of all path

coefficients along the pathway from the dependent variable to the

outcome variable through mediating variables signifies the

magnitude of the indirect effect. The total effect is obtained by

summing the direct and indirect effects. The SEM model is defined

as follows:

y = By + G x + z (2)

where y and x indicate the column vectors of the endogenous

variables and column vectors of the exogenous variables,

respectively. B, G, and z are the relationships between the

endogenous variables, the influence of exogenous variables on the

endogenous variables, and the residual term of the structural

equation, respectively. All statistical analyses were performed

using the Amos 24 software (IBM SPSS Inc.). To analyze the

direct effect of climate on NPP and the indirect effect of climate

on NPP through phenology and vegetation growth status, we

constructed four types of SEM models for the analysis (Chu et al.,

2016). First, multicollinearity among the factors was tested before

modeling, and the test results are given in Table 1 in the

supplementary document. Among them, LOS had significant

multicollinearity problems with SOS and EOS. So LOS was

modeled separately from EOS and SOS factors. Secondly, four

types of SEMs were constructed: (1) SEM1 with only ELEV and

climate factors, (2) SEM2 with the introduction of the vegetation

growth condition factor NDVI in addition to SEM1, (3) SEM3 with

the introduction of the vegetation phenology factor in addition to

SEM1, and (4) SEM4 with both the vegetation growth condition

factor NDVI and the phenology factor introduced in addition

to SEM1.

2.3.3 Polynomial regression model
We used a polynomial regression model to fit the changes in the

factors. The use of linearity or non-linearity was determined by

looking at the scatter plots of the factors, as well as the R-squared

and p-values of the regression results. Such a model for a single

predictor, X, is:

Y = b0 + b1X + b2X
2 +… + bhX

h+ ∈, (3)
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where h is called the degree of the polynomial. For lower

degrees, the relationship has a specific name (i.e., h = 2 is called

quadratic, h = 3 is called cubic, h = 4 is called quartic, and so on).

2.3.4 Variance inflation factor
We used variance inflation factors (VIF) to detect

multicollinearity among the factors. The VIF estimates how much

the variance of a regression coefficient is inflated due to

multicollinearity in the model. VIF for the jth predictor is:

VIFj =
1

1 − R2
j

(4)

where R2
j is the R

2-value obtained by regressing the jth predictor

on the remaining predictors. A VIF of 1 means that there is no

correlation among the jth predictor and the remaining predictor

variables. The general rule of thumb is that VIFj exceeding 5

warrant further investigation, while VIFj exceeding 10 are signs of

serious multicollinearity requiring correction (Marcoulides and

Raykov, 2019).

2.3.5 Slope (trend analysis)
We use slope to determine the trend of climate factors over the

time series. The slope of the fitting function can be expressed as

follows (Ge et al., 2021; Wu et al., 2021; Zhang and Ye, 2021):

Slope =
non

i=1i� Xi −on
i=1ion

i=1Xi

non
i=1i

2 − (on
i=1i)

2 , (5)

where the slope is the trend of the factor in time series, n is the

number of years monitored, and Xi represents the element value

corresponding to the ith year. When the slope>0, the elemental

sequence increased across the time steps; conversely, when the

slope<0, the elemental sequence decreased, and a larger absolute

value of the slope resulted in a greater rate of change of the element.
3 Results

3.1 Spatio-temporal variations in climate

The overall temperature in Yunnan Province is high in the

south and low in the north, consistent with the latitudinal

distribution. Northwestern Yunnan has lower temperatures due

to the effect of higher elevation. On the other hand, some low-lying

areas, such as dams and river valleys (Figure 1 Elevation), have

higher temperatures (Figure 1 TEMP). Rainfall in Yunnan Province

is influenced by the monsoon climate zone in which it is located,
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with a general distribution of high in the southwest and low in the

northeast. Also influenced by the monsoon, southeastern Yunnan

has relatively high rainfall. Moreover, due to the influence of

altitude, rainfall in the upland region is lower than that in the

lowland region (Figure 1 PREC). In particular, under the combined

effects of location, monsoon, topography and sunshine hours, solar

radiation in Yunnan Province shows a characteristic mid-high and

two-side-low distribution form. At the same time, the area with

higher radiation in the middle shows a distribution form of high in

the north and south and low in the middle due to the topography

(Figure 1 SRAD). From Figure 2, it can be seen that the climate of

Yunnan Province has a certain trend over the study period.

