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Iron (Fe) is an essential micronutrient for plant growth and development due to

its role in crucial processes such as photosynthesis and modulation of the redox

state as an electron donor. While Fe is one of the five most abundant metals in

the Earth’s crust, it is poorly accessible to plants in alkaline soils due to the

formation of insoluble complexes. To limit Fe deficiency symptoms, plant have

developed a highly sophisticated regulation network including Fe sensing,

transcriptional regulation of Fe-deficiency responsive genes, and post-

translational modifications of Fe transporters. In this mini-review, we detail

how plants perceive intracellular Fe status and how they regulate transporters

involved in Fe uptake through a complex cascade of transcription factors. We

also describe the current knowledge about intracellular trafficking, including

secretion to the plasma membrane, endocytosis, recycling, and degradation of

the two main Fe transporters, IRON-REGULATED TRANSPORTER 1 (IRT1) and

NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN 1 (NRAMP1).

Regulation of these transporters by their non-Fe substrates is discussed in

relation to their functional role to avoid accumulation of these toxic metals

during Fe limitation.

KEYWORDS

iron, Fe, iron homeostasis, iron uptake, transcriptional and post-translational
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1 Introduction

Iron (Fe) is a crucial micronutrient for most living organism due to its redox properties.

Thanks to its ability to easily transfer electrons (gain or lose), Fe serves as co-factor in many

vital chemical reactions such as cellular respiration, DNA synthesis and photosynthesis

(Hänsch and Mendel, 2009; Palmer and Guerinot, 2009; Rengel et al., 2023). Consequently,

perturbation of Fe homeostasis leads to several growth, developmental or health symptoms

(Briat et al., 1995). According to the World Health Organization, Fe deficiency in humans

is the most severe nutritional issue in the world, with anemia caused by dietary Fe

deficiency affecting around 15% of the world’s population (World Health Organization,

2016; Safiri et al., 2021). In plants, Fe starvation is associated with both reduced growth and

chlorosis (Briat et al., 1995). Although Fe is the second most abundant metal in the Earth’s
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crust, its poor solubility renders Fe limiting for plant growth

(Rengel et al., 2023). In particular, alkaline and aerobic soil

conditions favor Fe oxidation and precipitation of insoluble ferric

(Fe3+) complexes. To counteract the Fe unavailability, plants have

developed two different Fe acquisition strategies.

The first one, referred to as strategy I, is a reduction-based strategy

used by all plant species except grasses to absorb Fe. It consists in a

multistepprocessdependingona local rhizosphere acidificationby root-

released protons, a subsequent Fe reduction (Fe3+ to Fe2+) and the

ferrous iron (Fe2+)uptake into rootcells (Briat et al., 1995; Schmidt, 2003;

Briat et al., 2015). In the model plant Arabidopsis thaliana, strategy I is

driven by a complex of three proteins localized to the plasmamembrane

of root epidermal cells. First, the ARABIDOPSISH+-ATPase 2 (AHA2)

proton pumpactively exports protons into the rhizosphere to reduce the

pH, hence increasing Fe3+ solubility. Then, the FERRIC REDUCTION

OXIDASE 2 (FRO2) reduces ferric iron into Fe2+ at the root surface.

Finally, the high-affinity Fe transporter IRON-REGULATED

TRANSPORTER 1 (IRT1) transports Fe2+ into root epidermal cells

(Robinson et al., 1999; Vert et al., 2002; Santi and Schmidt, 2009). Upon

Fe starvation, IRT1 is themajor Fe transporter. In Fe-replete conditions

however, the metal transporter NATURAL RESISTANCE-

ASSOCIATED MACROPHAGE PROTEIN 1 (NRAMP1) cooperates

with IRT1 and takes part in the Fe2+ uptake process as a low-affinity

transporter (Castaings et al., 2016). Plants using strategy I also secrete

secondary metabolites such as coumarins through the ATP-binding

cassette (ABC) transporter ABCG37 (also named PLEIOTROPIC

DRUG RESISTANCE 9: PDR9) to increase Fe mobility in the

rhizosphere (Fourcroy et al., 2014). As coumarins play an important

role in alkaline soils, it has been hypothesized that they might also form

complexes with Fe3+ that could be directly taken up into the root to

optimize Fe uptake (Robe et al., 2021). Graminaceous plants use a

chelation-based strategy for Fe acquisition, named strategy II. They

massively excrete phytosiderophores such as mugineic acids (MAs)

