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Introduction: Genomic selection (GS) experiments in forest trees have largely

reported estimates of predictive abilities from cross-validation among individuals

in the same breeding generation. In such conditions, no effects of

recombination, selection, drift, and environmental changes are accounted for.

Here, we assessed the effectively realized predictive ability (RPA) for volume

growth at harvest age by GS across generations in an operational reciprocal

recurrent selection (RRS) program of hybrid Eucalyptus.

Methods: Genomic best linear unbiased prediction with additive (GBLUP_G),

additive plus dominance (GBLUP_G+D), and additive single-step (HBLUP)

models were trained with different combinations of growth data of hybrids and

pure species individuals (N = 17,462) of the G1 generation, 1,944 of which were

genotyped with ~16,000 SNPs from SNP arrays. The hybrid G2 progeny trial

(HPT267) was the GS target, with 1,400 selection candidates, 197 of which were

genotyped still at the seedling stage, and genomically predicted for their

breeding and genotypic values at the operational harvest age (6 years).

Seedlings were then grown to harvest and measured, and their pedigree-

based breeding and genotypic values were compared to their originally

predicted genomic counterparts.

Results:Genomic RPAs ≥0.80 were obtained as the genetic relatedness between

G1 and G2 increased, especially when the direct parents of selection candidates

were used in training. GBLUP_G+D reached RPAs ≥0.70 only when hybrid or

pure species data of G1 were included in training. HBLUP was only marginally

better than GBLUP. Correlations ≥0.80 were obtained between pedigree and

genomic individual ranks. Rank coincidence of the top 2.5% selections was the

highest for GBLUP_G (45% to 60%) compared to GBLUP_G+D. To advance the

pure species RRS populations, GS models were best when trained on pure

species than hybrid data, and HBLUP yielded ~20% higher predictive abilities

than GBLUP, but was not better than ABLUP for ungenotyped trees.
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Discussion: We demonstrate that genomic data effectively enable accurate

ranking of eucalypt hybrid seedlings for their yet-to-be observed volume

growth at harvest age. Our results support a two-stage GS approach involving

family selection by average genomic breeding value, followed by within-top-

families individual GS, significantly increasing selection intensity, optimizing

genotyping costs, and accelerating RRS breeding.
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1 Introduction

The concept of using the “total allelic” (Nejati-Javaremi et al.,

1997) or “total genomic” (Haley and Visscher, 1998) relationship

from marker data to derive estimates of breeding values,

subsequently termed “genomic selection” (GS) (Meuwissen et al.,

2001), has revolutionized animal and plant breeding in the last 20

years. This paradigm shift in thinking on how to use DNA marker

data to increase the rate of genetic gain per unit time was made

possible by the convergence of the time-proven quantitative

genetics framework and novel high-throughput genomic

technologies to interrogate thousands of genome-wide single-

nucleotide polymorphisms (SNPs) (Grattapaglia et al., 2018). In

essence, GS is a biometric method to predict the genetic merit of

genotyped but yet-to-be-phenotyped individuals or families, called

selection candidates, based on prediction equations built from a

population genetically related to these selection candidates, called

training population, for which both phenotypes and genotypes are

available. GS has become the routine breeding strategy for a number

of animal breeding programs (Van Eenennaam et al., 2014), and its

rapid adoption is taking place in plant breeding as well (Crossa

et al., 2017; Hickey et al., 2017), while new methods are constantly

developed to improve the nonstop challenge of complex trait

prediction (Ahmadi and Bartholomé, 2022).

In forest tree breeding, the contemplation of GS started with

deterministic simulations some 12 years ago (reviewed in

Grattapaglia, 2022). Predictions were made for major

enhancements in the rate of genetic gain per unit time, by

radically reducing generation interval, increasing selection

intensity, and improving the accuracy of breeding values. GS uses

a marker-based kinship matrix (G) among the genotyped

individuals instead of the standard pedigree-based matrix (A).

The G matrix accounts for the Mendelian segregation among

family members as well as any ancestral cryptic relationships

existing among individuals within and across generations,

unknown by the contemporary pedigree. As Ignacy Misztal

straightforwardly put it, “think of genomic selection as the animal

model with more accurate relationships” (Misztal, 2011). Several

reviews have now been published, compiling results of experimental

studies and describing the fundamental and practical aspects of GS

applied to tree breeding with an emphasis on the mainstream
02
plantation species (Grattapaglia, 2014; Isik, 2014; Grattapaglia,

2017; Grattapaglia et al., 2018; Lebedev et al., 2020; Ahmar et al.,

2021; Isik, 2022). Overall, experimental reports have been positive,

predicting advantages over conventional pedigree-based selection

irrespective of species and deployment strategy whether by

improved seedling or selected individual clones. Gains would

derive from accelerated breeding through the possibility of much

earlier selection together with increased selection intensity,

especially for late expressing and/or low heritability traits.

Furthermore, a consensus has been reached that the foundational

population used to train the genomic prediction model must

represent the relevant genetic diversity to the breeding program

and be closely related to the selection candidates (Grattapaglia,

2022; Isik, 2022).

Forest tree breeding programs, however, usually involve large

populations with hundreds of individuals and families, typically

operating on tight budgets. Although genotyping has become more

affordable, implementation of GS by collecting biological samples

and genotyping all individual trees is frequently logistically and

financially not possible. An alternative is the single-step genomic-

based BLUP (GBLUP) approach (Legarra et al., 2009), a.k.a.

HBLUP, by which a blended relationship H matrix consolidates

the pedigree information (A matrix) of many more non-genotyped

individuals and the genomic relationship (G matrix) of a smaller set

of genotyped individuals. The added information of the genotyped

individuals is propagated to all trees with this combined approach,

providing genetic relationship connections across offspring and

parents, frequently resulting in more reliable breeding values of

ungenotyped trees when compared with the pedigree-based

ABLUP. Additionally, the inclusion of phenotypic information of

ungenotyped trees in the HBLUP model may lead to an increment

in predictive ability of the genotyped trees when compared to the

standard GBLUP (Cappa et al., 2017; Ratcliffe et al., 2017; Cappa

et al., 2019; Paludeto et al., 2021; Callister et al., 2022; Cappa et al.,

2022; Walker et al., 2022).

Species of Eucalyptus have been one of the main workhorses of

GS experimental work toward breeding applications in forest trees

(reviewed in Lebedev et al., 2020). Nine species in the subgenus

Symphyomyrtus, among more than 700 species in the genus, make

up over 95% of the world’s eucalypt plantations (Harwood, 2011),

providing fast volume growth, broad adaptability, and multipurpose
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wood (Grattapaglia et al., 2012). The vast genetic diversity found

within species and the possibilities to exploit complementarity and

heterosis of contrasting gene pools into eucalypt hybrids deployed

by clonal propagation have been the major drivers of genetic gains

in tropical regions. The extensively planted “urograndis” hybrid (E.

urophylla × E. grandis) developed in the 1980s in Brazil (Brandão

et al., 1984; Eldridge et al., 1993) is the most paradigmatic example,

currently representing the benchmark for clonal forest productivity

in tropical regions and the world. It combines the fast growth of E.

grandis with the increased tolerance to biotic and abiotic stresses

and better rooting ability of E. urophylla, supplying wood suitable to

different industrial applications. Besides being the pillar of eucalypt

plantations in Brazil (Lima et al., 2019), “urograndis” hybrids have

been bred and planted in Congo (Bouvet et al., 2009b), South Africa

(Retief and Stanger, 2009; Van Den Berg et al., 2018), and Southern

China (Wu et al., 2011) and have shown promising results in the

Southern United States (Kellison et al., 2013).

The success of the “urograndis” hybrid has fueled reciprocal

recurrent selection (RRS) programs between E. grandis and E.

urophylla in Brazil, Congo, and South Africa to exploit the

significant contribution of dominance variance detected in a

number of studies (Bouvet et al., 2009b; Retief and Stanger, 2009;

Van Den Berg et al., 2018; Lima et al., 2019). In the typical RRS

strategy, pure species trees of E. grandis and E. urophylla are

intermated to generate hybrid half- or full-sib families deployed

in terminal hybrid progeny trials where top individuals are selected,

further tested as clones, and eventually recommended for

commercial propagation. In the standard RRS, genetically

superior pure species trees of each species are backward selected

based on their performance as parents of hybrids, and then

intermated to establish pure species progeny trials where the best

trees will be selected to form the improved reciprocal populations

for the next breeding cycle.

The RRS strategy is a two-step breeding cycle that takes

considerable time because the advancement of the pure species

reciprocal populations depends on the hybrid progeny trial data for

backwards selection, although a forward selection variant has been

proposed (Nikles, 1992) and evaluated by simulations as more

efficient (Kerr et al., 2004). In RRS, GS would therefore have a

two-pronged positive impact to significantly accelerate breeding

cycles for “urograndis” hybrids. First, GS would be applied to the

hybrid offspring of terminal crosses at the seedling stage for

individual tree selection, precluding the progeny trial, allowing

moving directly to field validation clonal trials of genomically

selected seedlings. Second, GS applied to the pure species progeny

trials, followed by accelerated flowering by top grafting, would

shorten the time needed to advance the two reciprocal breeding

fronts. Simulation studies in bovine (Mcewin et al., 2021), oil palm

(Cros et al., 2015), and wheat (Rembe et al., 2019) have indicated

that the incorporation of GS in RRS would be a valuable method to

shorten generation intervals and improve long-term gains.