Temporally, temperature showed a significant upward trend

(slope = 0.032, P = 0.035), whereas neither rainfall nor solar

radiation changes were significant (Figure 2D). Spatially (based

on each pixel), the trend in rainfall exhibited a minor magnitude

(slope ranging from −0.002 to 0.005) and indicated a slight decrease

in the northwestern region (Figure 2A). Conversely, the trend of

solar radiation displayed the largest magnitude (slope ranging from

−0.89 to 1.68) and was more variable in the study area. Specifically,

the outer regions of Yunnan Province were dominated by

decreasing trends, while the central part was dominated by

increasing trends (Figure 2B). Temperature trends were moderate

and relatively consistent within the study area, except for a

significant decreasing trend in the western margin and a

significant increasing trend in the northwestern part (Figure 2C).
3.2 Correlation among phenology, climate,
and NPP time series

To analyze the relationship between the climate and NPP and

phenology over time, we performed a correlation analysis for the

2001–2018 time series (Figure 3). The p-values for all correlations

were less than 0.05. Among them, NPP was mainly positively

correlated with PREC, LOS and NDVI, with correlation

coefficients of 0.68, 0.67 and 0.76, respectively. LOS was mainly

positively correlated with TEMP, PREC, EOS and NDVI, and

negatively correlated with ELEV, with correlation coefficients of

0.54, 0.52, 0.71, 0.67 and −0.59, respectively. SOS was mainly

negatively correlated with NDVI, with a correlation coefficient of

−0.5. EOS was mainly positively correlated with TEMP, and

negatively correlated with ELEV, with correlation coefficients of

0.6 and −0.61, respectively. The climate factors that have the

greatest impact on NPP, EOS/LOS, SOS and NDVI are PREC,

TEMP, SRAD and PREC, respectively.
TABLE 1 Results of multicollinearity detection (MLD) for each factor.

MLD TEMP PREC SRAD SOS EOS LOS NDVI ELEV

VIF of all factors without LOS 3.99 1.64 1.32 2.39 1.95 – 2.32 4.67

VIF of all factors without SOS and EOS 3.99 1.63 1.23 – – 2.33 2.09 4.42

VIF of all factors 4.0 1.7 1.33 267.51 420.92 491.79 2.39 5.1
fr
VIF<5, no significant multicollinearity problem.
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3.3 Changes and relationships of SOS, EOS
and LOS under global warming

SOS showed a certain trend of advancement over time, although

the trend was not very significant and only satisfied a significance of

0.1 (Figure 4A). On the other hand, EOS did not show a significant

linear relationship over time. However, it satisfied a significant

cubic relationship, forming a fluctuating change of advancement,

followed by postponement and then advancement again

(Figure 4B). While both SOS and EOS did not show significant

linear changes over time, LOS showed a significant linear growth

trend (Figure 4C). The SOS and EOS show a clear quadratic U-

shaped relationship (Figure 4D). As shown in the figure, when the
Frontiers in Plant Science 06
SOS is less than 106 day of year, a delayed SOS will advance the

EOS, resulting in a shorter LOS. Conversely, when the SOS is

greater than 106 day of year, the EOS will also be delayed if the SOS

is delayed. However, since the delay in the EOS is greater than the

delay in the SOS, it leads to an increase in the LOS. Consequently,

the non-linear relationship between SOS and EOS leads instead to a

very significant linear growth trend in LOS. Furthermore, it is

evident from the figure that the NPP exhibits a notable decrease

with a delay in the SOS. Specifically, for each day of SOS delay, the

NPP decreases by 4.58 gC/m2 yr. LOS is jointly determined by SOS

and EOS. Specifically, LOS exhibits a highly significant positive

correlation with EOS across years. For every day of delay in EOS,

LOS will lengthen by 0.66 days/year (Figure 4E). Unlike EOS, SOS
B

C D

A

FIGURE 2

Climate change trends. Changes in (A) slope values of precipitation (PREC), (B) slope values of solar radiation (SRAD), (C) slope values of temperature
(TEMP), and (D) trends of PREC, SRAD and TEMP during 2001–2018.
FIGURE 3