(Takagi et al., 1984; Schmidt, 2003).MAs are secreted in the root vicinity

through the TRANSPORTER OFMUGINEIC ACID 1 (TOM1) efflux

transporter, to chelate and solubilize Fe3+ (Takagi et al., 1984; Nozoye

etal., 2011;Nozoyeet al., 2015).Fe-MAcomplexes are then takenup into

root cells by theYELLOWSTRIPE1 (YS1)/YS1-LIKE (YSL) transporter

(Inoue et al., 2009; Lee et al., 2009).

Mechanisms involved in strategy II will not be further discussed

in this mini-review which focusses on the regulation of Fe uptake

processes dedicated to strategy I. First, we will give a brief overview

of Fe status sensing and the following steps regulating Fe

homeostasis in plants, including the rapid transcriptional and

post-transcriptional events occurring upon Fe deficiency. In a

second part, we will summarize the current knowledge on the

intracellular trafficking and post-translational regulation of the

two main Arabidopsis Fe2+ transporters.
2 Gene regulation upon Fe deficiency

2.1 Transcriptional regulation

Fe homeostasis is controlled by a transcriptional cascade

involving an intricate network of transcription factors (TFs)
Frontiers in Plant Science 02
regulating the expression of genes encoding proteins involved in

Fe uptake, distribution and storage (Figure 1). Fe depletion at the

vicinity of plant roots induces the phosphorylation of the basic

helix-loop-helix (bHLH) transcription factor bHLH121/

UPSTREAM REGULATOR OF IRT1 (URI) and its root cellular

relocalization from the central cylinder and the endodermis to the

cortex and the epidermis (Gao et al., 2020a). Phosphorylated URI

then forms heterodimers with members of the bHLH subgroup IVc

(bHLH34, bHLH104, bHLH105/IAA-LEUCINE RESISTANT 3

(ILR3) and bHLH115) (Zhang et al., 2015; Li et al., 2016b; Liang

et al., 2017; Kim et al., 2019; Tissot et al., 2019; Gao et al., 2020a; Lei

et al., 2020). Cooperatively, these TFs acts as direct transcriptional

activators of key genes involved in the Fe regulatory network,

including four bHLH Ib genes (bHLH38, bHLH39, bHLH100,

bHLH101), POPEYE (PYE/bHLH47), as well as BRUTUS (BTS)

and BRUTUS LIKE 1 (BTSL1), which both encode E3 ubiquitin

ligases (Kim et al., 2019; Gao et al., 2020a; Lei et al., 2020). In turn,

members of the bHLH Ib subgroup associate with bHLH29/FER-

LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION

FACTOR (FIT) to form heterodimers that promote the

expression of the Fe uptake machinery (Colangelo and Guerinot,

2004; Jakoby et al., 2004; Yuan et al., 2008). PYE, a bHLH of the

subgroup IVb, interacts with bHLH105/ILR3, to act as a

transcriptional repressor of its own expression and of the

expression of FERRITIN (FER) genes involved in Fe storage

(Long et al., 2010; Samira et al., 2018; Tissot et al., 2019;