While GS across breeding generations is already standard

commercial practice in domestic animals (Van Eenennaam et al.,

2014) and annual crops (Albrecht et al., 2014; Michel et al., 2016;

Osorio et al., 2021), very scant experimental data exist in forest

trees. In trees, genomic predictive abilities have largely been
Frontiers in Plant Science 03
reported as projected estimates based on cross-validated data in

the same generation, and not as effectively accomplished predictive

abilities across a parent–offspring generational gap at the

operational harvest age of the genomically selected trees. The long

time necessary to reach the final operational harvest age and match

it to what the genomic data had predicted at the seedling stage has

been the main obstacle to accomplish GS studies across generations

in forest trees. The topic has been approached mostly through

“back-tested” retrospective studies, taking advantage of existing

sequential breeding generations (Bartholome et al., 2016; Isik

et al., 2016; Haristoy et al., 2023) or prospective studies where

only juvenile growth could be assessed (Thistlethwaite et al., 2019).

In this work, we evaluated the effectively realized predictive

ability (RPA) for volume growth at harvest age by forward GS

across generations in a eucalypt hybrid progeny trial. To ensure

merging of data from different experiments deployed at different

times, we applied age adjustment models on prior generation data

used for model training. Additive only, additive plus dominance,

and single-step genomic models were used for predictions. For the

production component of the RRS program, the RPA was evaluated

for selecting individuals and families in a terminal “urograndis”

hybrid progeny trial. The ranks of the estimated breeding (EBVs) or

genotypic values (EGVs) for volume growth at harvest age were

matched to their genomically predicted counterparts (GEBVs and

GEGVs) estimated when they were seedlings. For the breeding

component of the RRS program, we estimated the predictive

abilities (PA) by cross-validation for the reciprocal pure species

advancement, assessing the different contributions of pure species

or hybrid data to train prediction models.
2 Materials and methods

2.1 Experimental populations

The study was carried out with operational breeding

populations of the RRS breeding program of Cenibra S.A. in

Brazil (Figure 1). The program was originally started with 30 pure

species breeding parents for each species, E. grandis and E.

urophylla, here called G0 generation. These trees were selected

between 2004 and 2007 based on their performance as parents of

“urograndis” hybrids in diverse hybrid progeny trials evaluated

between 1985 and 2005. For each one of the two species separately,

the 30 elite trees were recombined using a polymix design with a

mixture of pollen collected from all 30 parents, generating 30

intraspecific half-sib families for each species. Between 2008 and

2009, these half-sib families were tested in 16 pure species progeny

trials (PSPT), 8 for each species. The trials were established in a

randomized complete block design with 36–50 blocks and 30

families planted as single tree plots plus four or five commercial

clones as checks. In total, these PSPT ultimately provided data for

9,931 trees for E. grandis and 10,518 for E. urophylla as part of the

G1 breeding population for this work. Between 2010 and 2012, half-

sib hybrid families were generated again by using a polymix design

of the 30 G0 E. grandis parents pollinating the 30 G0 E. urophylla

parents and vice versa. These 60 hybrid families derived from the
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top G0 parents plus checks were established in the G1 hybrid

progeny trial HPT249 in a randomized complete block design

with 50 replications in single tree plots in April 2013. For this

HPT249, 1,712 G1 trees were measured and used in this work to

train prediction models.

In 2015, the G1 PSPTs were subject to between- and within-

family selection, and 30 breeding parents were selected for each

species. Using 9 of the 30 parents for each species that flowered

synchronously, the G2 hybrid progeny trial HPT267 was created

and deployed in 2016 to serve as a terminal trial for individual tree

selection. Selected hybrid individuals would not be used as parents

for the next generation, but subsequently clonally propagated and

tested as clones towards final commercial recommendation. The

HPT267 was established in randomized complete block design with

35 full-sib families, 28 unique and 7 reciprocal, with 40 replications

in single tree plots, totaling 1,400 trees tested plus three commercial

checks. Prior to the establishment of the field trial of HPT267, a

sample of 200 seedlings out of the 1,400 were randomly sampled in

34 of the 35 families, covering 27 unique families, for SNP

genotyping and genomic prediction (Figure 1). Three plants failed
Frontiers in Plant Science 04
genotyping and 197 were therefore used in the study. Their genomic

predicted breeding and genotypic values for volume growth would

later be compared to their breeding and genotypic values estimated

from their volume growth measured at harvest age (6 years).

Diameter at breast height (DBH) and tree height (HT) were

measured at around ages 3 and 6 years in all the trials described

above. Wood volume (VOL) in cubic meters was estimated using a

taper factor of 0.45. Mean annual increment (MAI) in m3 ha−1

year−1 was calculated by multiplying the total tree volume by 1,200

trees per hectare and dividing the result by the average years of

growth. In summary, the GS experiment across generations

involved the G1 generation trials, HPT249 and all PSPTs

employed individually or combined as training sets, to predict the

G2 HPT267 as the GS target trial.
2.2 Genotypic data

SNP genotype data were obtained with the EuCHIP60K chip

(Illumina, Inc.) (Silva-Junior et al., 2015) or with the Axiom 72K
FIGURE 1

Summary flowchart of the breeding populations involved in the forward GS experiment indicating the generations to which they belong (G0, G1, and
G2), the total number of individual trees in each trial (nTOT), the number of trees phenotyped (nPHE), and the number of trees genotyped (nGEN). The
total number of individuals in G1 used in model training is the sum of the phenotyped individuals (7,048 + 1,712 + 8,702 = 17,462). PSPT: Pure
Species Progeny Trial; HPT: Hybrid Progeny Trial.
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Eucalyptus array (ThermoFisher, Santa Clara, CA). The following

sets of G1 trees were genotyped and used either individually or

combined as training sets for genomic prediction of individuals of

the G2 target population HPT267: (1) 1,842 F1 individuals of

HPT249; (2) the 18 parents of progenies in HPT267, 9 of E.

grandis and 9 of E. urophylla; and (3) 99 E. grandis and 115 E.

urophylla trees randomly sampled in the same G1 PSPTs where the

18 parents of HPT267 were selected (Figure 1). The GS candidates

of generation G2 were the 1,400 trees of HPT267. For this target

population, only 197 trees were genotyped. Genomic DNA was

extracted from leaf tissue samples of these trees using an optimized

Sorbitol+CTAB method for high-quality DNA from wood samples

(Inglis et al., 2018), quantified with a Nanodrop 2000 spectrometer

and adjusted to concentrations between 20 and 40 ng mL−1. Only
SNPs with call rate ≥0.90 and minor allele frequency (MAF) ≥0.01

and common to the two SNP genotyping arrays were used. All SNPs

were of the type A/G, A/C, T/G, or T/C. SNP data were exported

either from GenomeStudio 2.0 or from Axiom Analysis Suite 4.0.1

formatted as AA, AB, and BB where the A allele is the SNP

nucleotide base A or T and the B allele is nucleotide base C or G

at the SNP. Missing data were imputed based on the expected value

2pi of the B allele frequency (pi) according to the following rule:

imputed to homozygote AA when 2pi < 2=3; imputed to

homozygote BB when 2pi ≥ 4=3; and imputed to heterozygote AB

when  2=3 ≤ 2pi < 4=3. Genotypes AA, AB, and BB were then

converted to 0, 1, and 2, respectively, for the subsequent analyses.

Using the SNP data, pedigree checking was carried out for all

genotyped full-sib individuals of HPT249 and no errors were found.

For the 232 pure species individuals of G1 the SNP data were

consistent with their half-sibship status, but no maternal G0

genotypes were available for full pedigree verification.
2.3 Age data adjustment

The different G1 trials had been measured at slightly different

ages, around age 2.76 (2.64 to 2.98 years) and 5.40 (4.94 to 6.14

years). To allow data consolidation to equal ages, linear and non-

linear models were fitted to the raw volume growth data to adjust

the age differences of the trees across the experimental trials to the

same two ages points, 2.76 and 5.40 years, hereafter called ages 3

and 6 years for brevity, corresponding to the arithmetic mean of the

measurement ages of all trials. Different random regression

adjustments were evaluated: a linear model (Eq. 1) and three

non-linear models: Logistic 1 (Eq. 2), Logistic 2 (sigmoid) (Eq. 3),

and the Gompertz curve (Gompertz, 1833) (Eq. 4) as follows:

yi =   b0i + b1i x (1)

yi =  
1

1 + b0i e
b1i x

(2)

yi =  
1

1 + (x=b0i )
b1i

(3)
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yi =   e−e
b0i −b1i x (4)

where yi is the adjusted volume of the ith tree, b0i e b1i are the
parameters of the respective models, and x is the age. MAI was

subsequently obtained by dividing the total volume (m3 ha−1) by

the age. The nonlinear models were linearized (File S1) and the

regressions were adjusted using these models for each individual

tree using the lme4 package (Bates et al., 2015) in the R software (R

Core Team, 2022). Illustrative examples of the fitting of the different

models are provided (Figure S1). Altogether, in addition to the

unadjusted raw dataset, four different datasets were generated,

containing measurement at two ages each.
2.4 Pedigree based BLUP (ABLUP) analyses

ABLUP estimated EBVs or EGVs were used as pseudo

phenotypes in genomic predictions. EBVs and EGVs for the G1

and G2 individuals were obtained for the two measurement ages

using two alternative univariate individual tree mixed models, one

additive (model A; Eq. 5) and one additive-dominance (model A

+D; Eq. 6):

y =  Xb +Wa + Za + e (5)

y =  Xb +Wa + Za + Qd + e (6)

where y is the vector of age-adjusted phenotypic values; b is

the vector of fixed trial effects; a is the random block effect within

trials, following a   ∼  N(0,s 2
b   I), where I is a diagonal matrix

and s2
b is the variance of block effects; a is the random additive

genetic effect, following a   ∼  N(0,s2
a  A), where A is the average

numerator Wright’s relationship matrix and s2
a is the additive

genetic variance; d is the vector of random dominance effects

following d   ∼  N(0,  s 2
d  D), where D is the average dominance

relationship matrix and s 2
d is variance of dominance effects; e is

the vector of the random residual effect following e   ∼  N(0,   I

s2
e ), where s 2

e is the residual variance. X, W, Z, and Q are the

incidence matrices relating fixed and random effects in the model

to the measurements in vector y. The Dmatrix was estimated with

the package nadiv (Wolak, 2012) in R (R Core Team, 2022) and

the models were fitted with breedR (Munoz and Sanchez, 2014).

