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Computing, Beijing University of Technology, Beijing, China, 7School of Mechanical Engineering,
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Introduction: Accurate and timely detection of plant stress is essential for yield

protection, allowing better-targeted intervention strategies. Recent advances in

remote sensing and deep learning have shown great potential for rapid non-

invasive detection of plant stress in a fully automated and reproducible manner.

However, the existing models always face several challenges: 1) computational

inefficiency and the misclassifications between the different stresses with similar

symptoms; and 2) the poor interpretability of the host-stress interaction.

Methods: In this work, we propose a novel fast Fourier Convolutional Neural

Network (FFDNN) for accurate and explainable detection of two plant stresses

with similar symptoms (i.e. Wheat Yellow Rust And Nitrogen Deficiency).

Specifically, unlike the existing CNN models, the main components of the

proposed model include: 1) a fast Fourier convolutional block, a newly fast

Fourier transformation kernel as the basic perception unit, to substitute the

traditional convolutional kernel to capture both local and global responses to

plant stress in various time-scale and improve computing efficiency with

reduced learning parameters in Fourier domain; 2) Capsule Feature Encoder to

encapsulate the extracted features into a series of vector features to represent

part-to-whole relationship with the hierarchical structure of the host-stress

interactions of the specific stress. In addition, in order to alleviate over-fitting,

a photochemical vegetation indices-based filter is placed as pre-processing

operator to remove the non-photochemical noises from the input Sentinel-2

time series.
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Results and discussion: The proposed model has been evaluated with ground

truth data under both controlled and natural conditions. The results demonstrate

that the high-level vector features interpret the influence of the host-stress

interaction/response and the proposed model achieves competitive advantages

in the detection and discrimination of yellow rust and nitrogen deficiency on

Sentinel-2 time series in terms of classification accuracy, robustness, and

generalization.
KEYWORDS
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1 Introduction

The plant stress caused by unfavorable environmental

conditions (e.g., a lack of nutrients, insufficient water, disease, or

insect damage), if left untreated, will lead to irreversible damage and

decreases in plant production. Early accurate detection of plant

stress is essential to be able to respond with appropriate

interventions to reverse stress and minimize yield loss. Recent

advances in remote sensing with enhanced spatial, temporal, and

spectral capacities, combined with deep learning, have offered

unprecedented possibilities for rapid noninvasive stress detection

in a fully automated and reproducible manner (Ji et al., 2018; Wang

et al., 2020). Currently, the deep learning models have been proven

effective in remote sensing time series analysis of plant stresses

(Golhani et al., 2018; Abdur Rehman et al., 2019). One-dimensional

convolutional neural network (1D-CNN) and 2D-CNN with

convolutions were applied either in the spectral domain or in the

spatial domain (Kussul et al., 2017; Scarpa et al., 2018). In addition,

3D-CNNs were also used across spectral and spatial dimensions (Li

et al., 2017; Hamida et al., 2018). These models do not consider

temporal information. Meanwhile, temporal 1D-CNNs were

proposed to handle the temporal dimension for general time

series classification (Wang et al., 2017) and recurrent neural

network (RNN)-based models to extract features from multi-

temporal observation by leveraging the sequential properties of

multispectral data and combination of RNN (Kamilaris and

Prenafeta-Boldú, 2018) and 2D-CNNs where convolutions were

applied in both temporal and spatial dimensions (Zhong et al.,

2019). These preliminary works highlight the importance of

temporal information that can improve the classification accuracy

performance. Although the existing works are encouraging, they

suffer several limitations: 1) over-fitting and uncertainty caused by

noisy data involved in the remote sensing time series; 2) computing

inefficiency and inaccuracy caused by the convolutional operations

that are applied to all layers, particularly with the increase of size of

images and the kernel. In particular, for the classification of multi-

plant stresses, similar symptoms always lead to confusion during

classification, as most of the local features are extracted from the

neighbor time steps. Therefore, a more effective denoise operator
02
and larger receptive fields for the extraction of the global biological

responses at various timescales are highly desired.

One solution is to prefilter the photochemical information from

satellite time series and change the domain through Fourier

transform to model the part-to-whole relationship between the

photochemical features and specific plant stress in the frequency

domain. This is because the convolution operation in the spatial

domain is the same as the point-by-point multiplication in the

Fourier domain. According to the Fourier theory, Fourier transform

provides an effective perception operation with a nonlocal receptive

field. Unlike existing CNNs where a large-sized kernel is used to

extract local features, Fourier transforms with a small-sized kernel

can capture global information. Therefore, the Fourier kernel has

great potential in replacing the traditional convolutional kernel in

remote sensing time series analysis without any additional effort (Yi

et al., 2023). For example, Chen et al. (2023) designed a Fourier

domain structural relationship analysis framework to exploit both

modality-independent local and nonlocal structural relationships

for unsupervised change detection. However, the existing Fourier

operators can only be sparsely inserted into the deep learning

network pipeline due to their expensive computational cost.

Therefore, the fast Fourier transform (FFT) is an effective way to

extract the global feature responses from satellite image time series

(Nguyen et al., 2020). For example, Awujoola et al. (2022) proposed

a multi-stream fast Fourier convolutional neural network (MS-

FFCNN) by utilizing the FFT instead of the traditional convolution;

it lowers the computing cost of image convolution in CNNs, which

lowers the overall computational cost. Lingyun et al. (2022)

designed a spectral deep network combining fast Fourier

convolution (FFC) and classifier by extending the receptive field.

Their results demonstrated that the features around the object

provide the explainable information for small object detection.

Although the effectiveness of Fourier-based convolution has

been proven by many studies, few studies have done in the multiple

plant stress detection from remote sensing data. In this work, we

have proposed a novel fast Fourier convolutional deep neural

network (FFCDNN) for accurate and early efficient detection of

plant stress with an initial focus on wheat yellow rust (Puccinia

striiformis) and nitrogen deficiency. The proposed model
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significantly reduces the computing cost with improved accuracy

and interpretability. Specifically, a new FFT kernel is proposed as

the basic perception unit of the network to extract the stress-

associated biological dynamics with various timescales; and then

the extracted biological dynamics are encapsulated into a series of

high-level featured vectors representing the host–stress interactions

specific to different stresses; finally, a nonlinear activation function

is designed to achieve the final decision of the classification. The

proposed model has been evaluated with ground truth data under

both the controlled and natural conditions.

The rest of this work is organized as follows. The Related Work

section introduces related works on existing methods of multiple

plant disease classification. The Proposed Fast Fourier Convolutional

Deep Neural Network section details the proposed approach. The

Materials and Experiments section presents the material and

experiment details. The Results and Discussion section illustrates

the experimental evaluation results. Finally, the Conclusion section

concludes the work.
2 The related work

2.1 Plant photochemical information filter
from satellite images

The newly launched satellite sensors (e.g., Sentinel-2 and

WorldView-3) provide the promising Earth observation (EO)

dataset for improved plant photochemical estimation (Xie et al.,

2018) wherein leaf chlorophyll content (LCC), canopy chlorophyll

content (CCC), and leaf area index (LAI) are the most popular

remotely retrievable indicators for detecting and discriminating

plant stresses (Haboudane et al., 2004; Elarab et al., 2015).

Among these indicators, the LCC time series is a key biochemical

dynamics for the stress-associated foliar component changes

without (or partly) the effects from soil background and canopy

structure. Estimating LCC requires remote sensing indicators that

are sensitive to the LCC but, at the same time, are insensitive to LAI

and background effects (Elarab et al., 2015). On the other hand, the

LAI is one of the critical biophysics-specific proxies used in

characterizing the canopy architecture variations that respond to

the apparent symptom caused by specific stress (Li et al., 2018). By

contrast, CCC is determined by the LAI and LCC, expressed per

unit leaf area, which retains multicollinearity with them and hard to

be used in separating the stress-induced biochemical changes from

the biophysical impacts. Therefore, the LCC and LAI are regarded

as a pair of independent variables for filtering the biochemical

information between the different plant stresses (Zhang et al., 2012;

Shi et al., 2017a).