Akmakjian et al., 2021), which are otherwise induced by

bHLH121/URI (Gao et al., 2020b). PYE, likely in interaction with

ILR3, also controls Fe redistribution, especially regarding its

mobility, through the negative control imposed on the expression

of NAS4 (NICOTIANAMINE SYNTHASE 4) involved in the

synthesis of nicotianamine (NA), a Fe chelator important for

intercellular Fe transport, and on the expression of ZINC-

INDUCED FACILITATOR 1 (ZIF1) involved in the vacuolar

sequestration of NA in roots (Long et al., 2010; Haydon et al.,

2012; Schuler et al., 2012; Tissot et al., 2019). PYE was also found to

repress the transcription of bHLH Ib genes (bHLH38, bHLH39,

bHLH100, and bHLH101) by directly binding to their promoters,

hence triggering the subsequent downregulation of IRT1 and FRO2

(Pu and Liang, 2023). Moreover, two transcription factors of the

myeloblastosis (MYB) family, MYB10 and MYB72, cooperate to

positively regulate NAS2 and NAS4 expression (Palmer et al., 2013),

and the expression of both MYB is induced upon Fe deficiency

under the control of heterodimeric complexes FIT/bHLH Ib and

might also be dependent on bHLH121/URI (Palmer et al., 2013;

Gao et al., 2020a; Lei et al., 2020).

Fine tuning of this complex transcriptional regulatory cascade

may be achieved by the Fe-deficiency-dependent phosphorylation

of bHLH121/URI and its subsequent phospho-dependent

degradation by BTS (Kim et al., 2019). It is noteworthy, however,

that BTS expression pattern is restrained to the stele (Selote et al.,

2015; Rodrıǵuez-Celma et al., 2019), where BTS would coexist with

an unphosphorylated, hence undegradable bHLH121/URI protein

(Kim et al., 2019). Furthermore, no interaction was uncovered

between bHLH121/URI and BTS or BTSL proteins in yeast two-

hybrid assays (Gao et al., 2020a). BTS and its homologs BTSL1 and
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BTSL2 are all E3 ubiquitin ligases that are able to bind Fe and to

adjust their biological function accordingly to negatively regulate Fe

homeostasis (Selote et al., 2015; Hindt et al., 2017; Kim et al., 2019).

The negative control imposed by BTS and BTSLs results from the

proteasomal degradation of their targets, among which are found

several bHLHs especially important for Fe homeostasis (e.g.

bHLH29/FIT, bHLH104, bHLH105/ILR3 and bHLH115) (Selote

et al., 2015; Rodrıǵuez-Celma et al., 2019). BTS and BTSL proteins

all possess hemerythrin/HHE Fe-binding domains at their N-

terminus (Hindt et al., 2017), and the BTS protein is stabilized in

the absence of Fe bound to glutamic acid residues located within

HHE domains (Selote et al., 2015). At the transcriptional level, BTS

and BTSL genes are upregulated by Fe deficiency at least through
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the control of three bHLH transcription factors (bHLH105/ILR3,

bHLH115 and bHLH121/URI) (Long et al., 2010; Liang et al., 2017;