The variance for residual and block effects was therefore

considered homogeneous across the different trials in an

attempt to fit a more parsimonious model. Nevertheless, the

same models in Eqs. 5 and 6 were also fitted considering the

possibility of residual variance heterogeneity across trials (Smith

et al., 2001). Heterogenous variance models were fitted using

ASReml R (version 4.1.0.176) for residual (e   ∼  N(0,  R)) and

blocks (a   ∼  N(0,B)), where R  = ⊕T
i=1s 2

ei Ini , B   = ⊕T
i=1s 2

bi
Ibi , s

2
bi

and s 2
ei are the variance of blocks and residual variance in the ith

trial, respectively, and ⊕ is the direct sum. Narrow- and broad-

sense heritabilities were estimated, depending on the model, for

each database for both measurements ages.
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2.5 Comparison between EBVs and
de-regressed EBVs

To evaluate whether the use of de-regressed EBVs as pseudo

phenotypes would result in appreciably different results for our

experimental data, de-regressed estimated breeding values (dEBVs)

were also estimated for our training datasets by EBVi=r
2
i , where r

2
i is

the squared accuracy (reliability) of the ith individual (Garrick et al.,

2009). Parental average effects were not removed, however, as it is well

documented that removing relatedness between training sets and

selection candidates radically reduces predictive abilities (Isik, 2022).

To assess the relative effect of de-regression, correlations between EBVs

and dEBVs were estimated for all individuals in all trials. Additionally,

to evaluate whether the use of dEBVs instead of EBVs would impact

the realized predictive abilities, the dataset for a specific case (Logistic 1

age adjusted; age 6; HBLUP) was implemented with dEBVs and results

were compared to those obtained using EBVs.
2.6 Genomic-based BLUP analyses

Genomic evaluations were carried out using genomic best linear

unbiased prediction (GBLUP) in the Sommer R package

(Covarrubias-Pazaran, 2016) with two genomic models, additive

(GBLUP_G; Eq. 7) and additive-dominance (GBLUP_G+D; Eq. 8)

as follows:

y =  Xb + Za + e (7)

y =  Xb + Za + Qd + e (8)

Equations 7 and 8 were used to predict the individual tree GEBVs

and GEGVs, respectively, where y is the vector of EBVs or EGVs (from

Eqs. 5 and 6, respectively); b is the vector of fixed effects given by the

overall mean; a is the random additive genomic effect in Eq. 7 and the

genomic estimate of additive biological effect in Eq. 8, following a

~N(0,s 2
a  GA), whereGA   is the additive genomic relationship matrix;

d is the vector of random dominance genomic effects following d

~  N(0,  s2
dGD), where GD is the dominance genomic relationship

matrix and e is the vector of the random residual effect. X, Z, andQ are

the incidencematrices relating fixed and random effects in themodel to

the measurements in vector y. The GA matrix was estimated by WW
0 =M (Yang et al., 2010), where W is the incidence matrix of the

number of SNPs per standardized locus and M is the total number of

SNPs, with MAF ≥ 0.01. The GD matrix (Vitezica et al., 2013) was

estimated by the AGHmatrix package (Amadeu et al., 2016) in R, given

by KK 0 =½2oM
i=1piqi(1 − 2piqi)�, where K ⊂  f0 − 2piqi; 1 − 2piqi; 0 −

2piqig with homozygous genotypes coded as 0 and heterozygous

genotypes coded as 1; pi is the major allele frequency of the ith SNP;

  qi = 1 − pi; and M is the total number of SNPs.
2.7 Single-step genomic BLUP analysis

Single-step genomic BLUP (HBLUP) was fitted in the Sommer

R package with the following additive model (Eq. 9):
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y =  Xb + Za + e (9)

where y is the vector of EBVs (from Eq. 5); b is the vector of

fixed effects given by the overall mean; a is the random additive

genomic effect, following a ~  N(0,s 2
a  HA), whereHA   is the hybrid

single-step relationship matrix that includes the expected

relationships (A) from pedigree and the realized genomic

relationships (GA) and e is the vector of the random residual

effect. X and Z are the incidence matrices relating fixed and

random effects in the model to the measurements in vector y.

The HA matrix (Legarra et al., 2009) was obtained by:

HA =
A11 + A12A

−1
22 (GA − A22)A

−1
22A21 A12A

−1
22GA

GAA
−1
22A21 GA

" #

where A11 corresponds to the expected additive relationships

between the ungenotyped trees; A12 and A21 correspond to the

expected additive relationships between the ungenotyped and

genotyped trees and vice versa; and A22 correspond to the

expected additive relationships between the genotyped trees. The

HA matrix was estimated with the AGHmatrix package (Amadeu

et al., 2016) in R. The inverse of HA (Aguilar et al., 2010;

Christensen and Lund, 2010) was estimated via:

H−1
A = A−1 +

0 0

0 G−1
A − A−1

22

" #

A−1 is inverse of Wright’s relationships matrix, G−1
A and A−1

22 are

the inverses of genomic and expected relationship matrices for

genotyped individuals. A scaling factor (t ) of one was applied to

t(G−1
A − A−1

22 ) to capture all genomic information on the prediction

of future genotypes (Aguilar et al., 2010) and GA was not scaled

towards to A22 (Christensen et al., 2012). Given the structure and

variety of the existing relationships between the different G1

training sets and G2 selection candidates, we chose a parameter

equal to 1 to use the total contribution of the genomic relationships

to the prediction of selection candidates. The choice was also made

in light of earlier results with similar eucalypt data showing only

slight differences on the variance components when the tuning

parameter decreased from 1.0 to 0.0 (Cappa et al., 2017).
2.8 Genomic prediction across generations

Genomic predictions in the G2 generation hybrid progeny trial

HPT267 were carried out using the three genomic models

(GBLUP_G, GBLUP_G+D, and HBLUP), trained with different

combinations of the prior generation data as follows: (1) the

preceding G1 hybrid generation represented by the HPT249,

henceforth called HYBRIDS with 2,840 individuals, 1,842 of

which were genotyped; (2) the nine E. grandis and nine E.

urophylla G1 genotyped parents mated to create the HPT267,

henceforth called PARENTS; (3) the preceding G1 generation

pure species progeny trials, henceforth called UNCLES, which

included phenotype data for 5,143 individuals of E. grandis and

5,190 individuals of E. urophylla, out of which genotype data were

obtained for 108 and 124 trees for the two species, respectively; (4)
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the combined HYBRIDS+PARENTS dataset; (5) the combined

HYBRIDS+UNCLES dataset; (6) the combined PARENTS

+UNCLES dataset; and (7) the combined HYBRIDS+PARENTS

+UNCLES dataset. The analysis therefore encompassed five

phenotypic datasets (one unadjusted and four age-adjusted

datasets); two individual tree genetic models (A and A+D); three

genomic models (GBLUP_G, GBLUP_G+D and HBLUP); and

seven training sets for each of two measurement age, totaling 420

analytical strategies.

All analytical strategies were evaluated for their genomic RPA

for MAI in the target HPT267 hybrid generation G2. The RPAs

were calculated by the Pearson correlation between the individuals’

GEBVs and their EBVs for the GBLUP_G and HBLUP models, or

their GEGVs and EGVs for the GBLUP_G+D model. For the

GBLUP models, the RPAs were estimated for the 197 genotyped

individuals. HBLUP predictions were carried out for the 197

genotyped individuals to see whether the inclusion of phenotypic

data of ungenotyped trees in training would improve predictions

over GBLUP. GEBVs for the 1,203 ungenotyped individuals were

also estimated by HBLUP with the inclusion of different types of G1

genotyped individuals in training and compared with the EBVs.

Besides the estimates at the individual tree level, estimates of RPA at

the family level were also calculated based on the family average

EBVs or GEBVs for the 27 sampled families. Bias of the RPAs was

estimated as 1−b where b is the slope of the regression line between

EBVs and GEBVs or EGVs and GEGVs. A slope of b>1 indicates

underestimation of the RPA, and b<1 denotes overestimation.
2.9 Rank correlations of ABLUP vs. GBLUP/
HBLUP

The individual MAI tree ranks based on their GEBVs or GEGVs

were compared to their ranks based on their EBVs or EGVs from

ABLUP, respectively. The relationship between these two ordinal

variables was evaluated by a Spearman rank correlation. The two

ranks were subsequently used to calculate the coincidence rate (%)

between the number of G2 selection candidate trees that would be

genomically selected at the seedling stage and the number of trees

that would be selected at harvest age based on their EBVs or EGVs

for different proportions selected (2.5% to 50% selected).
2.10 Genomic predictions in the pure
species populations

Genomic prediction models for each of the two pure species

breeding populations of the RRS program (Figure 1) were built and

cross-validated to be used for the forward selection of the pure

species, E. urophylla and E. grandis, breeding cycles. Prediction

models were trained for each species separately using either (1) only

the pure species data from the respective species PSPTs, (2) only the

preceding hybrid generation HPT249 data, or (3) the combined
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HPT249 and PSPT data (Figure 1). GBLUP and HBLUP were

implemented under an additive model (Eqs. 8 and 10, respectively).