Regarding the filter methods, by using the reflectance in red-

edge regions, there are two methods used in LAI and LCC

estimation for minimizing the saturation effect and soil

background-associated noises: 1) the vegetation index method

(Haboudane et al., 2002; Li et al., 2018); 2) the radiative transfer

models (RTMs) (Darvishzadeh et al., ????; Sehgal et al., 2016). For

example, Clevers and Gitelson (2013) tested and compared the

performance of the red-edge chlorophyll index (CIred-edge) and
Frontiers in Plant Science 03
green chlorophyll index (CIgreen) on the Sentinel-2 bands, and

their results indicated that the setting of Sentinel-2 bands is well

positioned for deriving these indices on LCC estimation. Punalekar

et al. (2018) developed a PROSAIL-based model to estimate LAI

and biomass on the Sentinel-2 bands, and the yielded LAI values are

in agreement with the ground truth LAI measurements. However,

the simple use of the remotely estimated LAI and LCC cannot easily

represent the nonlinear host–stress interactions of plant stresses.
2.2 Plant stress detection methods

Currently, there are two types of methods widely used in

extracting the interpretable agent features for plant stresses from

satellite imagery, including the biological methods and the deep

learning-based methods.

2.2.1 Biological methods
Studies have shown that biological models can be used to map

within-field crop stress variability (Ryu et al., 2020; Zhou et al.,

2021a). This is possible because the infestation of crop stresses often

leads plants to close their stomata, decreasing canopy stomatal

conductance and transpiration, which in turn raises foliar

biophysical and biochemical variations (Tan et al., 2019).

However, plant stress involves complicated biophysical and

biochemical responses, which demands the stress-specific

biological index. For instance, LAI is a direct indicator of plant

canopy structure features (Ihuoma and Madramootoo, 2019).

Stressed plants will lead to fluctuations on plant LAI time series

with different patterns, which will raise the higher radiations of a

stressed crop (Ballester et al., 2019). Jiang et al. (2020) proposed two

LAI-derived soil water stress functions in order to quantify the effect

of soil water stress on the processes of leaf expansion and leaf

senescence caused by the stresses. Their results showed that the

LAI-based model is sensitive to the stress-derived leaf expansion.

Zhu et al. (2021) developed a vegetation index-derived model from

the observed hyperspectral data of winter wheat to detect plant

salinity, and the results show that the salt-sensitive blue, red-edge,

and near-infrared wavebands have great performances on the

detection of plant salinity stress.

Unlike the LAI, the photochemical associated indices directly

account for leaf physiological changes such as photosynthetic

pigment changes (Gerhards et al., 2019). Photochemical

reflectance is the dominant factor determining leaf reflectance in

the visible wavelength (400 nm–700 nm), with chlorophyll

considered the most relevant photochemical index for crop stress

diagnosis (Zhou et al., 2021b). Under prolonged infestations, LCC

often decreases, leading to a reduction in green reflection and an

increase in blue and red reflections. The spectral radiation

characteristics between the red and near-infrared regions are

sensitive to LCC and CCC. The ratio of red and near-infrared has

shown a strong sensitivity to the crop stress-associated chlorophyll

content changes (Ryu et al., 2020). Cao et al. (2019) compared the

feasibility of the LCC, net photosynthesis rate, and maximum

efficiency of the photosystem on the detection of crop heat stress,

and their findings suggest that the maximum efficiency of the
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photosystem was the most sensitive remote sensing agent to heat

stress and had the ability to indicate the start and end of the stress at

the slight level or the early stage. Shivers et al. (2019) used the

visible-shortwave infrared (VSWIR) spectra to model the non-

photosynthetic vegetation and soil background from the airborne

visible/infrared imaging spectrometer (AVIRIS), and their findings

revealed that the increase in temperature residuals is highly

consistent with the infestation of crop stresses.

2.2.2 Machine/deep learning-based methods
Although many studies have been focusing on crop stress

detection using biological characteristics, most of the applications

require self-adjusted algorithms to improve the robustness and

generalization of the model for complicated nature conditions.

Among the crop stress detection techniques, machine learning

and deep learning have played a key role. For machine learning

approaches, supervised models have been proven effective in data

mining from the training dataset (Kaneda et al., 2017). The data

flow in the machine learning models includes feature extraction,

data assimilation, optimal decision boundary searching, and

classifiers for stress diagnosis, whereas supervised learning deals

with classification issues by representing the labeled samples. Such

models aim to find the optimal model parameters to predict the

unlabeled samples (Harrington, 2012).

Deep learning has many neural layers that transform the

sensitive information from input to output (i.e., healthy or

stressed). The most applied perception neural unit is the

convolutional neural unit in crop stress detection (Fuentes et al.,

2017; Krishnaswamy Rangarajan and Purushothaman, 2020).

Generally, the convolutional neural unit consists of dozens of

layers that process the input information with convolution kernel.

In the area of crop stress detection, deep learning contributed

significantly to the analysis of plant stress high-level features (Jin

et al., 2018). In crop stress image classification, the multisource

images are usually used as input to extract the stress dynamics

during their development, and a diagnostic decision is used as

output (e.g., healthy or diseased) (An et al., 2019; Cruz et al., 2019).

Barbedo (2019) developed a convolutional deep learning model to

classify individual lesions and spots on plant leaves. This model has

been successfully used in the identification of multiple diseases; the

accuracy obtained in this model was 12% higher than that of

traditional models. Lin et al. (2019) applied a convolutional

kernel-based U-Net to segment powdery mildew-infected

cucumber leaves. The proposed binary cross-entropy loss

function is used to magnify the loss of the powdery mildew-

stressed pixels, and the average accuracy for the powdery mildew

detection reaches 96.08%.
2.3 Interpretability of deep
learning-based models

Although the deep learning models have been successfully

applied for vegetation stress-monitoring applications, most of the

existing deep learning-based approaches have difficulty in

explaining plant biophysical and biochemical characteristics
Frontiers in Plant Science 04
due to their black box representations of the features extracted

from intermediate layers (Shi et al., 2021). Thus, the interpretability

of deep models has become one of the most active research topics

in the remote sensing-based crop stress diagnosis, which

can enhance and improve the robustness and accuracy of

models in the vegetation-monitoring applications from the

biological perspective of target entities (Brahimi et al., 2019; Too

et al., 2019).

Recently, the model interpretability used to disclose the intrinsic

learning logic for detection and discrimination of plant stresses has

received growing attention (Lillesand et al., 2015). In other words,

the interpretability that illustrates the performance of the model on

characterizing the specific host–stress interaction guarantees the

generalization ability of the model for practice usages. Among the

existing models, visualization of the feature representation is the

most direct method for improving model interpretability. For

example, Behmann et al. (2014) proposed an unsupervised model

for early detection of the drought stress in barley wherein the

intermediate features produced by this model highly related with

the sensitive spectral bands for drought stress. Another way to

improve the interpretability of deep learning models is to construct

the network architecture that can bring the network an explicit

semantic meaning. For example, Shi et al. (2021) developed a

biologically interpretable two-stage deep neural network (BIT-

DNN) for the detection and classification of yellow rust from

the hyperspectral imagery. Their findings demonstrate that

the BIT-DNN showed great advantages in terms of accuracy

and interpretability.
2.4 Fast Fourier transform

Traditional receptive fields act only on the central region to

extract localized features related to the target of interest. This limits

the necessity of large convolutional kernel on global feature

extraction. Recently, there is an increasing interest in applying

Fourier transform to deep neural networks to capture global

features. As mentioned in the Introduction section, Fourier

transform provides an effective perception operation with

nonlocal receptive fields. Unlike existing CNNs where a large-

sized kernel is used to extract local features, Fourier transform

with a small-sized kernel is able to capture global information. For

example, Rippel et al. (2015) proposed a Fourier transformation

pooling layer that performs like principle component extraction by

constructing the representation in the frequency domain. Chi et al.