Rodrıǵuez-Celma et al., 2019; Gao et al., 2020a). In contrast,

ELONGATED HYPOCOTYL 5 (HY5), a light signaling basic

leucine zipper (bZIP) transcription factor, has been identified as a

negative regulator of BTS and PYE expression to modulate Fe-

deficiency responses (Mankotia et al., 2023). It was recently shown

that IRON MAN (IMA) peptides interact with and are

ubiquitinated by BTS, which inhibits the degradation of

bHLH105 and bHLH115 through binding competition (Li et al.,

2021). In the same line of evidence, the interaction of BTSL1 with

PYE and bHLHs of the subgroup IVc is attenuated by the peptide

IMA1 (Lichtblau et al., 2022). Interestingly, mutation applied to the
FIGURE 1

Model for transcriptional regulation of Fe homeostasis. Upon low-Fe conditions, URI (bHLH121) is phosphorylated and interacts with subgroup IVc
bHLH transcription factors (bHLH34/104/105(ILR3)/115). These heterodimers activate the expression of several genes involved in the regulation of Fe
homeostasis, including genes encoding the E3 ubiquitin ligases BTS/BTSLs, and the MYB10, MYB72, PYE (bHLH47) and subgroup Ib bHLH (bHLH38/
39/100/101) transcription factors. In contrast, the bZIP transcription factor HY5 negatively regulate the expression of BTS and PYE. Members of the
bHLH Ib subgroup form heterodimers with FIT (bHLH29) to promote the expression of MYB10/72 and of genes involved in Fe uptake. PYE (bHLH47),
a subgroup IVb bHLH, interacts with ILR3 (bHLH105) to negatively regulates its own expression and also to act as a transcriptional repressor of genes
involved in Fe storage which are otherwise induced by URI (bHLH121). PYE (bHLH47) with ILR3 (bHLH105) likely represses the expression of genes
involved in Fe mobilization that are induced under the control of MYB10/72. PYE also negatively regulates the expression of bHLH Ib genes (not
shown). When Fe becomes available, E3 ubiquitin ligases of the BTS/BTSLs family target bHLH transcription factors (bHLH29(FIT)/104/105(ILR3)/115/
121(URI)) leading to their degradation via the 26S proteasome to turn off Fe-deficiency signaling and prevent Fe overload. For clarity, the involvement
of IMA peptides in the transcriptional cascade controlling Fe homeostasis is not shown, but is discussed in the text.
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bHLH121/URI gene leads to an up-regulation of IMA1/2/3 and BTS

genes under Fe deficiency (Lei et al., 2020).

Interestingly, crosstalks exist between Fe homeostasis and

phytohormone signaling pathways. Indeed, FIT interacts with

ETHYLENE INSENSITIVE 3 (EIN3) and ETHYLENE

INSENSITIVE 3-LIKE 1 (EIL1) (Lingam et al., 2011). Two

components of the jasmonic acid (JA) pathway, MYC2 and JAR1,

negatively regulate the expression of FIT and bHLH Ib genes in

response to JA (Cui et al., 2018). Moreover, FIT interactions with

four IVa bHLHs (bHLH18, bHLH19, bHLH20 and bHLH25)

trigger JA-mediated FIT degradation by the 26S proteasome (Cui

et al., 2018). FIT, bHLH38 and bHLH39, as well as FRO2, IRT1,

expression is also positively regulated by two key enzymes of the

gibberellin (GA) biosynthetic pathway (gibberellin 3-oxidase 1 and

2, GA3ox1 and GA3ox2) (Matsuoka et al., 2014). DELLA proteins,

which are negatively regulated by bioactive GA, associate with FIT,

bHLH38 and bHLH39 to inhibit their activity (Wild et al., 2016).

FIT and Ib bHLH genes, hence their direct targets (at least IRT1

(Schwarz and Bauer, 2020) and putatively NRAMP1, as they are

known to be co-regulated (Colangelo and Guerinot, 2004)) are

positively regulated by a wide range of metal excess (zinc (Zn2+),

cobalt (Co2+), nickel (Ni2+), cadmium (Cd2+) and manganese (Mn2+))

(Wu et al., 2012; Lesǩová et al., 2017). The effect of metal excess on the

expression of aforementioned genes likely results from competition

with Fe uptake as it was demonstrated for cadmium (Wu et al., 2012).
2.2 Post-transcriptional regulation

Upon Fe deficiency, many genes mentioned above undergo

changes not only at the transcriptional level but also at the post-

transcriptional level through modification of their splicing patterns

(Lan et al., 2013; Li et al., 2013; Li et al., 2016a; Hsieh et al., 2022).

Alternative splicing events occurring upon Fe deficiency might be

regulated by many splicing factors, including members of the

serine/arginine-rich (SR) family (Zhang et al., 2014; Dong et al.,

2018; Fanara et al., 2022). Although an alternatively spliced isoform

of IRT1 mRNA retaining an intron has been previously described

(Li et al., 2013), no significant changes appear in the IRT1 splicing

profile in a wild-type plant upon long- or short-term Fe deficiency

(Fanara et al., 2022; Hsieh et al., 2022). Among the genes of the

bHLH Ib subgroup, only bHLH100 and bHLH101 undergo

differential intron retention (DIR) upon short-term Fe deficiency

(Hsieh et al., 2022). While bHLH29/FIT intensively undergoes

differential donor or acceptor (DDA) splice sites events (Hsieh

et al., 2022), changes in the NRAMP1 splicing profile occur through

both DIR (Lan et al., 2013; Li et al., 2013) and DDA (Lan et al., 2013;

Li et al., 2016a). DDA events define new borders between exon and

intron at the 5’ and 3’ ends of the intron, respectively, and might

result in frameshifts and subsequent premature termination codons.