Predictive abilities were estimated by 10-fold cross-validation when

the training sets included the pure species data, and with direct

validation when only data of the HPT249 were used for training

because training and testing were different populations (hybrid vs.

pure species). Predictive abilities were estimated by the mean of 10

Pearson linear correlations between the GEBVs and the respective

validation sets. When only data of the HPT249 were used for

training, a single Pearson correlation value was calculated. We

estimated the predictive abilities yielded by ABLUP, GBLUP, and

HBLUP to compare (1) the performance of GBLUP vs. ABLUP to

predict genotyped but unphenotyped trees; (2) the performance of

HBLUP vs. GBLUP to predict genotyped trees by including data of

phenotyped but ungenotyped trees in the training set; and (3) the

performance of HBLUP vs. ABLUP to predict ungenotyped trees by

including data of genotyped trees in the training set.
3 Results

3.1 SNP genotyping data

Raw SNP data genotyped with the EuCHIP60K chip (Illumina,

Inc.) (Silva-Junior et al., 2015) were exported from GenomeStudio

2.0 with GenCall > 0.15 and submitted to additional quality

controls. Only SNPs that passed the following Illumina-

recommended multi-variable metrics criteria were retained: (i)

genotype clusters separation > 0.30; (ii) mean normalized

intensity (R) value of the heterozygote cluster >0.2; (iii) mean

normalized theta of the heterozygote cluster between 0.20 and

0.80; and (iv) >99% reproducibility across the replicated samples

and >99% correct inheritance between generations. Additionally,

only SNPs with call frequency ≥90% and MAF ≥ 0.01 for samples

with call rate ≥85% were retained for further analyses. Out of the

60,904 unique SNPs present on the chip, data for 28,521 SNPs were

ultimately retained after quality control. The 232 trees of the PSPTs

were genotyped with the Axiom Euc72K Eucalyptus array

(ThermoFisher, Santa Clara, CA) (https://www.thermofisher.com/

order/catalog/product/br/en/551134) (D. Grattapaglia and O.B.

Silva-Junior, unpublished), a second-generation Eucalyptus SNP

platform improved over the EuCHIP60K chip that includes 67,683

autosomic Eucalyptus specific SNPs, 28,177 of which were selected

from the previous EucHIP60k for quality and polymorphism across

several Eucalyptus species. SNP data were exported using the Axiom

Analysis Suite 3.1, using a dish quality control (DQC) value >0.82

and call rate CR >0.97 following the recommended “Best Practices

Workflow” (Thermofisher, 2017). A total of 49,473 SNPs were

classified as “Polymorphic High Resolution” with MAF > 0.01.

Following consolidation of the datasets obtained with the two

platforms for the 28,177 shared SNPs, a maximum of 16,861 and

a minimum of 16,018 SNPs were used in the analyses, depending on

the training set.
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3.2 Age adjustment, heritabilities, and EBV/
EGV estimation

Age adjustment resulted in slight reductions of residual

variances at both ages (Table S1). Nevertheless, reductions were

at most in the range of 2.3% to 2.5% at age 3, and between 1.8 to

2.1% at age 6. The Logistic 1 model was the most efficient in

reducing the residual variance. Results hereafter are presented

mainly for this age-adjusted dataset. Narrow-sense ABLUP

estimated heritabilities for all G1 and G2 trials combined were

ha
2= 0.240 and 0.210, and broad-sense heritabilities were slightly

higher at hg
2 = 0.250 and 0.220 at ages 3 and 6, respectively. The

slight improvement of age adjustment was also reflected in the

estimates of narrow-sense (ha
2) and broad-sense (hg

2) heritabilities

for all G1 and G2 trials combined (Table S1). Narrow-sense ABLUP

heritabilities for MAI were also estimated specifically in the G2 trial

HPT267, under a purely additive model at ha
2 = 0.59 and 0.53 at

ages 3 and 6, respectively (Table 1). By including dominance, the

narrow-sense heritabilities decreased to ha
2 = 0.43 and 0.40, while

broad-sense heritabilities were higher than narrow-sense ones,

estimated at hg
2 = 0.60 and 0.54. When SNP data for 197 trees

were included in the hybrid relationship matrix (HBLUP),

heritabilities decreased to 0.45 at age 3, and more pronouncedly

to 0.23 at age 6. Narrow- and broad-sense genomic heritabilities

were estimated for the HPT267 under the three genomic models,

using the seven G1 training sets. Genomic heritabilities, both

narrow and broad sense, estimated using training data were

considerably higher than the standard heritabilities estimated

using the pedigree or hybrid matrix for the target trial, reaching

values close to unity when PARENTS and UNCLES were included

in training and when the HBLUP model was used. Under the

GBLUP_G+D model, broad-sense genomic heritabilities were

higher than narrow sense by 20% to 35% (Table S2).

No substantial difference was seen between the estimates of

EBVs/EGVs when using a model assuming homogeneous

experimental residual variances across trials versus a model with

heterogenous variances. The correlation between the EBVs/EGVs

estimated with a homogeneous versus a heterogenous variance

model was, on average, 0.978 ± 0.019, median 0.984 for all trials,

and all correlations were above 0.887 (Table S3). The additive-

dominance model (Eq. 6) with heterogenous variances only

converged for the age-unadjusted data at age 6. These results
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supported a more parsimonious homogeneous residual variances

model for our experimental data for estimating the EBVs/EGVs.

Furthermore, applying de-regression to the EBVs did not result in

appreciably different values for our experimental data. High

correlations were seen between dEBVs and EBVs for all training

sets. The correlations were, on average, 0.979 ± 0.014, median 0.978,

minimum value 0.930 (Table S4). Therefore, all genomic prediction

results in this study are based on using standard EBVs or EGVs as

pseudo phenotypes.
3.3 Realized genomic predictions in the G2
hybrid trial

RPAs in the G2 trial HPT267 showed a substantial difference

depending on what prior G1 generation training set was used

(Figure 2; Table 2). For brevity, only the RPAs obtained with the

age-unadjusted and Logistic 1 model adjusted data for age 6 are

shown (Figure 2), and summarized together with other GS

performance parameters (Table 2), but the results for all

analytical strategies are provided (Table S5). In general, RPAs for

the age-adjusted and -unadjusted data were largely equivalent with

a few cases where differences were observed depending on the

training set, indicating that age adjustment could be useful but, by

and large, the impact on the final predictions was minimal.

Estimated RPAs for age 3 and 6 were similar (Figure 2).

Genomic predictions using EBVs/EGVs estimated with a

homogeneous versus a heterogenous variance model did not show

any appreciable difference, but were slightly better when EBVs/

EGVs were estimated using a homogeneous variance model (Table

S6). Moreover, the RPAs obtained when HBLUP models were

trained with the standard EBVs were largely equivalent and

slightly better that the RPAs estimated when models were trained

with de-regressed dEBVs. Taking as examples the RPAs obtained

when models were trained with PARENTS, the RPAs were equal to

0.926 and 0.919 when EBVs and dEBVs were used as pseudo

phenotypes, respectively. For the complete HYBRIDS+PARENTS

+UNCLES training set, RPAs were 0.907 and 0.792 using EBVs and

dEBVs to train models, respectively (Table S7).

Overall, higher RPAs were obtained as the G1 training set was

more closely related to the G2 selection candidates in the HPT267,

reaching values equal to or above 0.80 with the GBLUP_G and
TABLE 1 Heritabilities (h2
a narrow sense; h2

g broad sense) for MAI (mean annual increment) in wood volume in the G2 trial HPT267 using age-adjusted

data (Logistic 1 model), using ABLUP pedigree relationship matrices, A = additive; A+D = additive + dominance; and the HBLUP hybrid matrix H that
included SNP data for 197 genotyped individuals of the 1,400 in the trial.

Fitted ABLUP model Age N Additive variance Dominance variance Residual variance h2
a h2

g

A 3 1,400 305.16 – 211.18 0.59 –

H 3 1,400 232.49 – 279.42 0.45 –

A+D 3 1,400 207.31 81.90 193.16 0.43 0.60

A 6 1,400 403.71 – 356.03 0.53 –

H 6 1,400 157.79 – 517.88 0.23 –

A+D 6 1,400 285.87 103.15 330.70 0.40 0.54
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GBLUP_G+D models (Table 2). The most effective G1 training sets

for the additive models were the ones containing the G1 PARENTS.

Using the distantly related HYBRIDS for training resulted in lower

additive RPAs (0.40 to 0.60), despite the 100× larger number of

individuals involved in training (n = 1,842). The distantly related set

of G1 individuals composed by the pure species UNCLES resulted in

negative additive RPAs or non-convergence of the estimates. When

combined with other training sets, UNCLES did not improve

additive RPAs. However, when dominance was also predicted

(GBLUP_G+D), PARENTS alone resulted in a low RPAs of

0.107, while the addition of HYBRIDS and UNCLES had a major

positive impact on RPAs, increasing them 0.705 and 0.790 when

HYBRIDS and UNCLES, respectively, were included in training

(Figure 2; Table 2).