Correlations between climate and NPP and phenology during 2001–2018.
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has a segmented effect on LOS. When SOS is less than 106 day of

year, SOS has a significant impact on LOS. Every day of delay in

SOS reduces the LOS by 2.97 days (Figure 4F). However, when SOS

is greater than 106 day of year, the effect of SOS change on LOS is

significantly attenuated and the change in LOS is mainly

determined by EOS (Figures 4E, F).
3.4 Structural equation model results

As shown in Figure 5, the explanatory power of ELEV and

climate factors for NPP is 0.6 (SEM1). The explanatory power for

NPP reaches 0.8 (SEM2) when NDVI is added to the model SEM1.

However, introducing SOS-EOS or LOS as phenological factors only

yields an explanatory power for NPP ranging from 0.7 to 0.74 in

SEM3. When both NDVI and phenological factors SOS-EOS or LOS

are included in the model (SEM4), the explanatory power for NPP

demonstrates a minimal increase of 0.01–0.02 to reach 0.81–0.82

compared to that in SEM2. In addition, the direct effects of PREC and

TEMP on NPP were significantly reduced by adding NDVI and

phenological factors and then decomposed into indirect effects, while
Frontiers in Plant Science 07
the direct effects of SRAD on NPP were increased. For instance,

(1) When we introduced the EOS-SOS or LOS factor (SEM3), the

indirect influence of PREC on NPP through phenology was 0.134

(EOS-SOS) and 0.132 (LOS), splitting out 22.4% and 22.1% of the

total effect, respectively. The indirect effects of TEMPwere 0.053 and

0.065, splitting 45.3% and 55.6% of the total effect, respectively.

(2) When we introduced the NDVI factor (SEM2), the indirect effect

of PREC was 0.262, accounting for 43.9% of the total effect, while the

indirect effect of TEMP was 0.024, splitting 20.5% of the total effect.

(3) When both phenology (EOS-SOS/LOS) and NDVI factors were

introduced (SEM4), it combined the partitioning effect of both types

of factors on PREC and TEMP, although the total effect on NPP did

not increase. That is, the indirect effect of PREC on NPP was 0.267

(EOS-SOS&NDVI) and 0.279 (LOS&NDVI), splitting 44.7% and

46.7% of the total effect, respectively. The indirect effects of TEMP on

NPPwere 0.041 and 0.047, splitting 35% and 40.2% of the total effect,

respectively. (4) The direct effect of SRAD increases from 0.29 in

SEM1 to 0.36 in SEM4b. It is worth noting that although the SOS-

EOS model exhibits slightly higher ultimate explanatory power for

NPP than the LOS model, the latter demonstrates a lower Akaike

Information Criterion (AIC) value.
B

C D

E F

A

FIGURE 4

Relationship between the start (SOS) and end (EOS) of the growing season for 2001–2018. Temporal trends in: (A) the start of the growing season
(SOS), (B) the end of the growing season (EOS), and (C) the length of the growing season (LOS). Relationship between: (D) net primary production
(NPP), the end of the growing season (EOS) and the start of the growing season (SOS), (E) the end of the growing season (EOS) and the length of the
growing season (LOS), and (F) the start of the growing season (SOS) and the length of the growing season (LOS).
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4 Discussion

4.1 Changes in phenology and the
influence of climate on phenology

Among the climate factors, TEMP mainly affects EOS directly

(Figure 6 EOS), SRAD mainly affects SOS directly, and PREC

mainly affects SOS indirectly (Figure 6 SOS), while PREC and

TEMP have no significant direct effect on SOS. Similarly, Chen and

Zhang (2023) found that in Yunnan, the temperature was

significantly positively correlated with EOS and SRAD was

significantly positively correlated with SOS. Zhang et al. (2023)

also found that temperature had a greater effect on autumn

phenology than radiation and precipitation in China. In contrast

to our study, Wu et al. (2021) found that SOS was significantly
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negatively correlated with temperature in most of the study area,

and Shen et al. (2022) also found that SOS in the study area was

more sensitive to mean temperature and warming in both time and

space, while Yu et al. (2022) found that the main trends of SOS and

EOS in the study area were closely related to changes in temperature

and precipitation.