Alternatively, if in-frame, DDA could modify the length of exonic

regions (English et al., 2010). Alternative splicing therefore has the

potential to partially modify important domain of a protein, hence

modifying its interaction network, function, stability, or even its

intracellular localization (English et al., 2010; Kalyna et al., 2012;

Drechsel et al., 2013; Remy et al., 2013).
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3 Intracellular trafficking and post-
translational regulation of Fe
transporters

As previously mentioned, Fe2+ is taken up by the cooperation of

two transporters, NRAMP1 and IRT1 in plants (Curie et al., 2000;

Vert et al., 2002; Castaings et al., 2016). The low affinity Fe

transporter NRAMP1 plays an important role in Fe-replete

conditions to support Fe homeostasis. However, upon Fe

deficiency, the high affinity Fe transporter IRT1 is rapidly and

strongly induced to ensure efficient Fe uptake.
3.1 Secretion of NRAMP1 and IRT1 to the
plasma membrane

Membrane proteins are synthesized in the endoplasmic

reticulum (ER) (High and Laird, 1997), and use well-

characterized secretion signals and pathways to traffic in the cell

to their destination (Peer, 2011; Chung et al., 2016). Exit from the

ER requires the direct interaction with the coat protein complex II

(COPII) using specific motifs, which allows their transport to the

Golgi apparatus (Barlowe et al., 1994; Matheson et al., 2006; Lord

et al., 2013). Then, membrane proteins follow the secretory pathway

through the trans-Golgi network (TGN) and reach their final

destination using various vesicles such as clathrin-coated vesicles

or exocysts (Matheson et al., 2006; Peer, 2011; Chung et al., 2016).

The mechanisms by which IRT1 and NRAMP1 reach the plasma

membrane is still elusive and lacks experimental evidence.

However, one of the first characterized ER export motifs, the

diacidic motif (D/E)X(D/E), is present in both transporters

(Hanton et al., 2005). NRAMP1 harbors a diacidic motif (DVD)

in its cytoplasmic C-terminal part, as many others membrane

proteins, and IRT1 possesses the diacidic motif (EDD) in its

largest cytoplasmic loop. Besides, mutation of this motif in IRT1

from Malus xiaojinesis leads to its retention into the ER (Tan et al.,

2018). In addition, two of the five COPII core components, SEC13a

and SEC31b, were recently identified in the Arabidopsis IRT1

interactome (Matheson et al., 2006; Lord et al., 2013; Martìn-

Barranco et al., 2020). Altogether, these findings suggest that

IRT1 is exported from the ER to the Golgi apparatus using the

COPII machinery. Then, during the post-Golgi trafficking, the

CHOLINE TRANSPORTER-LIKE 1 (CTL1) plays an essential

role to allow the delivery of NRAMP1 and probably IRT1 at the

plasma membrane (Gao et al., 2017).
3.2 Post-translational regulation of
NRAMP1 by non-Fe metals

Interestingly, both transporters have low Fe specificity allowing

the entry, in plant cells, of others divalent metals (hereafter named

non-Fe metals), such as Zn2+, Mn2+, Co2+, and Cd2+ (Vert et al.,

2002; Cailliatte et al., 2010; Barberon et al., 2011). In order to fine

tune Fe acquisition and hence limit toxicity of their non-Fe metal
frontiersin.org
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substrates, both transporters are regulated at the post-translational

level leading to a complex intracellular trafficking (Figure 2)

(Barberon et al., 2011; Barberon et al., 2014; Agorio et al., 2017;

Dubeaux et al., 2018; Castaings et al., 2021; Spielmann et al., 2022).