Overall, the improvement in RPA of HBLUP over GBLUP was

marginal with only a slight increase of 2% from 0.539 to 0.552 when

including ungenotyped HYBRIDS, and 3% from 0.775 to 0.801

when including ungenotyped UNCLES, while GBLUP trained with

PARENTS alone was still better than HBLUP (Table 2). HBLUP

predictions of the 1,203 ungenotyped individuals varied

significantly depending on the training set used (Table 2) and no

benefit was seen over ABLUP. The prediction bias for the additive

models (GBLUP and HBLUP) indicated that RPAs were generally

underestimated (1−b<1) when HYBRIDS alone were used, and

overestimated (1−b >1) when UNCLES alone were used in
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training. RPA estimates using PARENTS were largely unbiased,

with a value of 1−b close to zero (average of -0.111). The estimates

of RPAs were underestimated for GBLUP_G+D for all training sets

except when PARENTS alone were used. The lowest overall bias of

RPA was seen when using HBLUP with PARENTS included in

training (Table 2; Table S5).
3.4 Individual trees and family rank
correlations between ABLUP and GBLUP/
HBLUP

EBVs for all 1,400 G2 trees in HPT267, GEBVs and GEGVs for

the 197 genotyped trees, and GEBVs estimated with HBLUP for all

1,400 trees are provided for all analytical strategies implemented

(Table S8). Spearman’s rank correlations for EBVs × GEBVs and

EGVs × GEGVs for all analytical strategies were estimated (Table

S9). Overall, rank correlations for additive values were close in value

with the estimates of RPAs, showing the highest values for models

trained using PARENTS (Table 2; Table S9). Rank correlations

varied from 0.717 to 0.870 with GBLUP_G and reached similar

values (0.694 to 0.797) with GBLUP_G+D only when HYBRIDS or

UNCLES were added to PARENTS for training. Comparative plots

of the phenotypic (ABLUP) vs. genomic (GBLUP or HBLUP) ranks

are provided for the best-case training sets for each genomic model
FIGURE 2

Realized genomic predictive abilities for mean annual increment (MAI) in tree growth at ages 3 and 6 years, estimated with an additive (GBLUP_G),
an additive + dominance (GBLUP_G+D) model, and an additive HBLUP model, trained with different training datasets.
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at age 6 (Figure 3), indicating trees from the top-ranked (purple) to

the lowest-ranked (red) ones. Note that, in the ABLUP × HBLUP

panel, the groups of ungenotyped individuals that belong to the

same family were ranked genomically with the same GEBV value

(lines converging to the same rank position in the HBLUP rank), in

essence corresponding to ranking the families to which they belong.

The coincidence rates (%) between the number of G2 candidate

trees in HPT267 that were genomically selected at the seedling stage

and the number of trees that were ultimately selected based on

phenotypes at age 6 are provided for all analytical strategies and

selected proportions (Table S10), and summarized for age 6 under
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four selected proportions (2.5%, 5%, 10%, and 20%) (Table 2). For

example, a selected proportion of 2.5% corresponds to selecting 5

trees in 197, and a 5% proportion corresponds to selecting 10 trees

in 197. Coincidence rates at this small selected proportion (high

selection intensity) were the highest for models trained with

PARENTS using GBLUP_G or HBLUP (40 to 61% coincidence).

In practice, this would amount to correctly selecting two or three

individuals at the seedling stage based on DNA data, out of the five

trees that would be ultimately selected based on actual growth

measurement at age 6. Coincidence rates were much lower for the

GBLUP_G+D model, only reaching 30% at 5% selected proportion,
TABLE 2 Summary of the genomic selection results in the G2 generation (HPT267) for mean annual increment (MAI) in tree volume at age 6, using
Logistic 1 age adjustment for the different combinations of genomic models and training sets.

Genomic
model

Training
set*

# Individuals in
the training set

# Individuals pre-
dicted in HPT267

RPA
Bias
(1−b)

Spearman’s
rank

correlation

Coincidence rate of
selected trees

2.5% 5% 10% 20%

GBLUP-G

H 1,842 197 0.539 −0.988 0.530 0.00 20.00 25.00 60.00

P 18 197 0.857 −0.126 0.870 60.00 60.00 40.00 70.00

U 214 197 −0.081 1.274 −0.047 0.00 0.00 0.00 7.50

H + P 1,860 197 0.801 −0.877 0.795 40.00 50.00 40.00 57.50

H + U 2,056 197 0.241 0.199 0.282 0.00 0.00 15.00 37.50

P + U 232 197 0.775 −1.008 0.784 20.00 30.00 40.00 65.00

H + P + U 2,074 197 0.700 −0.723 0.717 0.00 0.00 30.00 60.00

GBLUP-G+D

H 1,842 197 0.588 −0.950 0.575 0.00 0.00 25.00 60.00

P 18 197 0.107 0.648 0.475 0.00 0.00 5.00 32.50

U 214 197 NA NA NA 0.00 20.00 30.00 52.50

H + P 1,860 197 0.705 −0.811 0.694 0.00 0.00 20.00 37.50

H + U 2,056 197 0.310 0.022 0.318 20.00 20.00 40.00 52.50

P + U 232 197 0.790 −0.776 0.797 0.00 0.00 20.00 47.50

H + P + U 2,074 197 0.557 −0.456 0.559 0.00 0.00 25.00 60.00

HBLUP 197
genotyped

H 2,840 197 0.552 0.870 0.539 0.00 10.00 30.00 57.50

P 18 197 0.857 0.348 0.870 60.00 60.00 40.00 70.00

U 10,315 197 −0.583 1.310 −0.535 0.00 0.00 0.00 0.00

H + P 2,858 197 0.771 0.763 0.770 60.00 50.00 40.00 60.00

H + U 13,155 197 0.038 0.977 0.085 0.00 0.00 5.00 30.00

P + U 10,333 197 0.801 0.434 0.792 40.00 30.00 35.00 60.00

H + P + U 13,173 197 0.668 0.507 0.665 0.00 20.00 25.00 47.50

HBLUP 1203
ungenotyped

H 2,840 1,203 0.680 0.850 0.689 0.00 6.56 39.67 65.56

P 18 1,203 0.943 0.151 0.945 67.74 55.74 62.81 80.50

U 10,315 1,203 −0.701 1.406 −0.713 0.00 0.00 0.00 0.00

H + P 2,858 1,203 0.892 0.685 0.873 67.74 55.74 57.02 78.84

H + U 13,155 1,203 0.123 0.941 0.162 0.00 0.00 25.62 38.59

P + U 10,333 1,203 0.965 0.060 0.950 67.74 55.74 62.81 80.50

(Continued)
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and 60% at 20% selected proportion. With selected proportions of

20%, coincidence rates above 70% were reached for GBLUP_G.

Higher coincidence rates were reached with selected proportions

above 20% (Table S10), although, in practice, breeders would hardly

select more than 20% of the individuals in a hybrid progeny trial to

be taken to a subsequent clonal trial. Coincidence rates using

HBLUP of only the 1,203 ungenotyped individuals, corresponding

in effect to family ranking, reached values of 67% at 2.5% and 80% at

20% selected proportions, indicating that GS at the family level
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would be highly efficient for early families’ screening (Table 2;

Table S10).

The 197 genotyped individuals ranked by their GEBV were

plotted according to the 27 unique families they belonged, and the

27 families, in turn, were ranked according to their average EBV

(Figure 4A). The distribution of individuals shows a consistent

pattern by which the top genomically ranked trees tended to belong

to the top EBV ranked families with some occasional exceptions.

For example, in the five top EBV ranked families that included 43
TABLE 2 Continued

Genomic
model

Training
set*

# Individuals in
the training set

# Individuals pre-
dicted in HPT267

RPA
Bias
(1−b)

Spearman’s
rank

correlation

Coincidence rate of
selected trees

2.5% 5% 10% 20%

H + P + U 13,173 1,203 0.965 0.060 0.950 67.74 55.74 62.81 80.50

HBLUP 1,400
all

H 2,840 1,400 0.653 −1.952 0.660 20.00 15.71 35.71 62.50

P 18 1,400 0.926 −0.065 0.929 42.86 50.00 61.43 75.36

U 10,315 1,400 −0.683 2.206 −0.693 0.00 0.00 0.00 0.00

H + P 2,858 1,400 0.868 −1.536 0.854 45.71 48.57 51.43 72.86

H + U 13,155 1,400 0.116 0.767 0.157 2.86 11.43 14.29 34.64

P + U 10,333 1,400 0.885 0.057 0.867 40.00 40.00 47.86 68.57

H + P + U 13,173 1,400 0.907 0.021 0.893 40.00 45.71 54.29 72.14
frontie
*H = Hybrids; P = Parents; U = Uncles.
Table legend: Realized predictive abilities (RPA), bias of RPA, Spearman Rank correlation (EBVs × GEBVs/EGVs × GEGVs), and coincidence rates between the proportion of G2 candidate trees
genomically selected at the seedling stage vs. phenotypically selected at age 6, under different selected proportions (%). NA: model did not converge. (Results for both ages 3 and 6 years, and all
possible combinations of age adjustment models, genetic and genomic models, and training sets are provided in the supplementary files).
FIGURE 3

Comparative ranks of the G2 selection candidate trees in HPT267 based on ABLUP estimates of breeding values (EBVs) or genotypic values (EGVs)
versus the ranks of the same trees based on their genomic counterparts (GEBVs or GEGVs), obtained with the best training set (see Table 2).
Spearman’s rank correlations at the bottom of each panel.
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individuals, 25 trees were ranked among the top 30 GEBV ranked

trees. Figure 4B shows an overall plot of EBVs vs. HBLUP estimated

GEBVs for all 1,400 individuals, 197 genotyped (pink dots) and

1203 ungenotyped (blue dots).
3.5 Genomic predictions in the pure
species breeding populations

Results for both species, ages, and combinations of data adjustment

and training sets are provided in Table S11, while results for the

Logistic 1 adjustment are presented in Figure 5. When predicting MAI

in the pure species, GBLUP and HBLUP cross-validated predictive

abilities (PA) were generally twice as high when models were trained

using exclusively each respective pure species data (PA ~0.50–0.75)

compared to training using the hybrid data alone (PA ~0.20–0.30),

while the pure species plus hybrid data combined provided

intermediary values (PA ~ 0.40–0.50) (Figure 5). GBLUP was

outperformed by standard ABLUP by ~50% when predicting

unphenotyped trees (Figure 5A). HBLUP outperformed GBLUP to

predict genotyped trees, improving the PA by 19%, from 0.51 to 0.61 at

age 3, and by 22%, from 0.54 to 0.66 at age 6 when data of phenotyped

but ungenotyped trees were included in training for E. urophylla.