(2019) proposed to integrate the Fourier transforms into a series of

convolution layers in the frequency domain.

FFT-based deep learning models use the time-frequency

analysis methods to extract the low-frequency host–stress

interaction by limiting the high-frequency noises in the frequency

domain space (Jakubauskas et al., 2002; Behmann et al., 2014;

Ashourloo et al., 2016; Mahlein et al., 2017). FFT is a useful

harmonic analysis tool, which has been widely used in

reconstruction of vegetation index time series (Roy and Yan,

2020), curve smoothing (Bradley et al., 2007; Shao et al., 2016),

and ecological and phenological applications (Jakubauskas, 2002;
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Sakamoto et al., 2005; Jong et al., 2011). FFT maps the satellite time

series signals into superimposed sequences of cosines waves (terms)

with variant frequencies, each component term accounting for a

percentage of the total variance in the original time series data

(Jakubauskas et al., 2002). This process facilitates the recognition of

subtle patterns of interest from the complex background noises,

which degrade the spectral information required to capture

vegetation properties (Huang et al., 2018; Shanmugapriya et al.,

2019). For example, El Jarroudi et al. (2017) used the FFT method to

characterize temporal patterns of the fungal disease on winter wheat

between the observation sites and then achieved the fungal disease

monitoring and forecasting at the regional level. Our work advances

the abovementioned research front via designing a novel fast

Fourier convolutional operation unit that simultaneously uses

spatial and temporal information for achieving global feature

extraction during the learning process.
3 The proposed fast fourier
convolutional deep neural network

To address the challenge of the misclassification of the different

plant stresses with similar symptoms, we propose a novel FFC

operator to efficiently implement nonlocal receptive fields and fuse

the extracted biological information with various timescales in the

frequency domain, and then, a new deep learning architecture

is developed to retrieve the host–stress interaction and achieve a

high-accuracy classification. In this section, we describe the

main framework of the proposed FFCDNN in the context of

multiple plant stress discrimination from the agent-based

biological dynamics.
Frontiers in Plant Science 05
3.1 The network architecture of the
proposed FFCDNN

Figure 1 depicts the main framework of the proposed FFCDNN

for multiple crop stress discrimination in the context of Sentinel-2-

derived biological agents (i.e., V ILAI and V ILCC). To be specific, a

branch structure is designed to respectively prefilter the biochemical

dynamics represented by V ILAI and V ILCC time series. For each of

the branches, the Fourier kernel is set as the same size as the input

size of VILAI and V ILCC time domain (time series) patches, with a

size of k × k × K(1); then, the Fourier kernel is pont-wised multiplied

by the input biological agent patches. After the Fourier convolution

is performed, the ReLU function is implemented to calculate the V

ILAI and V ILCC time series magnitude in the frequency domain

containing stress-associated biological responses, and the activation

feature map, with a size of k × k × K(2), is conducted with Fourier

pool layer to highlight the most important stress information and

downsampling the feature map.

Subsequently, the V ILAI and V ILCC feature maps are sent to the

hierarchical structure of the class capsule blocks in order to build

the part-to-whole relationship and to generate the hierarchical

vector features for representing the high-level stress–pathogen

interaction. Finally, a decoder is employed to predict the classes

based on the length and direction of the hierarchical vector features

in the feature space. The detailed information for the model blocks

is described below:

3.1.1 Plant photochemical information filter
In this study, an agent-based photochemical information

prefilter is set as the preprocessing operator for the input satellite

time series. Based on the benchmark study of the existing vegetation
FIGURE 1

The workflow of the FFCDNN, Fast Fourier Convolutional Deep Neural Network framework for the discrimination of multiple plant stresses from
Sentinel-2 time series.
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agent models for LAI and LCC estimation shown in Appendix A,

we use the weighted difference vegetation index (WDVI)-derived

LAI, defined as V ILAI, and transformed chlorophyll absorption in

the reflectance index/optimized soil-adjusted vegetation index

(TCARI/OSAVI)-derived LCC, defined as V ILCC, as the optimal

plant photochemical information prefilter on Sentinel-2 bands. And

then, the V ILAI and V ILCC time series will be used as the biological

agents of the plant canopy structure and plant biochemical state in

the follow analysis.

3.1.2 Fast Fourier convolutional layer
The input biological agent (i.e., V ILAI or V ILCC) dynamics

extracted from the Sentinel-2 time series can be viewed as sample

patch k × k pixel vectors. Each of the pixels represents a class with

K(1) time series channels. Then, the 3D patches with a size of k × k ×

K(1) are extracted as the input of the past Fourier convolution layer.

The FFC is used to decompose the biological agent time series

into a series of frequency components with various timescales based

on the FFT. Mathematically, FFT decomposes the original time

series signal f(t) to the frequency domain by the linear combination

of trigonometric functions as follows:

F(v) =
Z +∞

−∞
f (t)e−iv tdt (1)

where v is the frequency, F(v) is the Fourier coefficient with

frequency v , and i is the unit of the imaginary number. It is

customary to use a discrete form as follows:

F(x)k�k =
1
K1 o

K1−1

n=0
xne

−
2
Q
xni

K1 (2)

where x = 0,1,2,…N – 1 and N is the length of the time series.

Among the frequency-domain components of the biological

agents of V ILAI and V ILCC dynamics, the low-frequency

components always indicate the soil background or phenological

characteristics of the ground entities. The high-frequency region

generally represents environmental noises, such as land cover

variations or illumination inconsistency. Therefore, considering

that the infestation and development of yellow rust and nitrogen

deficiency are continuous biological processes on the proxies of V

ILAI and V ILCC, we hypothesize that the medium-frequency region

represents the yellow rust- and nitrogen deficiency-associated V ILAI
and V ILCC fluctuations. Thus, the yellow rust- and nitrogen

deficiency-associated responses can be characterized from the

background and environmental noises by an optimized activation

function. In this study, the ReLU activation function is

implemented to calculate the V ILAI and V ILCC time series

magnitude in the medium-frequency region, and the activation

feature map, with a size of k × k × K(2), is conducted with Fourier

pool layer to extract the sensitive V ILAI and V ILCC response in the

frequency domain and output the FFC features.

3.1.3 Capsule feature encoder
Considering the host–stress interaction of the plant stresses is a

complex biological process. Therefore, modeling the part-to-whole

relationship is the most significant evidence for detection and
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discrimination of plant stresses. We develop a capsule feature

encoder to rearrange the extracted V ILAI and V ILCC FFC

features, which are the scalar features, into the joint capsule

vector features. These joint vector features represent the

hierarchical structure of the V ILAI and V ILCC responses to the

specific plant stress. It is noteworthy that the extracted V ILAI and V

ILCC scalar FFC features themselves respectively represent

the biophysical and biochemical response to the plant stress

development. Therefore, the joint vector features have great

performance to characterize the intrinsic entanglement of

host–stress interactions. In order to optimize the learning process

between the FFC scalar features and the capsule vector features, and

dynamic routing algorithm is introduced as shown in Figure 2.

Specifically, the V ILAI and V ILCC FFC features, f�f 1LAI ,�f 2LAI ,…,
�f mLAI ,�f

1
LCC ,�f

2
LCC ,…�f nLCCg, are firstly normalized by using the

normalization weights W ∈ fW1
LAI ,W

2
LAI ,…Wm

LAI ,W
1
LCC ,W

2
LCC ,…

Wn
LCCg. This step smooths the feature values and makes them obey a

normal distribution. In addition, this normalization operation is

helpful for retraining the vanishing gradients in the back-

propagation progress. After that, the normalized FFC features, f
f̂ 1LAI , f̂

2
LAI ,…, f̂ mLAI , f̂

1
LCC , f̂

2
LCC ,…, f̂ nLCCg, are rearranged that into K3

capsule features with the coupling coefficients of c. Here, c is a series

of trainable parameters that encodes the part–whole relationships

between the FFC scalar features and the capsule vector features. The

translation and orientation of the capsule vector feature represent

the class-specific hierarchical structure characteristics in terms of V

ILAI and V ILCC responses in the frequency domain, while its length

represents the degree a capsule is corresponding to a class. To

measure the length of the output vector as a probability value, a

nonlinear squash function is used as follows:

u
⌣
m =

∥ um ∥2

1 + ∥ um ∥2
·

um
∥ um ∥

(3)

where u
⌣(l)
m is the scaled vector of X2

out . This function compresses

the short vector features to zero and enlarges the long vector

features to a value close to 1. The final output is denoted as X3
out ∈

RZ�1�1�K .