Besides Fe transport, NRAMP1 is also essential for manganese

uptake (Curie et al., 2000; Cailliatte et al., 2010; Castaings et al.,

2016). Indeed, manganese availability impacts NRAMP1 subcellular
Frontiers in Plant Science 05
localization. In control condition, NRAMP1 is shared between

plasma membrane and endosomal vesicles of the trans-Golgi

network/early endosome (TGN/EE) and the late endosome/

multivesicular body (LE/MVB) (Agorio et al., 2017; Castaings

et al., 2021). Increasing manganese availability gradually reduces

the amount of NRAMP1 at the plasma membrane while enhancing

its presence in the endosomal fraction (Castaings et al., 2021). This
FIGURE 2

Model summarizing intracellular trafficking and post-translational regulation of NRAMP1 and IRT1. The two Fe transporters NRAMP1 and IRT1 are
synthesized in the ER and exit this compartment by interacting with COPII. Then, the proteins follow the secretory pathway through the EE/TGN and
reach the PM by a process involving CTL1 for NRAMP1 and probably also for IRT1. At the PM, the low affinity Fe2+ transporter NRAMP1 plays an
important role in Fe-replete conditions, whereas the high affinity Fe2+ transporter IRT1 is induced upon Fe deficiency to ensure efficient Fe uptake.
In control condition, NRAMP1 is found at the PM, the TGN/EE, the LE/MVB and also undergoes vacuolar degradation. NRAMP1 steady-state
localization pattern is dependent on endocytosis (not shown). Besides Fe2+ transport, NRAMP1 is also essential for Mn2+ uptake. Mn2+ depletion
(- Mn) induces intracellular Ca2+ oscillations decoded by CPK21 and CPK23 which phosphorylate NRAMP1 at T498 leading to NRAMP1 activation and
increased Mn2+ uptake. The increase in intracellular Mn2+ concentration (+ Mn) induces a transient Ca2+ signal received by CBL1 and CBL9 located
on the PM which activate CIPK23 to interact with and phosphorylate NRAMP1 at S20. This phosphorylation induces clathrin-mediated endocytosis of
NRAMP1 reducing NRAMP1 distribution on the PM while enhancing its presence in the endosomal fraction to prevent Mn2+ toxicity. In addition to Fe,
IRT1 also transports non-Fe metals (Zn2+, Mn2+, Co2+, Cd2+). In the combined absence of Fe and non-Fe metals, IRT1 is localized in the outer PM
domain facing the rhizosphere in root epidermal cells. When Fe is limited and non Fe-metals are present at physiological concentration (- Fe), IRT1 is
multimonoubiquinated and cycles between the PM and TGN/EE. In these conditions, the Fe transport activity of IRT1 is negatively regulated by
Ca2+-promoted interaction of EHB1 with IRT1. In contrast, the phosphorylation of S149 in IRT1c by Ca2+-activated CPK21 and CPK23 stimulates IRT1
transport activity to promote Fe uptake. In Fe-depleted and non-Fe metal excess conditions (- Fe + non-Fe metals), IRT1 is removed from the PM.
First, the high influx rate of non-Fe metals is directly sensed by IRT1 through non-Fe metal binding to histidine residues within IRT1c. This interaction
triggers the recruitment of CIPK23 which phosphorylates S/T residues within IRT1c, creating a docking site for the E3 ubiquitin ligase IDF1, which
decorates K159 and K174 in IRT1c with K63-linked polyubiquitin chains. IRT1 is then sorted toward LE/MVB for subsequent degradation in the
vacuole. IRT1 may be recycled to earlier endocytic compartments or the PM through pathways involving SNX1 and FYVE1. IRT1 is also thought to be
degraded via the 26S proteasome and autophagy pathways in response to Cd2+ stress (not shown). To simplify the scheme, only key proteins are
shown (SEC13a, SEC31b, PH1, UBC35, UBC36, ESCRT complex, ATL31 and PATL2 are not represented). ER endoplasmic reticulum, TGN/EE
trans-Golgi network/early endosome, LE/MVB late endosome/multivesicular body.
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manganese-induced NRAMP1 endocytosis involves the clathrin-

mediated endocytic pathway and occurs after phosphorylation of

NRAMP1 (Castaings et al., 2021). The increase of intracellular

manganese concentration seems to induce an intracellular transient

calcium signal which is perceived by two calcium sensors, the

CALCINEURIN-B-LIKE 1 (CBL1) and CALCINEURIN-B-LIKE

9 (CBL9). CBL1/9 interact with and activate the CBL-

INTERACTING PROTEIN KINASE 23 (CIPK23) which

phosphorylates NRAMP1 at serine 20 (S20), thereby inducing

endocytosis of NRAMP1 to reduce its distribution on the plasma

membrane and enhance plant tolerance to manganese toxicity.