However, for E. grandis, the GBLUP model yielded slightly better PA

(8% to 12%) than HBLUP (Figure 5B). Finally, there was no benefit in

predictive ability of ungenotyped trees by including data of genotyped

trees in training (Figure 5C).
4 Discussion

Most results of genomic prediction in forest trees to date have been

derived from training and predicting breeding values based on cross-

validation among individuals within the same breeding generation

(Grattapaglia, 2022; Isik, 2022). In that approach, individual

observations are randomly split into subsets, and all subsets except

one are used as a training set with the remaining one serving as a

validation population. Because the same population is both part of

training and testing populations, relatedness between training and

testing populations is maximized and no effects of recombination,

selection, drift, and environmental changes are accounted for, often

upwardly biasing predictive ability (Amer and Banos, 2010; Michel

et al., 2016). In this study, however, we have provided experimental

results of a forward GS across generations. In other words, we

estimated not the “back-tested” retrospectively assessed predictive

ability as previously reported (Bartholome et al., 2016; Isik et al.,

2016; Haristoy et al., 2023), but rather the forward RPA for volume

growth at harvest age. High realized predictive abilities were obtained at

the individual and family mean level in an operational setting of a

hybrid Eucalyptus RRS breeding program, corroborating earlier

forecasts on the potential of GS in eucalypt breeding (Grattapaglia

and Resende, 2011).
FIGURE 4

(A) Comparative rank of the full-sib families based on the family
average EBV versus the individual GBLUP rank of the 197 genotyped
selection candidates labeled by a color gradient going from the top-
ranked trees (blue) to the bottom-ranked ones (red). (B)
Comparative plot of the HBLUP GEBVs versus EBVs for all 1,400
trees in the progeny trial HPT267. Genotyped trees are labeled pink
and ungenotyped trees are in blue. Ungenotyped selection
candidates of the same full-sib family are ranked with the same
GEBV as only pedigree information was available for them. Results
presented were obtained with a Logistic 1 age adjustment at age 6,
additive model trained with PARENTS.
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4.1 Data merging across trials and
heritabilities

To evaluate the effectiveness of different training sets of the G1

generation, we consolidated phenotypic data across trials by age

adjustment models. Age adjustments resulted only in slight

improvement over unadjusted data. The fast growth of eucalypts

in the tropics (Eldridge et al., 1993) and the strong age–age

correlation for growth (Osorio et al., 2003; Bouvet et al., 2009a)

likely explain this result. Nevertheless, the integration of phenotypic

data from diverse trials, experimental settings, or breeding cycles
Frontiers in Plant Science 13
requires establishing tree–age equivalencies and constitutes an

invaluable approach for genomic prediction (Auinger et al., 2016).

Furthermore, the incorporation of multiple datasets, from various

geographical locations, provides the opportunity to explore

environmental variation into enviromics approaches (Resende

et al., 2021).

Besides consolidating phenotypic data across trials, the

experiment required merging SNP genotypic data obtained at

different times. Data portability across SNP genotyping platforms

is a key aspect for the construction of legacy SNP databases for GS

in long-lasting tree breeding programs. In Eucalyptus, the SNP
B

C

A

FIGURE 5

Comparison of genomic predictive abilities using different models and pure species and/or hybrid training sets to predict pure species individuals of
E. grandis and E. urophylla. (A) ABLUP vs. GBLUP to predict genotyped but unphenotyped trees (ABLUP_G: only 197 genotyped individuals
considered). (B) HBLUP vs. GBLUP to predict genotyped trees by including data of phenotyped but ungenotyped trees in training. (C) HBLUP vs.
ABLUP to predict ungenotyped trees by including data of genotyped trees in training (ABLUP_H: all 1,400 individuals considered).
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arrays currently available (Silva-Junior et al., 2015) share large

numbers of polymorphic SNPs, providing very high quality data

for seamless data merging across time. This is not always the case,

however, for other highly heterozygous tree species that still lack

such resources. In those cases, SNP data are usually generated by

genotyping-by-sequencing methods based on restriction enzyme-

based complexity reduction, or sequence capture. With such

methods, genotype reproducibility across sample batches is

variable with considerable proportions of missing genotypes

significantly complicating or even precluding data merging

(Myles et al., 2010; Thistlethwaite et al., 2017; De Moraes et al.,

2018; Darrier et al., 2019).

In our experimental setting, the estimates of heritability for

MAI when estimated across all G1 trials combined (ha
2 = 0.2 to 0.25)

were similar to previous estimates in “urograndis” eucalypts

(Bouvet and Vigneron, 1995; Vigneron and Bouvet, 2000; Van

Den Berg et al., 2018). However, in the G2 target trial, heritability

was higher (ha
2 = 0.59), more in line with previous estimates in

similar “urograndis” trials (Lima et al., 2019), likely due to better

environmental control, which, in turn, contributed to the RPAs

achieved. Models including the dominance effect with or without

genomic data resulted in lower narrow-sense heritabilities, and

broad-sense heritabilities higher than narrow-sense heritabilities.

Genomic heritabilities followed the same pattern, and their

estimates close to unity corroborate the fact that the recorded

pedigree for the HPT267 trial was accurate and that the EBVs

and EGVs used in our study are reliable baselines for the estimation

of the RPAs (Klápsťě et al., 2018).

After including the dominance effect, the narrow-sense

heritabilities decreased by 24%–27% at ages 3 and 6, respectively,

while broad-sense heritabilities were higher than narrow-sense

heritabilities. With HBLUP, heritabilities decreased by 56% at age

6 (Table 1). The dominance variance for MAI represented 39.5%

and 36% of the additive variance and 28.3% and 26.5% of the total

genetic variance at ages 3 and 6, respectively. Our results

corroborate previous reports showing the relative importance of

dominance to additivity in controlling volume growth in this hybrid

(Bouvet et al., 2009b; Resende et al., 2017; Van Den Berg et al., 2018;

Lima et al., 2019) and support the choice of the RRS strategy for

breeding these superior hybrids. Moreover, the considerable

reduction in narrow-sense heritability substantiates the fact that

the pedigree-based analysis cannot capture the complete genetic

relationship among individuals, failing to unscramble the non-

additive genetic component from the additive one (Munoz

et al., 2014).
4.2 EBVs versus de-regressed EBVs as
pseudo phenotypes in GBLUP

In our study, we evaluated whether using de-regressed EBVs

(dEBVs) or standard EBVs as pseudo phenotypes to train

prediction models would result in any appreciable difference in

genomic predictions. De-regression of EBVs (Garrick et al., 2009)

was proposed as a BLUP correction before genomic model fitting to

deal with a possible covariance between residuals, containing a
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genetic part not captured by the EBVs (ĝ  −   g), and the true

breeding value (g) in a genomic model. De-regressed EBVs have

frequently been used in GS studies in forest trees (Resende et al.,

2012a; Isik et al., 2016; Thistlethwaite et al., 2019; Haristoy et al.,

2023) as a way to improve GS accuracy by taking into account the

heterogeneous reliability of EBVs, due to the unbalanced nature of

forest trial data. In our study, however, EBVs and dEBVs were

essentially the same and genomic models trained with EBVs were

largely equivalent or slightly better than those trained with dEBVs.

These results are in line with previous reports in forest trees that

showed high correlations (>0.93) between EBVs and dEBVs for

growth data in loblolly pine (Resende et al., 2012b), or no effect of

de-regression on genomic predictions (Bartholome et al., 2016; Isik

et al., 2016; Haristoy et al., 2023).

It is important to point out that Garrick´s method was proposed

as a way to mitigate a common issue of genomic prediction in

animal breeding where training set data might involve genotyped

animals with alternative types of information including single or

repeated measures of individual performance, information on

progeny estimated breeding values, or a pooled mixture of more

than one of these information sources. The reliability of such

measures likely varies and hence the method finds relevant

application. However, as Garrick points out at the end of that

famous paper, he concludes that: “In practice, the benefit of

deregression and the subsequent weighting of alternative

information sources will depend on the extent to which the number

of repeat records, number of progeny and/or r2 varies among

individuals in the training population” (Garrick et al., 2009).

Therefore, in forest tree trials where frequently families are the

selection units (Isik et al., 2016), many family members are

evaluated and clonal replicates are available as experimental units

(Haristoy et al., 2023) or clonal checks, like in our study, reliabilities

are usually high and the advantage of de-regression not

necessarily happens.
4.3 Model training for genomic prediction
of hybrids in RRS

Whereas the general approach to training a GS model in a

recurrent selection breeding strategy is well settled (Massman et al.,

2013), this is not so for reciprocal recurrent GS. It is not yet clear

whether a GS model should be trained on the pure species or the

hybrid crossbred data of prior generations for selecting individuals

in terminal hybrid crosses. In domestic animal breeding, reports

vary depending on the species, trait, and breeds involved. While

breed-specific effects warrant training genomic models on crossbred

data in pigs (Lopes et al., 2017) and chickens (Duenk et al., 2019), a

review in bovines shows that the advantages of breed-specific allelic

effects are small, and training on pure species data for additive

variance would be more effective (Mcewin et al., 2021). In forest

trees, to the best of our knowledge, our study provides the first

experimental data on this issue. In our experimental setting,

training only with the G1 HYBRIDS generation allowed a still

acceptable additive RPA of approximately 0.60 in the subsequent

generation of hybrids. Predictions were largely improved when
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models were trained with the pure species parents combined. It is

true, however, that the HYBRIDS training set, although 100× larger,

was related to the PARENTS only as hybrid half-sibs and therefore

more distant from the G2 selection candidates that impacted the

predictions considerably (Figure 1). Interestingly, however,

GBLUP_G+D models trained exclusively with the pure species

data of PARENTS resulted in much lower RPAs when compared

to GBLUP_G (Figure 2; Table 2). Offspring share only one copy

identical by descent (IBD) inherited from their parents. Because

dominance effects are based on sharing two copies, GEGVs of

offspring by principle cannot be estimated from training with the

pure species parental data alone. Accordingly, the inclusion of

hybrid data or pure species relatives to predict non-additive

genetic effects by GBLUP_G+D was essential to attain maximal

RPAs close to 0.80 (Figure 2; Table 2).