Finally, the K3 capsule features will be weightily combined into

Z class capsules, and the final outputs are the class-wised

biologically composed feature = fV1,V2,…,VZg. In this study, Z

is 3 because of the three interested classes (i.e., healthy wheat, yellow

rust, and nitrogen deficiency).
3.1.4 Classifier
Based on the characteristics of the class-capsule feature vectors,

a classifier is defined to achieve the final detection and

discrimination. This classifier is composed of two layers: an

activation layer and a classification layer.

Specifically, the active function is defined as follows:

V̂ h =
∥Vh ∥2

1 + ∥Vh ∥
·

Vh

∥Vh ∥
(4)

where Vh is the class-capsule feature corresponding to class

h≦Z :║ ·║ indicates the operator of 1-norm. In fact, the

orientation of the V̂ h represents the instantiation parameters of
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the biological responses for the class h, and the length represents

the membership that the feature belongs to class h. And then, an

argmax function is used to achieve the final classification by

seeking the largest length of V̂ h. The argmax function is defined

as follows:

a rgmax
h

O5
i,j = hj ∀ g :║Vg ║ < ║Vh ║

� �
(5)
4 Materials and experiments

In this study, we use nitrogen deficiency and the yellow rust as

the study cases for model testing and evaluation. In order to

comprehensively test and evaluate the classification accuracy,

robustness, and generalization of the proposed model, we

collected two types of the data: 1) the high-quality labeled dataset

under the controlled field conditions; 2) the ground survey dataset

under the natural field conditions. The former is used for training

and optimizing the proposed model, and the latter is used for testing

and evaluating the generalization and transferability of the well-

trained model in the actual application cases. The detailed

information is described as follows:
4.1 Study sites

To avoid the fungus contamination on the other groups, we

respectively carried out two independent experiments under similar

environmental conditions by recording continuous in-situ
Frontiers in Plant Science 07
observations of: a) yellow rust infestation from 20 April to 25

May 2017 at the Scientific Research and Experimental Station of

Chinese Academy of Agricultural Science (39°30′40″N, 116°36′20″
E) in Langfang, Hebei province, and b) nitrogen deficiency at the

National Experiment Station for Precision Agriculture (40°10′6″N,
116°26′3″E) in Changping District, Beijing, China. The

measurement strategies focused on eight key wheat growth stages

(i.e., jointing stage, flag leaf stage, heading stage, flowering stage,

early grain-filling stage, mid grain-filling stage, late grain-filling

stage, and harvest stage). The detailed observation dates and the

canopy photographs were listed in Table 1. The same experiments

were repeated from 18 April to 31 May 2018.

For the yellow rust experiment, we used the wheat cultivar

‘Mingxian 169’ due to its susceptibility to yellow rust infestation.

There was a control group and two infected groups of yellow rust

(two replicates of inoculated treatment). Each field group occupied

220 m2 of field campaigns in which there were eight planting rows.

For the control group, a total of eight plots (one plot in each row)

with an area of 1 m2 were symmetrically selected in the field for

hyperspectral observations and biophysical measurements. For the

disease groups, the concentration levels of 5 mg 100–1mL–1 and 9

mg 100–1mL–1 spore solution were implemented to generate a

gradient in infestation levels; eight plots were applied for

sampling in each replicate. All treatments applied 200 kg ha–1

nitrogen and 450 m3 ha–1 water at the beginning of planting.

For the nitrogen deficiency experiment in Changping, the

popular wheat cultivars ‘Jingdong 18’ and ‘Lunxuan 167’ were

selected. There were two replicate field groups with the same

nitrogen treatment applied. Each field group occupied 600 m2 of

field campaigns in which three fertilization levels were used in 21
FIGURE 2

The dynamic routing optimization between the FFC scalar features and the capsule vector features.
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TABLE 1 The state of vegetation at each measurement date.

Location
(year)

Type Day after treatment (DAT)

Langfang 2017

H

7(Apr.20) 14(Apr.27) 23(May.6) 27(May.10)

YR

H

34(May.17) 37(May.20) 41(May.25)

YR

Langfang
2018

H

7(Apr.18) 14(Apr.25) 23 (May.4) 27(May.8)

YR

(Continued)
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TABLE 1 Continued

Location
(year)

Type Day after treatment (DAT)

H

34(May.15) 37(May.18) 41(May.22) 49(May.30)

YR

Xiaotang shan 2017

H

7(Apr.16) 23(May.2) 34(May.13) 49(May.29)

ND

Xiaotang shan 2018

H

7(Apr.17) 23(May.5) 34(May.14) 49(May.31)

ND
F
rontiers in Plant Scien
ce
 09
H, healthy; YR, yellow rust; ND, nitrogen deficiency.
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planting rows of field land (seven rows per treatment) at the

beginning of planting, 0 kg ha–1 nitrogen (deficiency group), 100

kg ha–1 nitrogen (deficiency group), and 200 kg ha–1 nitrogen

(control group). Similarly to Langfang, all treatments received 450

m3 ha–1 water at planting.
4.2 The simulation of Sentinel-2 bands

The simulated Sentinel-2 bands are regarded as the pure spectral

signatures without the effects of atmosphere conditions. For this

purpose, the reflectance and transmittances of the sampling plots

were firstly collected using an ASD FieldSpec spectroradiometer

(Analytical Spectral Devices, Inc., Boulder, CO, USA). In each plot,

10 scans were taken at 1.2 m above the wheat canopy. The

spectroradiometer was fitted with a 25° field-of-view bare fiber-

optic cable and operated in the 350-nm–2,500-nm spectral region.

The sampling interval was 1.4 nm between 350 nm and 1,050 nm and

2 nm between 1,050 nm and 2,500 nm. A white spectral reference

panel (99% reflectance) was acquired once every 10 measurements to

minimize the effect of possible differences in illumination. Only the

bands in the range of 400 nm–1,000 nmwere adopted in this study in

order to match the visible-red edge-near infrared bands of Sentinel-2

and avoid bands below 400 nm and above 1,000 nm that were affected

by noises (Shi et al., 2017b). In order to keep radiance consistence, the

sampling was conducted at the same period of time between 11:00

and 13:30 local time under a cloud-free sky.

Subsequently, we integrated the field canopy hyperspectral data

with the sensor’s relative spectral response (RSR) function to simulate

the multispectral bands of Sentinel-2. The formula is given as follows:

Rsentinel−2 =

Z lend

lstart
Rground(l) · RSR(l)dx
Z lend

lstart
RSR(l)dx

(6)

where Rsentinel–2 is the simulated multispectral channel of

Sentinel-2 sensor; lstart and lend represent the beginning and

ending reflectance wavelength of Sentinel-2’s corresponding

channel, respectively; Rground is the ground truth canopy

hyperspectral data; and RSR is the relative spectral response of

Sentinel-2 sensor (https://earth.esa.int/web/sentinel/user-guides/

sentinel-2-msi/document-library/). Both the Rground and RSR are

the functions of wavelength.
4.3 Collection of ground truth
plant parameters

The plant LAI and LCC were synchronously measured on the

same place where the canopy spectral measurements were made.