Indeed, in cipk23 and cbl1/cbl9 mutant backgrounds, NRAMP1

manganese-mediated endocytosis is abolished (Zhang et al., 2023b).

Additionally, a nonphosphorylatable NRAMP1 mutant on S20 is

blocked at the plasma membrane unlike the corresponding

phosphomimic variant which is constitutively endocytosed, thus

suggesting that phosphorylation is a pivotal step for NRAMP1

trafficking (Castaings et al., 2021). Finally, NRAMP1 undergoes

vacuolar degradation through an unclear process depending on the

PLECKSTRIN HOMOLOGY (PH) DOMAIN-CONTAINING

PROTEIN 1 (PH1), but independent of manganese availability

(Agorio et al., 2017; Castaings et al., 2021). Even if perturbation

of NRAMP1 endocytosis was found to cause manganese toxicity

(Castaings et al., 2021), most factors and mechanisms driving

NRAMP1 trafficking and degradation remain to be identified

and characterized.
3.3 Post-translational regulation of IRT1 by
non-Fe metals

In the absence of Fe and non-Fe metals, IRT1 is mainly localized

at the plasma membrane of root epidermal cells in a soil-facing

polar fashion to optimize Fe uptake (Barberon et al., 2014; Dubeaux

et al., 2018). When plants are exposed to non-Fe metals, IRT1 is

subjected to a rapid and complex post-translational regulation to

limit accumulation and toxicity of non-Fe metals. IRT1 acts as a

transceptor, combining transporter and receptor activities, enabling

sensing of intracellular metal status and regulation of its cell surface

levels (Cointry and Vert, 2019). Increasing the concentration of

non-Fe metals gradually removes IRT1 from the cell surface,

allowing IRT1 to traffic through endosomal compartments on its

way to vacuolar degradation (Dubeaux et al., 2018). Thanks to a

histidine-rich motif located in the largest cytosolic loop (thereafter

called IRT1c), IRT1 directly binds non-Fe metals (Dubeaux et al.,

2018; Spielmann et al., 2022). This interaction triggers the

recruitment of the CIPK23 kinase that phosphorylates IRT1c and

thus creates a docking site for the E3 ubiquitin ligase IRON

DEGRADATION FACTOR 1 (IDF1) (Shin et al., 2013; Dubeaux

et al., 2018). Through the cooperation with two E2 UBIQUITIN

CONJUGATING ENZYMES 35 and 36 (UBC35 and UBC36), IDF1

decorates two IRT1c lysine residues (K159 and K174) with K63-

linked polyubiquitin chains (Shin et al., 2013; Dubeaux et al., 2018;

Spielmann et al., 2022). IRT1 is then sorted toward late endosomes

(LEs) and the vacuole for degradation, but the exact underlying
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mechanisms remain unclear (Barberon et al., 2011; Dubeaux et al.,

2018; Spielmann et al., 2022). Polyubiquitinated IRT1 is probably

recognized by the ENDOSOMAL SORTING COMPLEX

REQUIRED FOR TRANSPORT (ESCRT) complex to be sent to

the vacuole for degradation unless recycled (Dubeaux and Vert,

2017). In fact, two recycling mechanisms have been identified to exit

the route to the vacuole (Barberon et al., 2014; Ivanov et al., 2014).