Results with the HBLUP model in the HPT267 showed that the

inclusion of phenotype data of a large number of ungenotyped G1

trees only marginally improved the RPA beyond the contribution of

the genotyped trees in the training set, in contrast to the positive

results of HBLUP reported in other forest tree studies (Ratcliffe

et al., 2017; Cappa et al., 2019; Callister et al., 2021; Quezada et al.,

2022; Walker et al., 2022). Two reasons might account for this

result: (1) the distant genetic relationship between the added

ungenotyped UNCLES individuals and the hybrid selection

candidates, and (2) the overwhelming genetic contribution to the

prediction model of the closely related PARENTS to the selection

candidates. Our results confirm several previous results in forest

trees showing that higher relatedness between training and selection

populations improves genomic prediction (reviewed in Grattapaglia

et al., 2018; Isik, 2022). The crucial role of relatedness in GS was

shown early on in the first experimental study of GS in Eucalyptus

when prediction across two unrelated breeding populations failed

(Resende et al., 2012a). This same observation was followed by

several studies in all mainstream forest tree species, compiled in a

recent statistical analysis of GS studies, where the effect of

relatedness was shown to be highly significant on prediction

accuracy (Isik, 2022). Close relationship increases the probability

that chromosome segments IBD sampled in the training set are also

found in the selection candidates (Daetwyler et al., 2013).

The high RPAs above 0.80 and up to 0.90 (Table 2) obtained

with the additive models trained exclusively with the 18 parents of

the G2 generation could be somewhat surprising when considering

previous simulations showing that large training populations would

be necessary to attain satisfactory predictive abilities (Grattapaglia

and Resende, 2011). Nevertheless, two cross-generational studies in

conifer trees that also evaluated the exclusive use of the parents of

selection candidates to train a prediction model for additive effects

showed equivalent results. In Pinus pinaster, high predictive abilities

for additive effects of growth were high (0.70 to 0.91) using

exclusively the 46 G0 and 62 G1 parents to predict G2 individuals

(Bartholome et al., 2016). In Pseudotsuga menziesii, models trained

only with the F1 generation parents predicted F2 individuals with a

predictive ability of 0.92 (Thistlethwaite et al., 2019), when parental

average effects were not removed. The longer extensions of shared

haplotypes resulting from co-segregation and the direct parent–

offspring relatedness, with only a single preceding recombination,
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undoubtedly were the drivers of the high RPAs observed in those

studies as well as ours. Longer shared haplotypes have been shown

to be more important in determining the predictive ability than the

isolated length of shared haplotypes (Wientjes et al., 2013). While

our report seems to indicate that training a model only with the

direct parents of selection candidates is sufficient to train an

effective GS model, this might be specific to this eucalypt hybrid

situation, and further data in different experimental settings should

be gathered to validate such an approach.

From the practical standpoint, the fundamental expectation of

GS is that a prediction model should be useful for several sequential

breeding generations, although a decline in predictive ability is

expected due to recombination and selection along the breeding

generations, as pedigree relationships and occasional marker-QTL

LD dissipates (Meuwissen et al., 2001; Long et al., 2011; Müller et al.,

2017b). Therefore, it would be impractical to count on a sustained

direct parent–offspring relationship for predictions. Continuous

model updating with new data can, however, be adopted to

continuously maintain training-to-candidates genetic

relationships as close as possible (Iwata et al., 2011). In fast-

growing tropical eucalypts, it is logistically possible to grow and

measure a subset of the genotyped seedlings of every breeding

generation to harvest age (Grattapaglia, 2014). These new training

data substitute older generation data by updating the prediction

model, thus providing persistent predictive abilities.
4.4 GS allows accurate individual
tree ranking

GS in forest trees has been traditionally formulated as a problem

of predicting the breeding value of an individual to be used as a

parent in the subsequent generation. However, in the case of RRS,

besides accelerating the progress of the pure-species populations,

GS is intended for early selection of individual trees in terminal

hybrid trials. The top-ranked selected hybrids are vegetatively

propagated and taken to clonal trials. Because clonal propagation

exploits both additive and non-additive effects, both have to be

predicted into the tree’s GEGV. GS therefore becomes more of a

problem of individual tree ranking for total genotypic value as

pointed out earlier (Blondel et al., 2015) and needs a different

validation scheme (Daetwyler et al., 2013). We therefore estimated a

rank correlation between the pedigree and genomic estimated

genetic values. In our experiment, individual tree ranks predicted

by genomic data, both by GEBVs or GEGVs, closely followed the

ranks based on their EBVs or EGVs. Rank correlations ≥0.80 were

estimated using the most effective training sets (Figure 3; Table 2).

Coincidence rates of the top-ranked individuals were highest for

GBLUP_G and HBLUP models reaching 60% at the highest

selection intensity (smallest selected proportion of 2.5%).

However, when dominance effects were included, despite an

overall satisfactory overall rank correlation of 0.797, the GEGVs

rank deviated from the EGVs rank at the granular level, only

reaching reasonable coincidences of 35% at selected proportions

of 10% and above. In other words, GBLUP_G+D did not identify

the exact same individuals that would be selected based on their
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EGVs at the extreme of the rank distribution, although with higher

selected proportions coincidence improved.

These results indicate that while GS allows successful prediction

and ranking of individuals within families by their GEBVs, ranking

by GEGV will be more challenging. In comparing ranks of

estimated total genotypic values, it is important to recall,

however, that both EGV and GEGV are only modeled attempts

to estimate the true total genotypic value, which is actually

unknown (Falconer, 1989; Lynch and Walsh, 1998). Although the

EGVs were calculated from the trees’ observed performances, rank

position at the extremes of the distribution might be impacted by

additional non-additive variation unaccounted by the model. In

fact, it has been reported that the correlation of growth performance

of a eucalypt “urograndis” hybrid ortet and its clonal ramets is

typically poor (Furtini et al., 2012; Van Den Berg et al., 2015). Only

a replicated field clonal trial of a more generous selected proportion

of top GEGV ranked individuals might ultimately capture the top

EGVs ranked trees.
4.5 Genomic selection and ranking of
families and individuals in a two-stage
GS approach

We have shown that the genomic data accurately predict and

rank families by the average genomic breeding value, closely

matching the rank by their average EBVs (Figure 5).

Furthermore, the results show that the top-ranked full-sib

families contain the majority of the top-ranked individual trees.

These empirical results have two practical implications. First, they

support earlier suggestions of using GS when the selection unit for

commercial deployment is elite families and not individual trees

(Resende et al., 2017). Top genomically predicted families could be

produced by large-scale mating between top parents, and

additionally scaled up by clonal propagation in a family forestry

(White et al., 2007) or clonal composite (Rezende et al., 2019)

deployment strategies. The second consequence is that the accurate

family ranking obtained in our study empirically corroborates a

recent proposition of a two-stage GS approach (Grattapaglia, 2022).

In the first stage, a larger-than-usual number of full-sib families

would be produced, a small sample of seedlings genotyped per

family either individually (Rios et al., 2021) or in DNA pools

(Cericola et al., 2018), and the data used to rank the families by

their average GEBV. For the top-ranked families, a larger number of

individual seedlings would be genotyped, and by accounting for the

Mendelian segregation, they would be ranked by their GEBV or

GEGV. This GS approach would radically increase both between-

and within-family selection intensity while significantly optimizing

genotyping costs.

The proposed two-stage GS strategy fits exceptionally well with

a cloned progeny trial approach (Chen et al., 2020), a current trend

in advanced eucalypt hybrid breeding, as a way to improve the

correlation between the growth performance of an individual tree in

a progeny trial and its clone in a clonal trial. A cloned progeny trial

provides increased accuracy for individual selection by boosting

individual tree heritability, and cuts in time by consolidating
Frontiers in Plant Science 16
progeny and clonal trial in one step. However, it requires

significant logistic effort and it is therefore constrained by the

number of clones that can be reasonably tested, thus reducing

selection intensity when compared to the conventional two-step

progeny followed by the clonal trial. The two-stage GS scheme (see

Figure 2 in Grattapaglia, 2022) provides an elegant solution to this

limitation with a small genotyping effort to genomically rank

families and devoting larger genotyping effort to the offspring

individuals of the pre-selected families that offer the highest

probability of ultimately delivering top clones. The experimental

data gathered in this study show that such an approach would have

promptly identified the top five families that contain almost all 50

top GEBV ranked individual trees (Figure 4).
4.6 Reciprocal recurrent GS for
faster advancement of pure
species breeding populations

We have shown the importance of including hybrid data for

predicting non-additive effects in hybrid selection candidates.