The LCC was measured by the Dualex Scientific sensor (FORCE-A,

Inc., Orsay, France), a handheld leaf-clip sensor designed to

nondestructively evaluate the content of chlorophyll and

epidermal flavonols. The LCC values were collected with the

default unit, which were used preferentially because of the strong

relationship between their digital readings and real foliar
Frontiers in Plant Science 10
chlorophyll. Considering the canopy structure-derived multiple

scattering process, the first three leaves from the top are regarded

as the most effective one with maximum photosynthetic absorption

rate, which not only represent the average growth state of the whole

plant but also contribute most to the canopy reflected radiation

measured by our observations. Therefore, for each sampling plot,

the first, second, and third wheat leaves, from the top of 10

randomly selected plants (30 leaves for each plot), were chosen

for LCCmeasurements. For the LAI acquisition, the LAI-2200 Plant

canopy analyzer (Li-Cor Biosciences Inc., Lincoln, NE, USA) was

used in each 1 m × 1 m subplot.
4.4 Assessment of ground truth plant
stress severity

In this study, the disease index (DI) was used to measure the

severity of yellow rust, and the fertilization level was used to

measure the severity of nitrogen deficiency. Specifically, the DI

was calculated using the method mentioned in Zhang et al. (2012).

It is noted that because slight stress (DI< 20) generates an invisible

influence on wheat yield and does not trigger enough spectral

responses on the top-of-canopy (TOC) reflections of the 10 m ×

10 m Sentinel-2 pixels, the samples with DI< 20 were labeled as

“healthy wheat”; otherwise, they were labeled as “yellow rust.” In

order to guarantee the uniformed bias in each observation, all leaves

were manually inspected by the same specially assigned

investigators according to the National Rules for the Investigation

and Forecasting of Plant Diseases (GB/T 15795-1995). For nitrogen

deficiency, three fertilization levels (i.e., 0 kg ha–1, 100 kg ha–1, and

200 kg ha–1) were controlled in our experiments; here, we labeled

the fertilization level of 200 kg ha–1 as “healthy wheat”; otherwise,

they were labeled as “nitrogen deficiency.” The distribution of the

collected DI of yellow rust and the fertilization levels of nitrogen

deficiency is shown in Figure 3.
4.5 The ground survey dataset under
natural field conditions

In order to evaluate the generalization and transferability of the

proposed model in actual applications under natural conditions, we

collected the actual Sentinel-2 time series and the ground truth data

in two different sites, one is located in the Ningqiang county (37°35′
51″N, 118°35′19″E), Shaanxi province, 2018, and another one is

located in Shunyi district (41°20′41″N, 116°24′8″E), Beijing, 2016.
In Ningqiang county, a total of nine cloud-free Sentinel-2 images

and 55 ground truth plots were collected. In Shunyi district, a total

of six cloud-free Sentinel-2 images and 32 ground truth plots were

collected. All of the collected Sentinel-2 images were

atmospherically corrected using the SEN2COR procedure,

converting top-of-atmosphere (TOA) reflectance into TOC

reflectance. TOC products were the result of a resampling

procedure with a constant ground resampling distance of 10 m

for visible and near-infrared bands (B2, B3, B4, and B8) and 20 m

for red-edge bands (B5, B6, B7). The spatial resolution of the red-
frontiersin.org
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edge bands (B5, B6, B7) was homogenized to 10 m using nearest

neighbor resampling. Such process was conducted in the ESA SNAP

6.0 software. The basic principle of the nearest neighbor resampling

was described in the study by Roy and Yan (2020). The overview of

the sampling plots and Sentinel-2 collection is shown in Figure 4.
Frontiers in Plant Science 11
In both surveys, LAI and LCC values were measured by the

same approaches used in the experiments under controlled field

conditions. Each sample was collected in an area of approximately

10 m × 10 m (corresponding to the spatial resolution of Sentinel-2

bands), of which the center coordinates were recorded using a GPS
A B

FIGURE 3

The distribution of the (A) collected disease index (DI) of Yellow Rust and (B) fertilization levels of Nitrogen Deficiency.
FIGURE 4

False-color maps of the experimental sites of Ningqiang county, Shaanxi (bottom left), and Shunyi district, Beijing (top right). Overview of the
Sentinel-2 imagery used.
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with differential correction (accuracy in the order of 2–5 m). The

sketch of the sampled site setting is shown in Figure 5.

DIs of yellow rust were measured by the same method used in

the experiments under controlled field conditions. In each plot, a

plot was labeled as “yellow rust” when DI > 20. On the other hand,

nitrogen deficiency in each plot was investigated by requesting the

history of fertilizer application to the local farmers, and a plot was

labeled as “nitrogen deficiency” when the history of fertilizer
Frontiers in Plant Science 12
application was < 150 kg/ha. The statistical distribution of the

labeled classes was shown in Figure 6.
5 Results and discussion

In this section, the proposed model is tested and evaluated in

three different aspects, including the model performance on
FIGURE 5

The measurement sketch of the synchronously ground LAI and LCC truth data collection.
A B

FIGURE 6

The distribution of the labeled classes in (A) Ningqiang and (B) Shunyi.
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detecting and discriminating the yellow rust and nitrogen

deficiency, computing efficiency and robustness, and the

interpretability assessment.

Firstly, to test the performance of the proposed FFCDNN on

detection and discrimination of yellow rust and nitrogen deficiency,

three representative methods, including BIT-DNN (Shi et al., 2021),

which represents the state-of-the-art interpretable learning model,

AlexNet (Lv et al., 2020), which represents the advanced deep

learning model on remote sensing objective detection, and support

vector machine (SVM), which represents the typical machine

learning method. Specifically, for CapsNet, the network

architecture is proposed in Shi et al. (2021). For AlexNet, the

network architecture and hyperparameter setting is referred to

Han et al. (2017). For the configuration of the SVM classifier, the

radial basis function (RBF) kernel is used in the SVM classification

frame, and a grid-based approach proposed by Rumpf et al. (2010)

is used to specify the parameter C and.

Regarding the model assessments, six evaluation metrics,

including F1 score, average accuracy, producer’s accuracy, user’s

accuracy, Kappa value, and computing time, are employed in this

study to evaluate the classification accuracy and robustness. The

definitions of these matrices are formulated in Mahlein et al. (2017)

and Lv et al. (2020).

Secondly, for the interpretability assessment of the model, a

post-hoc analysis is used to expose the learning process and feature
Frontiers in Plant Science 13
representations of the data life in the proposed model. Specifically, a

canonical discriminant analysis is first used to measure the intra-

class distance and the separability in each learning stage of the

model. The definition of the canonical discriminant analysis is

described in our previous study (Shi et al., 2017a). And then, the

coefficients of determination (R2) between the generated

biologically composed features and the ground-measured severity

of yellow rust and nitrogen deficiency are calculated based on

univariate correlation analysis.
5.1 Model test on detection and
discrimination of the yellow rust and
nitrogen deficiency

5.1.1 Experiment 1: model testing on the
simulated Sentinel-2 bands under controlled
field conditions

The first experiment is to evaluate the performance of the

proposed model on the detection and discrimination of yellow

rust and nitrogen under controlled conditions. For model testing

and validation, 5-fold cross-validation is employed. The

comparison of the classifications of the proposed FFCDNN, BIT-

DNN, AlexNet, and SVM is shown in Table 2. Our results show that

for the model testing process, the proposed FFCDNN achieves
TABLE 2 The assessment of the proposed model and the baseline models in terms of producer’s accuracy (PA), user’s accuracy (UA), F1 score (F1),
overall accuracy (OA), Kappa, and computing time (CT).