One of these pathway preventing IRT1 degradation involves the

SORTING NEXIN 1 (SNX1) protein which partly co-localise with

IRT1 in TGN/EE and to a lesser extent in LE. A snx1 loss-of-

function plant displays lower IRT1 levels than wild-type plants due

to enhanced degradation rate. This suggests a role for SNX1 in the

recycling of IRT1 (Ivanov et al., 2014). Secondly, IRT1 interacts

with the phosphatidylinositol-3-phosphate-binding protein FYVE1

in LE, which alters its fate. Indeed, plants with enhanced expression

of FYVE1 not only show an accumulation of IRT1 at the plasma

membrane, but also display a loss of IRT1 lateral polarity (Barberon

et al., 2014). Considering that FYVE1 is part of the ESCRT complex

and mediates MVB sorting (Gao et al., 2014), the mechanisms by

which FYVE1 overexpression reroutes IRT1 to the plasma

membrane are still unclear.

IRT1 was also recently demonstrated to be degraded via the 26S

proteasome and autophagy pathways. Indeed, IRT1 directly

interacts with the plasma membrane-localized RING-type E3

ubiquitin ligase ARABIDOPSIS TOXICOS EN LEVADURA 31

(ATL31), which enhances IRT1 ubiquitination and leads to both

proteasome- and autophagy-dependent degradation in response to

cadmium stress. In addition, the WRKY33 transcription factor

directly activates ATL31 expression in response to cadmium

stress, suggesting a WRKY33-ATL31-IRT1 regulatory module

involved in cadmium-specific plant tolerance (Zhang et al.,

2023a). It remains to be determined how the proteasome may

convey the degradation of a highly hydrophobic membrane protein

like IRT1.

Finally, IRT1 post-translational regulatory mechanisms have

been proposed to modulate Fe uptake. The peripheral membrane

protein ENHANCED BENDING 1 (EHB1), a calcium-binding

protein, acts as an Fe uptake inhibitor even during Fe starvation.

EHB1 binds to IRT1c and thus interacts with IRT1 in a calcium-

dependent manner, reducing Fe acquisition by a still unknown

process. The IRT1-EHB1 interaction might represent a rapid

mechanism to switch off Fe import once its optimal intracellular

concentration has been reached, avoiding Fe overaccumulation and

toxicity (Khan et al., 2019). The peripheral plasma membrane

SEC14-Golgi dynamics (SEC14-GOLD) protein PATELLIN 2

(PATL2) also binds IRT1c to reduce membrane oxidative damage

during Fe import via IRT1 (Hornbergs et al., 2023). In contrast, Fe

deficiency leads to phosphorylation of serine 149 (S149) in IRT1c by

the CALCIUM-DEPENDENT PROTEIN KINASE 21 and 23

(CPK21 and CPK23) calcium-regulated kinases to increase IRT1

transport activity to optimize Fe uptake (Wang et al., 2023). In

response to manganese depletion, these two kinases also catalyze

the phosphorylation of NRAMP1 at threonine 498 (T498), leading

to NRAMP1 activation and optimal manganese uptake (Fu

et al., 2022).
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4 Conclusions and future perspectives

The control of cellular Fe relies on a complex pathway regulated

at several levels and highly integrated. Fe deficiency quickly leads to

an extensive cascade of transcriptional regulation mainly controlled

by key members of the bHLH family and Fe-dependent protein

degradation governed by BTS/BTSLs. Post-transcriptional events,

including splicing, add a new level of complexity leading to a

plethora of mRNAs rapidly responding to Fe deficiency and

creating a diverse proteome controlling Fe uptake, as well as its

intra- and intercellular Fe distribution. The trafficking and post-

translational regulation of both NRAMP1 and IRT1 emerge as

crucial for proper metal uptake and reveal some interesting parallels

between the two transporters. Indeed, many post-translational

modifications may affect the activity of these transporters, such as

the phosphorylation of critical residues leading to their activation in

limiting conditions or to their removal from the plasma membrane

to avoid toxicity under metal stress. Finally, the polarity of

membrane transporters is also inherently connected to their

ability to drive directional Fe and metal uptake. Mechanisms

controlling polar localization and maintenance of transporters

therefore deserve more attention.
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