Furthermore, we found that the overall effect of SRAD on SOS

and EOS was the largest among the climate factors (Figure 6).

Stronger SRAD is usually accompanied by higher temperature and

sufficient sunshine intensity (Yang et al., 2017), so in addition to its

role in photosynthesis, it can provide valuable insights into

photoperiod estimation (Yang et al., 2017) and indicate the

duration of sunlight at sunrise. Stronger SRAD is associated with

higher sunshine intensity, higher temperature and longer sunshine

duration (Calle et al., 2010). This suggests that SRAD is the most
FIGURE 5

Structural equationmodeling (SEM) is utilized to analyze the direct, indirect and total effects of the variables. c2 = 4.65, df = 2, p = 0.1, RMSEA<0.01; SEM1:
AIC = 30.65; SEM2, SEM3a: AIC = 42.65; SEM3b, SEM4a: AIC = 56.65; and SEM4b: AIC = 72.65 (As new variables are introduced, the AIC values become
progressively larger). The red and blue arrows indicate negative and positive correlations, respectively, and arrow thickness is the strength of correlation. The
solid and dotted lines indicate significant (p<0.05) and insignificant effects (p > 0.05), respectively. Values on the arrows indicate standardized path coefficients.
The R2 values below the response variables represent the proportion of variation explained by relationships with other variables. ***, p < 0.001.
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important climatic factor determining SOS and EOS in Yunnan

Province. These results are consistent with those of Chen and Zhang

(2023). In addition, although TEMP may not have as much

influence on SOS as PREC and SRAD, it still plays an important

role. Specifically, TEMP determines the onset of photoperiodic

signal capture. Since autumn and spring have the same

photoperiod length, plants must first experience low temperatures

and then receive signals that winter has passed before they can begin

to receive photoperiodic signals (Körner and Basler, 2010).

Photoperiod is defined as the duration of light availability in a

24-hour period (Piao et al., 2019), and changes in photoperiod are

relatively more accurate and stable than changes in temperature.

Yunnan Province has a complex and diverse topography, and

temperature varies dramatically. If the vegetation SOS is only

sensitive to temperature, it is easy to make “mistakes”.

Photoperiod sensitivity can, therefore, protect plants from the

potentially fatal consequences of tracking temperatures at the

“wrong” time of year (Körner and Basler, 2010). As a result of

global warming, plants may sense temperature increases earlier and

thus emit SOS earlier; however, future prolonged and rapid

warming may increase the thermal requirements for SOS by

reducing the number of cold days or slowing the realization of

cold requirements, potentially slowing the trend of SOS progression

(Shen et al., 2022). As the SOS photoperiod threshold (set by genes)

is approached, internal controls will increasingly limit the

progressive trend of SOS. When the photoperiod threshold is

reached, the SOS will stop advancing, regardless of increasing

temperature or solar radiation, due to internal genetic limitations.

Breaking this limit will require several generations of trees to renew

the mutation, which could take hundreds of years. This

phenomenon may provide some insight into the slowing of

phenological change in most vegetation (Körner and Basler, 2010).

In addition, the negative correlation between PREC and SOS

may also be caused by increased precipitation leading to increased

cloudiness, which in turn reduces SRAD and indirectly affects SOS.

It is also worth noting that the photoperiodic sensitivity of spring

phenological events may vary considerably between species and

latitudes, and the influence of climate on phenology may also vary
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considerably between regions (Piao et al., 2019). As the exact

mechanisms of the effects of temperature, precipitation and their

interactions on phenology are incompletely understood (Yu et al.,

2022), and the responses of different ecosystems to different levels of

climate change are far from clear, the main reasons for these

differences need to be further investigated and analyzed, especially

in the Chinese region (Yang et al., 2017).
4.2 Interrelationships and effects of
vegetation phenology factors

The spatial pattern of EOS trends is more complicate than that

of SOS (Piao et al., 2019). EOS is positively correlated with TEMP

and shows significant cubic polynomial fluctuations over time due

to the very drastic temperature changes in Yunnan Province.