Model Class PA(%) Testing dataset Kappa CT(s)

UA(%) F1(%) OA(%)

FFCDNN
Health
YR

97.74
95.15

97.34
96.21

97.54
95.68 95.13 0.891 277.4

NS 91.98 92.35 92.16

BIT-DNN
Health
YR

92.72
93.51

94.25
93.55

93.48
93.53 92.07 0.881 299.8

NS 88.86 89.54 89.2

AlexNet
Health
YR

90.61
94.39

91.25
93.21

90.93
93.8 90.96 0.846 497.2

NS 87.62 88.65 88.13

SVM
Health
YR

93.32
94.31

87.91
92.34

90.53
93.31 90.5 0.824 108.7

NS 90.51 84.58 87.44

Model Class PA(%) Evaluation dataset Kappa CT(s)

UA(%) F1(%) OA(%)

FFCDNN
Health
YR

96.58
93.29

96.97
93.49

96.77
93.39 93.62 0.866 221.9

NS 90.51 90.86 90.68

BIT-DNN
Health
YR

84.01
85.27

94.17
92.45

88.8
88.71 87.11 0.832 239.8

NS 82.55 84.22 83.38

(Continued)
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>90% classification accuracy that was consistent with the

performance of the baseline models. Nevertheless, for the model

evaluation process, the proposed method achieves the best

performance with 92.12% overall accuracy, 6.51% higher than the

second best model (i.e., BIT-DNN). These findings suggest that the

proposed model has great robustness and generalization for the

plant stress detection and classification. In addition, it is of note that

the misclassification mainly occurs between healthy wheat and

nitrogen deficiency. In terms of computing efficiency, although

the computing time of the proposed model is not the best among

the baseline, it is highly improved from the convolution-based deep

learning model.

5.1.2 Experiment 2: model applications
on the actual Sentinel-2 images
under natural field conditions

The second experiment aims to further evaluate the robustness

and transferability of the proposed model on the actual Sentinel-2

images under natural field conditions. For this purpose, the

pretrained models in the last section are directly used in the

pixel-wise classification of yellow rust and nitrogen deficiency on

the actual Sentinel-2 time series in Ningqiang and Shunyi, and the

ground truth samples are used as validation. The accuracy

assessments of the pretrained SVM, CNN, and FFCDNN are
Frontiers in Plant Science 14
listed in Table 3. In the comparison of the classification results in

Table 2, it is clear that the proposed FFCDNN achieves the best and

the most robust classification for the multiple plant stresses; the

overall accuracy (i.e., 91.14% for Ningqiang and 91.63% for Shunyi)

is consistent with the model evaluation results under controlled

conditions (Table 2). In addition, the computing efficiency is

highest among the deep learning-based baseline models. Overall,

these results suggest that the proposed FFCDNN provides a more

stable and robust performance than the baseline models for rapid

noninvasive detection of plant stress in a fully automated and

reproducible manner.

For the demonstration purpose, the FFCDNN-based classification

maps of the yellow rust and nitrogen deficiency in Ningqiang and

Shunyi are respectively illustrated in Figures 7 and 8. The spatial

distributions of yellow rust and nitrogen deficiency in Ningqiang and

Shunyi are consistent with our field survey. Specifically, for the

Ningqiang case, yellow rust is mainly located around the river

where ideal moisture is provided for the infestation and

development of yellow rust (see the zoomed in window in

Figure 7), and nitrogen deficiency is distributed around the edge of

the county where the high transportation cast results in poor

fertilization management. For the Shunyi case, nitrogen deficiency

mainly occurs in the edge of the field patches (see the zoomed in

window in Figure 8), and yellow rust slightly occurs in the west of the
TABLE 2 Continued

Model Class PA(%) Testing dataset Kappa CT(s)

UA(%) F1(%) OA(%)

AlexNet
Health
YR

88.85
82.02

86.46
22.53

87.64
82.27 84.38 0.764 397.7

NS 84.48 81.94 83.19

SVM
Health
YR

80.85
82.83

80.81
84.11

80.83
83.47 79.64 0.695 86.9

NS 75.51 73.74 74.61
fronti
TABLE 3 The accuracy assessment of the pretrained models on actual Sentinel-2 time series in terms of producer’s accuracy (PA), user’s accuracy
(UA), F1 score (F1), overall accuracy (OA), Kappa, and computing time (CT).

Model Class PA(%) Ningqiang Kappa CT(s)

UA(%) F1(%) OA(%)

FFCDNN
Health
YR

90.96
90.76

94.18
92.94

92.54
91.84 91.14 0.847 554.8

NS 88.32 89.68 88.99

BIT-DNN
Health
YR

86.66
82.97

89.24
80.96

87.93
81.95 82.66 0.801 799.6

NS 77.88 78.25 78.06

AlexNet
Health
YR

83.59
81.54

79.54
79.12

81.51
80.31 80.04 0.786 1194.4

NS 80.38 76.05 78.16

SVM
Health
YR

65.32
71.46

59.93
70.79

62.51
71.12 62.62 0.689 217.4

(Continued)
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study area. These monitoring results are double-checked through

telephone interviews with the local plant protection department.
5.2 The interpretability assessment
of the model

Interpretability is one of the important matrices that measure

bias and provide an explainable reason for prediction decisions

from a model. In this study, the interpretability assessment mainly

focuses on the data life in the proposed FFCDNN model and the

representations of the intermediate features.
5.2.1 The data life in the proposed
FFCDNN model

In this study, two significant modules are proposed to

characterize the yellow rust- and nitrogen deficiency-associated

information from the Sentinel-2 time series, thus, 1) the FFC

feature extraction and 2) the capsule feature generation. In order

to evaluate the effects of each module on the inter-class separability,

we conduct a canonical discriminate analysis to measure the

clusters of the intermediate features. In the canonical discriminate

analysis, the first two canonical discriminant functions are

employed to establish the projective scatter plots. In addition, we

gradually add the modules into the FFCDNN framework and

compare their effects on classification accuracy. The visualization

of the comparison is illustrated in Figure 9.

5.2.1.1 The base model without the
characterized modules

The base model architecture without the characterized modules

is similar to a multilayer perception (MLP), thus, the V ILAI and V
Frontiers in Plant Science 15
ILCC time series produced by the biological feature retrieval layer

L(1) will directly input into the classifier L(5). The inter-class

separability of the time series features is shown in the second

column of Figure 9, and the overall accuracy achieved by the base

model is approximately 51.7%.

5.2.1.2 Adding the FFC layer

In the FFCDNN, the FFC feature extraction is the most

important step to extract the yellow rust- and nitrogen deficiency-

associated V ILAI and V ILCC frequency-domain features from the

background noises. The canonical discriminate analysis indicates

that by comparison with the time series features, the extracted

frequency-domain features reveal the greater clusters between the

different classes (the third column of Figure 9), and the overall

accuracy reaches approximately 79.2%.

5.2.1.3 Adding the capsule feature encoder

The capsule feature encoder is the most intelligent part of the

proposed FFCDNN, which encapsulates the extracted scalar

biological features into the vector features with the explicit

biological representation of the target classes. The evident clusters

and class edges can be figured out in the canonical projected scatter

plot (the fourth column of Figure 9), and the final overall accuracy

reaches 92.8%.

5.2.2 The representations of the
intermediate features

The primary contribution of this study is to model the part-to-

whole relationship between the Sentinel-2-derived biological agents

(i.e., V ILAI and V ILCC) and the specific stresses by encapsulating the

scalar FFC features into the low-level class-associated vector

structures. The philosophy behind the biologically composed
TABLE 3 Continued

Model Class PA(%) Ningqiang Kappa CT(s)

UA(%) F1(%) OA(%)

NS 56.2 52 54.02

Model Class PA(%) Shunyi Kappa CT(s)

UA(%) F1(%) OA(%)

FFCDNN
Health
YR

95.88
89.44

92.34
85.99

94.08
87.68 91.63 0.855 483.8

NS 94.28 91.86 93.05

BIT-DNN
Health
YR

86.19
84.37

88.82
82.12

87.49
83.23 84.37 0.817 679.6

NS 80.73 83.96 82.31

AlexNet
Health
YR

81.93
81.6

83.06
80.88

82.49
81.24 81.47 0.759 1095.4

NS 80.25 81.09 80.67

SVM
Health
YR

77.07
76.99

74.17
72.61

75.59
74.74 72.67 0.707 173.8

NS 68.51 66.65 67.57
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features is that the vector features provide a hierarchical structure to

represent the entanglement of the V ILAI and V ILCC fluctuations

associated with yellow rust and nitrogen deficiency and provide

evidence for the detection and discrimination of yellow rust and

nitrogen deficiency.

The coefficients of determination (R2) between the components

of the generated biologically composed features and the ground-

measured severity of yellow rust and nitrogen deficiency are

calculated based on univariate correlation analysis (Figure 10). It is

noted that according to Nyquist theorem, the maximum frequency

component after FFT is 26 HZ; thus, the dimensionality of the
Frontiers in Plant Science 16
generated biologically composed features will be less than 52. Our

results illustrate that for yellow rust, both the V ILAI and V ILCC
frequency features located in the low-frequency regions (2-4 HZ)

highly relate with the severity levels of yellow rust, which means that

the host–pathogen interaction of yellow rust may induce chronic

impacts on the V ILAI and V ILCC fluctuation. These findings are in

agreement with the biophysical and pathological characteristics of

yellow rust that were reported in our previous study (Shi et al., 2018).

For nitrogen deficiency, the associated V ILAI fluctuations are mainly

located in the frequency regions of 5 15 Hz, and the associated V ILCC
fluctuations are mainly located in the frequency regions of 6 13 Hz.
FIGURE 7

The occurrence monitoring and mapping of yellow rust in Ningqiang county, Shaanxi province (the zoomed in window shows the classification in
the subregion).
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This means that the nitrogen deficiency may give rise to more acute V

ILAI and V ILCC responses than that of yellow rust on the Sentinel-2

time series. For instance, as reported in Behmann et al. (2014), the

occurrence of nitrogen deficiency in green plants is associated with

poor photosynthesis rates and further leads to abnormal LAI and

LCC (i.e., reduced growth and chlorotic leaves). In conclusion, the

proposed FFCDNN is able to capture periodic patterns and

frequencies in the data directly during the learning process, making

it more specialized for crop stress detection. In addition, by

integrating FFTs into the model, FFCDNN can be more

computationally efficient in scenarios where capturing frequency

information is crucial for good performance.
Frontiers in Plant Science 17
6 Conclusion

The proposed FFCDNNmodel differs from existing approaches

in the detection and discrimination of multiple plant stresses in the

following three aspects: 1) Our model primarily considers plant

biochemical information specific to the stresses. 2) The proposed

FFC kernel represents the first attempt to use the FFT-based kernel

in a deep neural network for biological dynamic extraction from the

Sentinel-2 time series. 3) The well-designed capsule feature encoder

demonstrates excellent performance in modeling the part-to-whole

relationship between the extracted biological dynamics and the

host–stress interaction. These three characteristics improve the
FIGURE 8

The detection and discrimination of yellow rust and nitrogen deficiency in Shunyi district, Beijing (the zoomed in window shows the classification in
the subregion).
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interpretability of our model for decision-making, akin to

human experts.

However, two challenges persist in the practical use of the

proposed implementation. Firstly, the performance of our model

is inherently limited by the accurate extraction of the

biochemical prefilter. The Sentinel-2-based V ILAI and V ILCC
estimations struggle to represent the real LAI and LCC values

accurately, leading to the underestimation of the biological

dynamics of specific stresses. Secondly, errors from the gap

conditions and the co-registration of Sentinel-2 imagery

introduce uncertainty in the modeling processes. These are the

primary reasons for the performance decline in the practical

application of the FFCDNN. Future research will investigate

whether integrating information provided by multisource
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satellites into the FFCDNN framework could compensate for

the LAI and LCC estimations and gap-related error, thereby

further improving accuracies in detecting and discriminating

yellow rust and nitrogen deficiency.

In conclusion, modeling the biochemical progress of specific

plant stress is a key factor that influences the effectiveness of deep

learning applications in the remote sensing detection and

discrimination of multiple plant stresses. In this study, we

proposed the FFCDNN model to analyze the stress-associated V

ILAI and V ILCC biological responses from Sentinel-2 time series to

achieve multiple plant classifications at the regional level.

Comparisons with state-of-the-art models reveal that the

proposed FFCDNN exhibits competitive performance in terms of

classification accuracy, robustness, and generalization ability.
FIGURE 9

The visualization of the comparison for showing the effects of each module in FFCDNN on the canonical discriminate analysis and overall accuracy.
Each column is a model with the modules on the top. Red highlights the main difference of the current model with the previous one.
A

B

FIGURE 10

The coefficients of determination (R2) between the components of the generated biologically composed features and the ground-measured severity
of (A) yellow rust and (B) nitrogen deficiency.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1250844
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shi et al. 10.3389/fpls.2023.1250844
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author/s.
Author contributions

YS planned the study, designed the field experiments, developed

the algorithm, and drafted the manuscript. LH and DD reviewed,

edited, conducted interviews and supervised the manuscript and

lead the revision. PG-M and WH prepared and conducted

interviews, reviewed and edited the manuscript and conducted

interviews. ZZ, YL and MH provided literature reviews, HM and

MD reviewed and edited the manuscript. All authors improved the

manuscript by responding to the review comments. All authors

contributed to the article and approved the submitted version.
Funding

This work was supported by BBSRC (BB/R019983/1), BBSRC

(BB/S020969/1), and Jiangsu Provincial Key Research and

Development Program-Modern Agriculture (Grant No.

BE2019337) and Jiangsu Agricultural Science and Technology

Independent Innovation (Grant No. CX(20)2016).
Frontiers in Plant Science 19
Acknowledgments

The authors would like to thank Dr. Bo Liu for providing the

field for our experiments in Langfang in this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1250844/

full#supplementary-material
References
Abdur Rehman, N. A., Saif, U., and Chunara, R. Deep landscape features for
improving vector-borne disease prediction. Proceedings of the IEEE/CVF Conference
on computer vision and pattern recognition workshops. (2019). 44–51.

An, J., Li, W., Li, M., Cui, S., and Yue, H. (2019). Identification and classification of
maize drought stress using deep convolutional neural network. Symmetry 11, 256. doi:
10.3390/sym11020256

Ashourloo, D., Matkan, A. A., Huete, A., Aghighi, H., and Mobasheri, M. R. (2016).
Developing an index for detection and identification of disease stages. IEEE Geosci.
Remote Sens. Lett. 13, 851–855. doi: 10.1109/LGRS.2016.2550529

Awujoola, O. J., Odion, P., Evwiekpaefe, A., and Obunadike, G. (2022). “Multi-
stream fast fourier convolutional neural network for automatic target recognition of
ground military vehicle,” in Artificial Intelligence and Applications. doi: 10.47852/
bonviewAIA2202412

Ballester, C., Brinkhoff, J., Quayle, W. C., and Hornbuckle, J. (2019). Monitoring the
effects of water stress in cotton using the green red vegetation index and red edge ratio.
Remote Sens. 11, 873. doi: 10.3390/rs11070873

Barbedo, J. G. A. (2019). Plant disease identification from individual lesions and
spots using deep learning. Biosyst. Eng. 180, 96–107. doi: 10.1016/j.biosystemseng.
2019.02.002

Behmann, J., Steinrücken, J., and Plümer, L. (2014). Detection of early plant stress
responses in hyperspectral images. ISPRS J. Photogrammetry Remote Sens. 93, 98–111.
doi: 10.1016/j.isprsjprs.2014.03.016

Bradley, B. A., Jacob, R. W., Hermance, J. F., and Mustard, J. F. (2007). A curve fitting
procedure to derive inter-annual phenologies from time series of noisy satellite ndvi
data. Remote Sens. Environ. 106, 137–145. doi: 10.1016/j.rse.2006.08.002

Brahimi, M., Mahmoudi, S., Boukhalfa, K., and Moussaoui, A. Deep interpretable
architecture for plant diseases classification. 2019 Signal Processing: Algorithms,
Architectures, Arrangements, and Applications (SPA) (Poznan, Poland: IEEE) (2019)
111–116. doi: 10.23919/SPA.2019.8936759