Consistent with our findings, Shen et al. (2022) also observed that

higher Tmin (Minimum Temperature) substantially delays the EOS

by slowing the physiological processes of leaf senescence. However,

Wu et al. (2021) found that the autumn phenology of typical

vegetation types in the study area was advanced significantly,

even more than the spring phenology. In addition, recent studies

found a positive intercorrelation between spring and autumn

phenology (Piao et al., 2019; Chen and Zhang, 2023).

Nonetheless, our study found a significant quadratic U-shaped

relationship between SOS and EOS (Figure 4D). When SOS is

greater than 106 days, the direction of change of SOS and EOS is

primarily synchronous, i.e. if SOS is postponed, EOS is also delayed.

Combined with Figures 4D–F, it becomes evident that once SOS is

above 106 days, there is no longer a significant relationship between

SOS and LOS, and the prolongation of LOS is mainly dominated by

EOS. Therefore, with the aging of the plant leaves and increased

respiration due to delayed EOS, NPP decreased instead. However,

when SOS was less than 106 days, the changes in SOS and EOS

became opposite, i.e. SOS advanced, EOS delayed, and LOS

prolonged, resulting in an increase in NPP. Shen et al. (2022) also

showed that EOS was affected by SOS, which was manifested in the

form of EOS advancing (delayed) as SOS advanced (delayed).
FIGURE 6

Direct, indirect and total effects of each factor on EOS and SOS in SEM4.
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Warmer temperatures and increased precipitation were shown to be

the main drivers of SOS advancement and EOS delay, but

insufficient moisture led to SOS delay and EOS advancement.

Shen et al. (2022) found that although the direct effect of

temperature on plant phenology is stronger than that of moisture

conditions, the deterioration of moisture conditions due to

warming may weaken (or even reverse) the effect of temperature

on phenology. Coincidentally, the mean value of SOS over the study

period was also about 106 days. This means that the mean value of

SOS (106 days) is likely to be the dividing line between changes in

NPP (increase or decrease) due to changes in EOS (advance or shift)

in the later period, which represents a transition point in the

biological growth and maintenance process in Yunnan Province.

In addition, the SOS in Yunnan Province maintained a continuous

advancement from 2012 to 2015, and the changes in SOS and EOS

became opposite after 2014 (Figures 4A, B). This change may be

related to the consecutive province-wide drought disasters in

Yunnan from 2009 to 2013. Annual precipitation was more than

5% below normal in each of these five years, with three consecutive

years of 14% below normal in 2010, 2011 and 2012. There is some

evidence that warmer or earlier springs may cause earlier autumn

senescence because of the fixed lifespans of leaves or adversely affect

plant productivity later in the season through the build-up of water

deficits (Buermann et al., 2018; Liu et al., 2022). Shen et al. (2022)

also found that the EOS tends to advance under higher Tmax

(Maximum Temperature), likely owing to confounding water

limitation. Because earlier spring phenology may increase soil

water loss in the early stages of the growing season, thereby

increasing the prevalence of summer drought that may

subsequently result in earlier leaf senescence (Piao et al., 2019). Li

et al. (2023) also found that Spring phenology strongly governs

vegetation growth and soil water consumption in the growing

season. Vegetation phenology interacts with drought timing and

thus determines subsequent vegetation growth. Furthermore, the

interaction between spring and autumn phenological events is likely

to modify phenological responses to ongoing climate warming

(Piao et al., 2019). When the water deficit due to the

advancement of SOS reaches the threshold of vegetation water or

nutrient tolerance, EOS no longer postpones but starts to advance

with the advancement of SOS (Shen et al., 2022). Possible

underlying mechanisms for such interseasonal phenological

correlations may be directly related to leaf traits and may be

ascribed to the indirect effects of environmental factors as well

(Piao et al., 2019). Because the SOS is involved in plants’ life rhythm

and carbon storage, it could modify the matching between

environmental conditions and life-cycle stages (Shen et al., 2022).