Cao, Z., Yao, X., Liu, H., Liu, B., Cheng, T., Tian, Y., et al. (2019). Comparison
of the abilities of vegetation indices and photosynthetic parameters to detect heat
stress in wheat. Agric. For. Meteorology 265, 121–136. doi: 10.1016/j.agrformet.2018.
11.009
Chen, H., Yokoya, N., and Chini, M. (2023). Fourier domain structural relationship
analysis for unsupervised multimodal change detection. ISPRS J. Photogrammetry
Remote Sens. 198, 99–114. doi: 10.1016/j.isprsjprs.2023.03.004

Chi, L., Tian, G., Mu, Y., Xie, L., and Tian, Q. “Fast non-local neural networks with
spectral residual learning,” in Proceedings of the 27th ACM International Conference on
Multimedia. (2019) 2142–2151. doi: 10.1145/3343031.3351029

Clevers, J. G. P. W., and Gitelson, A. A. (2013). Remote estimation of crop and grass
chlorophyll and nitrogen content using red-edge bands on sentinel-2 and -3. Int. J.
Appl. Earth Observations Geoinformation 23, 344–351. doi: 10.1016/j.jag.2012.10.008

Cruz, A., Ampatzidis, Y., Pierro, R., Materazzi, A., Panattoni, A., De Bellis, L., et al.
(2019). Detection of grapevine yellows symptoms in vitis vinifera l. with artificial
intelligence. Comput. Electron. Agric. 157, 63–76. doi: 10.1016/j.compag.2018.12.028

Darvishzadeh, R., Skidmore, A., Wang, T., and Vrieling, A. Evaluation of sentinel-2
and rapideye for retrieval of lai in a saltmarsh using radiative transfer model. in ESA
Living Planet Symposium 2019. Milan, Italy (2019).

Elarab, M., Ticlavilca, A. M., Torres-Rua, A. F., Maslova, I., and Mckee, M. (2015).
Estimating chlorophyll with thermal and broadband multispectral high resolution
imagery from an unmanned aerial system using relevance vector machines for
precision agriculture. Int. J. Appl. Earth Observations Geoinformation 43, 32–42. doi:
10.1016/j.jag.2015.03.017

El Jarroudi, M., Kouadio, L., El Jarroudi, M., Junk, J., Bock, C., Diouf, A. A., et al.
(2017). Improving fungal disease forecasts in winter wheat: A critical role of intra-day
variations of meteorological conditions in the development of septoria leaf blotch. Field
Crops Res. 213, 12–20. doi: 10.1016/j.fcr.2017.07.012

Fuentes, A., Yoon, S., Kim, S. C., and Park, D. S. (2017). A robust deep-learning-
based detector for real-time tomato plant diseases and pests recognition. Sensors 17,
2022. doi: 10.3390/s17092022

Gerhards, M., Schlerf, M., Mallick, K., and Udelhoven, T. (2019). Challenges and
future perspectives of multi-/hyperspectral thermal infrared remote sensing for crop
water-stress detection: A review. Remote Sens. 11, 1240. doi: 10.3390/rs11101240

Golhani, K., Balasundram, S. K., Vadamalai, G., and Pradhan, B. (2018). A review of
neural networks in plant disease detection using hyperspectral data. Inf. Process. Agric.
5, 354–371. doi: 10.1016/j.inpa.2018.05.002
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2023.1250844/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1250844/full#supplementary-material
https://doi.org/10.3390/sym11020256
https://doi.org/10.1109/LGRS.2016.2550529
https://doi.org/10.47852/bonviewAIA2202412
https://doi.org/10.47852/bonviewAIA2202412
https://doi.org/10.3390/rs11070873
https://doi.org/10.1016/j.biosystemseng.2019.02.002
https://doi.org/10.1016/j.biosystemseng.2019.02.002
https://doi.org/10.1016/j.isprsjprs.2014.03.016
https://doi.org/10.1016/j.rse.2006.08.002
https://doi.org/10.23919/SPA.2019.8936759
https://doi.org/10.1016/j.agrformet.2018.11.009
https://doi.org/10.1016/j.agrformet.2018.11.009
https://doi.org/10.1016/j.isprsjprs.2023.03.004
https://doi.org/10.1145/3343031.3351029
https://doi.org/10.1016/j.jag.2012.10.008
https://doi.org/10.1016/j.compag.2018.12.028
https://doi.org/10.1016/j.jag.2015.03.017
https://doi.org/10.1016/j.fcr.2017.07.012
https://doi.org/10.3390/s17092022
https://doi.org/10.3390/rs11101240
https://doi.org/10.1016/j.inpa.2018.05.002
https://doi.org/10.3389/fpls.2023.1250844
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shi et al. 10.3389/fpls.2023.1250844
Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., and Strachan, I. B. (2004).
Hyperspectral vegetation indices and novel algorithms for predicting green lai of crop
canopies: Modeling and validation in the context of precision agriculture. Remote Sens.
Environ. 90, 337–352. doi: 10.1016/j.rse.2003.12.013

Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., and Dextraze, L.
(2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll
content for application to precision agriculture. Remote Sens. Environ. 81, 416–426. doi:
10.1016/S0034-4257(02)00018-4

Hamida, A. B., Benoit, A., Lambert, P., and Amar, C. B. (2018). 3-d deep learning
approach for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 56,
4420–4434. doi: 10.1109/TGRS.2018.2818945

Han, X., Zhong, Y., Cao, L., and Zhang, L. (2017). Pre-trained alexnet architecture
with pyramid pooling and supervision for high spatial resolution remote sensing image
scene classification. Remote Sens. 9, 848. doi: 10.3390/rs9080848

Harrington, P. (2012).Machine learning in action (Manning Publications: Simon and
Schuster).

Huang, W., Lu, J., Ye, H., Kong, W., Mortimer, A. H., and Shi, Y. (2018). Quantitative
identification of crop disease and nitrogen-water stress in winter wheat using
continuous wavelet analysis. Int. J. Agric. Biol. Eng. 11, 145–152. doi: 10.25165/
j.ijabe.20181102.3467

Ihuoma, S. O., and Madramootoo, C. A. (2019). Sensitivity of spectral vegetation
indices for monitoring water stress in tomato plants. Comput. Electron. Agric. 163,
104860. doi: 10.1016/j.compag.2019.104860

Jakubauskas, M. E. (2002). Time series remote sensing of landscape-vegetation
interactions in the southern great plains. Sensing 68, 1021–1030.

Jakubauskas, M. E., Legates, D. R., and Kastens, J. H. (2002). Crop identification
using harmonic analysis of time-series avhrr ndvi data. Comput. Electron. Agric. 37,
127–139. doi: 10.1016/S0168-1699(02)00116-3

Ji, S., Zhang, C., Xu, A., Shi, Y., and Duan, Y. (2018). 3d convolutional neural
networks for crop classification with multi-temporal remote sensing images. Remote
Sens. 10, 75. doi: 10.3390/rs10010075

Jiang, T., Dou, Z., Liu, J., Gao, Y., Malone, R. W., Chen, S., et al. (2020). Simulating
the influences of soil water stress on leaf expansion and senescence of winter wheat.
Agric. For. Meteorol. 291, 108061. doi: 10.1016/j.agrformet.2020.108061

Jin, X., Jie, L., Wang, S., Qi, H. J., and Li, S. W. (2018). Classifying wheat
hyperspectral pixels of healthy heads and fusarium head blight disease using a deep
neural network in the wild field. Remote Sens. 10, 395. doi: 10.3390/rs10030395

Jong, R. D., Bruin, S. D., Wit, A. D., Schaepman, M. E., and Dent, D. L. (2011).
Analysis of monotonic greening and browning trends from global ndvi time-series.
Remote Sens. Environ. 115, 692–702. doi: 10.1016/j.rse.2010.10.011
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