However, the relative importance between biological factors and

environmental factors on phenological responses to climate

warming needs to be further investigated (Piao et al., 2019).

Likewise, Xiong et al. (2023) found that spring phenology trends

in northern hemisphere mid- and high-latitude vegetation showed

an “early to late” reversal during the warming stagnation period,

and the average rate of change around the turning point was small.

The non-linear nature of this change invalidates the linear trend

analysis often used in existing studies, leading to important

differences in the analysis of spring phenology trends in the
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northern hemisphere mid- and high-latitude vegetation during

the warming stagnation (Xiong et al., 2023). The timing of plant

phenology events is determined by a variety of biological and

environmental factors. However, the extent to which these factors

influence plant phenology depends largely on the different

developmental stages of phenological events and specific

differences in plant life history strategies. Therefore, the relative

importance of biological and environmental factors on the

phenological response to climate warming requires further

research in the future (Piao et al., 2019).

As seen in Figure 4, while neither SOS nor EOS showed a

significant linear change, LOS maintained a significant linear

growth trend during the study period. On the one hand, although

there is advancement in EOS, the advancement trend of SOS is

stronger and there is an enhanced influence of SOS on LOS. Piao

et al. (2019) also found that the increase in LOS is mainly driven by

the advancement of SOS in Eurasia. On the other hand, because

SOS has not yet reached the photoperiodic threshold, there is still

room for SOS advancement. It can be seen that LOS in Yunnan is

mainly dominated by both SOS and EOS in the early stage and by

SOS in the later stage. Additionally, although NDVI and TEMP are

the main influences on LOS, PREC has a significant nonlinear effect.
4.3 Impact of phenology on the
relationship between climate and NPP

Figure 7 shows that NDVI, SRAD, SOS, EOS, and LOS have

mainly direct effects on NPP. ELEV has mainly indirect effects on

NPP. PREC and TEMP have a mixture of direct and indirect effects

on NPP, and the indirect effect occurs mainly due to the

introduction of NDVI or/and phenological factors. As reported

by Chen and Zhang (2023), the interaction of PREC and TEMP

with other factors had a large effect on NPP. Moreover, in our study

the effect of LOS on NPP was slightly lower than that of SOS-EOS

on NPP, which differs from the results of most studies. LOS is

jointly constrained by both SOS and EOS, and although LOS

showed a significant and continuous increasing trend, the changes

in SOS and EOS were more complex, as mentioned above

(Figure 4). Therefore, SOS-EOS has a better explanatory power

for the complex changes in NPP. Similar to our results, Yu et al.

(2022) also found that SOS-EOS was more important than LOS.

Although the delayed EOS led to a longer LOS, there was no

increase in NPP due to the limited and reduced photosynthetic

capacity coupled with an increase in respiration within the forest.

Furthermore, besides SRAD being critical for phenology, Yang et al.

(2017) found that the direct effect of solar radiation on NPP (0.31)

was greater than precipitation (0.25) and temperature (0.07).

Consistently, our findings also showed that the direct effect of

SRAD (0.36) on NPP was greater than PREC (0.33) and TEMP

(0.08). Notably, in the correlation analysis, the correlation between

TEMP and NPP was much greater than that of SRAD. However, in

the analysis of SEM, the direct effect of SRAD on NPP was much

greater than that of TEMP. These results suggest that TEMP may

not be the main direct limiting factor for vegetation NPP in Yunnan

Province. Instead, the study found that SRAD may have a greater
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direct influence on NPP due to its contribution to photosynthesis.

Similarly, the study of Chen and Zhang (2023) found that SRAD is

one of the factors that has an important effect on NPP and should

not be ignored. In addition, the relatively low effect of TEMP on

NPP suggests that the direct effect of warming on NPP is relatively

low. Nevertheless, other climate changes due to warming, like shifts

in the timing, location, and intensity of extreme weather and

precipitation, may considerably impact NPP (He et al., 2022).

Based on the SEM comparison (Figure 5), it was observed that

the overall explanatory power of each climate factor on NPP

remained unchanged (with PREC, TEMP, and SRAD exhibiting

total influences on NPP of 0.597, 0.117, and 0.321, respectively).

However, the introduction of phenology or NDVI altered the direct

influence or explanatory power of the climate factors on NPP and

resulted in the explanatory power of ELEV on NPP being almost

completely dominated by indirect effects (Figure 7). Specifically, the

direct influence of TEMP and PREC on NPP is weakened, but still

greater than their indirect influence on NPP. On the other hand, the

direct influence of SRAD is strengthened and becomes the

dominant factor among the climate factors with direct influence

on NPP. This result is mainly due to the fact that both TEMP and

PREC influence NPP indirectly by affecting NDVI and phenology

(Michaletz et al., 2014; Chu et al., 2016; Buermann et al., 2018; Piao

et al., 2019). Among them, PREC affects NPP mainly by influencing

the vegetation growth condition (NDVI) after SOS, because PREC

has the largest influence on NDVI among the climatic and

vegetation growth conditions (Figure 3). TEMP affects NPP

mainly by changing LOS through EOS, because TEMP has the

largest effect on EOS among the climatic and vegetation growth

conditions (Figure 3). While SRAD directly affects SOS, the

subsequent plant growth is mainly limited and affected by water,

and the indirect effects of SRAD on NPP through phenology and

NDVI have positive and negative effects that offset each other, so

that the direct effects of SRAD on NPP are almost unaffected by the

perturbation of phenology and NDVI. At the same time, because

SRAD mainly affects SOS, and the effect of SOS on NPP is also

largely dependent on subsequent PREC and NDVI, the indirect

effect of SRAD on NPP is not significant. As SRAD is somewhat
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correlated with both TEMP and PREC (Figure 3), the weaker

indirect effect of SRAD may have been included in the indirect

effects of PREC and TEMP. Ultimately, we conclude that whether

climate has an indirect effect on NPP is largely determined by the

factors we have analyzed and the characteristics of the study area.
5 Conclusions

The mechanisms underlying the relationship between NPP and

phenology are not fully understood, and several issues still need to

be addressed. We utilized SEM modeling to examine how

vegetation phenology affects the relationship between climate and

vegetation NPP. Our analysis revealed the following conclusions:

(1) TEMP mainly affects EOS directly, SRAD mainly affects SOS

directly, and PRECmainly affects SOS indirectly. In addition, SRAD

has the largest total effect on both SOS and EOS, indicating that

SRAD is crucial to the phenology of vegetation in Yunnan Province.

(2) There was a significant U-shaped relationship between SOS and

EOS, and the change of SOS and EOS became opposite once SOS

fell below 106 day of year. In addition, LOS maintained a significant

linear increasing trend during the study period, while neither SOS

nor EOS showed a significant linear change. (3) The direct effect of

SRAD on NPP was greater than PREC and TEMP, indicating that

SRAD may have a greater influence on NPP due to its contribution

to photosynthesis. (4) PREC affects NPP mainly by influencing the

vegetation growth condition (NDVI) after spring phenology (SOS);

TEMP affects NPP mainly by influencing EOS to change LOS; while

SRAD affects SOS directly in a photoperiodic manner and has a

direct effect on NPP with little interference from phenology

and NDVI.

However, our study has limitations due to the challenges and

constraints in computation, data collection, and analysis methods.

These limitations include: (1) the spatial and temporal resolution of

the data used in our study are not high enough, which may lead to

biased analysis results, especially at highly heterogeneous surfaces

(Piao et al., 2019). (2) The time range of the analysis is not long

enough, and an inadequate time range may not accurately reflect
FIGURE 7

Direct, indirect and total effects of each factor on NPP in SEM4.
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the actual patterns. Future research is necessary for continuous and

long-term monitoring and analysis using satellite observations

(Piao et al., 2019). (3) The resampling method may introduce

uncertainty to the results (Shen et al., 2023).
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