However, would prior generation hybrid data be necessary or

useful for genomic predictions of pure species individuals? Results

showed that hybrid data not only did not provide acceptable

predictive abilities by itself, but also did not improve predictions

when added to the pure species data. Pure species data alone were

effective for training satisfactory genomic models (Figure 5). This

result is relevant in the context of the long time needed to advance

an RRS program, still considered a limitation for a more widespread

use of this strategy for “urograndis” hybrids. GS integrates well into

the alternative RRS strategy selecting forward (RRS-SF) (Nikles,

1992). RRS-SF was proposed several years ago with the specific aim

to shorten the conventional RRS by omitting the backward selection

step while producing and testing pure species and hybrids

simultaneously in each generation. Hybrid and pure species

performance data are analyzed simultaneously, combining

parental GCA information for pure species and for hybrid

performance with individual-tree data to get EBVs for forward

selection of pure species progeny (Kerr et al., 2004). Our pure

species HBLUPmodels adopted this approach, but showing that the

hybrid data did not contribute appreciably to the predictive abilities

of the pure species. This result agrees with previous reports showing

that individual breeding values of E. urophylla pure species trees

were good indicators of their parent performance as hybrid partners

with E. grandis for tree volume (Van Den Berg et al., 2015).

In cross-validation, ABLUP significantly outperformed GBLUP

(Figure 5A) with all training sets, a common result seen in eucalypts

(Müller et al., 2017a; Tan et al., 2018; Cappa et al., 2019) and other

forest trees (Munoz et al., 2014; Gamal El-Dien et al., 2016). Inflated

predictive abilities have been attributed to the inability of the

ABLUP model to unscramble the significant non-additive

variance component for volume growth. Moreover, we did not

see any benefit in including data of genotyped trees in training by

HBLUP, on the predictive ability of ungenotyped trees. Most likely,

the added information of only ~100 genotyped individuals was

insufficient to propagate to the ~5,000 ungenotyped trees to provide
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any relevant genetic relationship connections for this particular

HBLUP application. However, the inclusion of phenotype data of

ungenotyped individuals in the HBLUP models resulted in a ~20%

improvement of genomic predictions over standard GBLUP for E.

urophylla. These results corroborate previous reports on the value

of HBLUP over GBLUP in boosting genomic predictions in

Eucalyptus (Cappa et al., 2019; Callister et al., 2021; Quezada

et al., 2022). However, for E. grandis, the predictive abilities with

HBLUP were slightly worse than with GBLUP. Notwithstanding

potential pedigree inconsistencies in the E. grandis PSPTs, fewer

individuals were genotyped for this species, and the average

relationship between genotyped and ungenotyped trees was

slightly lower (0.17) than in E. urophylla (0.21) (data not shown).

These results highlight the fact that the expected advantage of

HBLUP relies heavily on precise pedigree records and the level of

relationship between the genotyped and ungenotyped individuals

(Klápsťě et al., 2018).
5 Concluding remarks
and perspectives

We have carried out the first forward GS experiment across

generations in eucalypts, also unprecedented in what concerns

reciprocal recurrent GS in forest trees. Our results add to a recent

back-tested GS study across three generations of E. globulus

breeding, also showing very encouraging results (Haristoy et al.,

2023). Our realized predictive abilities for additive, and additive

plus dominance effects reached or exceeded 0.8. Individual tree

GEBV or GEGV and family GEBV ranks closely matched their

pedigree-based counterparts, with rank correlations also above 0.80.

Our results further validated the general consensus in the practice of

GS irrespective of species: higher relatedness between training and

selection populations improves predictions (Ahmadi and

Bartholomé, 2022). Our best training sets not only were just one

generation apart from the selection candidates, but also were their

direct parents. This result suggests that a modest genotyping effort

of a small training set strongly related to the selection candidates

could be sufficient to carry out GS. Training genomic models on

EBVs and fully exploiting the longer extensions of shared

haplotypes between parents and offspring will maximize additive

predictions, while prediction of the dominance component requires

training on individuals sharing genotypes with selection candidates.

We recognize, however, that more experimental data are necessary

to assess the practicality of sustaining such direct relatedness in

different breeding programs as generations advance.

Traditionally, expectations have been that long-term and wider

interpopulation genomic prediction will rely not only on

relatedness but also on linkage disequilibrium (LD) information,

although the distinction between these two components is

somewhat subjective (Daetwyler et al., 2013). In practice,

however, experimental results to date in forest trees have failed to

capture what is called “true LD”, whatever that means, even when

using relatively dense genotyping in the much smaller eucalypt
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genome when compared to conifers (Müller et al., 2017a; Resende

et al., 2017). This has led to suggestions that simply tracking

relatedness with DNA markers without capturing LD would be of

little value over conventional ABLUP for forward within-family

selection in forest trees, and that the ultimate aim of using GS

should be to capture true LD across populations (Thistlethwaite

et al., 2019). Our view, however, is that the value of GS should be

assessed from a practical perspective of the improved genetic gain

per unit time versus cost of implementation in the specific

population relevant to each breeding program. Predicting

complex traits widely across unrelated populations of different

breeding programs based on LD, notwithstanding its

improbability, might therefore not even be a relevant goal in the

current landscape of industrially oriented advanced tree breeding.

At least in industrial eucalypt improvement, GS will be

practiced within specific breeding populations with effective sizes

rarely exceeding Ne = 50, and genomic predictions will be carried

out across one or at most two generations before model updating is

done. Furthermore, both components of an individual’s breeding

value are very relevant: the parent average breeding value and the

within-family Mendelian term due to the sampling of gametes from

its parents, the latter accounting for 50% of interindividual genetic

differences in breeding values. Additionally, the non-additive

variance is also typically captured by clonal propagation. Thus,

marker-based prediction of differences among full-sibs due to

Mendelian sampling is very important in achieving genetic gain.

While pedigree-based BLUP predictions can yield accurate

estimates of parental average when ancestors data are abundant,

Mendelian segregation terms require records from progeny. As we

have shown in this study, genomic data can accurately predict

additive Mendelian sampling without progeny records, enabling

ultra-early and accurate selective ranking at the seedling stage,

although less efficiently when the total genotypic value was

predicted, at least in this experiment. Moreover, the granular

estimates of relatedness within families provided by genomic data

will also allow much better management of inbreeding and

maintenance of Mendelian segregation variance for continued

gains when compared to pedigree alone (Daetwyler et al., 2007;

Nirea et al., 2012).

Finally, besides providing experimental data on cross-

generational GS in the hybrid terminal trials, our study also

provided indications that training models with pure species data

should yield high predictive abilities that can be boosted by an

HBLUP approach to accelerate the progress of the reciprocal

populations in RRS breeding. Realized predictive abilities across

generations for the pure species populations will await ongoing

experimental work, although we speculate that similarly positive

results are likely to emerge. As GS in forest tree breeding is now

“climbing the slope of enlightenment” as a workable breeding

“technology” (Grattapaglia, 2022), we expect that an increasing

number of experimental reports of forward GS across generations

will get published, and innovative optimization of genotyping costs

will happen, ultimately driving the adoption of GS by the tree

breeders’ community worldwide.
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FILE S1

Details of the linearization of the age adjustment models.

SUPPLEMENTARY FIGURE 1

Linear and non-linear models fitting for four experimental units (trees) used to

equalize the age differences between them to two time points at 2.76 and
5.40 years.

SUPPLEMENTARY TABLE 1

Narrow sense (ha
2) and broad sense (hg

2) heritabilities and variance
components for mean annual increment (MAI) in tree volume estimated by

ABLUP for all progeny trials (G1 and G2 generations) combined at the two ages

with the different combinations of age and genetic adjustment models.

SUPPLEMENTARY TABLE 2

Narrow sense (ha
2) and broad sense (hg

2) genomic heritabilities and variance

components for mean annual increment (MAI) in tree volume at age six
estimated in the HPT267 with the different combinations of age adjusted data,

genetic and genomic models (*Model did not converge).

SUPPLEMENTARY TABLE 3

Correlations between EBVs estimated with a homogenous versus a
heterogenous residual variances model. Correlations are listed for ages

three and six, different age and genetic model adjustments, all G1 and G2
trials and both genetic models (A and A+D). (Obs. the A+D model with

heterogenous variances did not converge for the age adjusted data).

SUPPLEMENTARY TABLE 4

Correlations between the EBVs and de-regressed dEBVs of the individuals
used in each combination of training set and genomic model. Estimates are

provided for all age adjustment and genetic models at ages 3 and 6.

SUPPLEMENTARY TABLE 5

Realized predictive abilities (RPAs) in the G2 generation (HPT267) for mean
annual increment (MAI) in tree volume and corresponding estimates of bias at

the two measurement ages estimated with the different combinations of age
adjustment, genetic and genomic models, using different G1 generation

training sets.

SUPPLEMENTARY TABLE 6

Comparison of genomic predictive abilities (RPAs) using the HBLUP model with
EBVs estimated under a homogeneous or heterogeneous variancesmodel for the

cases of unadjusted and Logistic 1 age adjusted and all training sets. Shown are the
correlations of GEBVs and the respective RPAs and their differences at age

six years.

SUPPLEMENTARY TABLE 7

Comparison between the realized predictive abilities (RPA) estimated using
Logistic 1 age adjusted data, additive model at age 6, EBVs and de-regressed

dEBVs with HBLUP model for the different training sets.

SUPPLEMENTARY TABLE 8

EBVs (Estimated Breeding Values), EGVs (Estimated Genotypic Values), GEBV

(Genomic Estimated Breeding Values) and GEGV (Genomic Estimated

Genotypic Values) for mean annual increment (MAI) in tree volume of the 1400
individual trees of HPT267 out of which 197 were genotyped. Estimates were

obtained using different combinations of age adjustment, genetic model and
genomic models and training sets.

SUPPLEMENTARY TABLE 9

Spearman Rank correlations between the EBVs (Estimated Breeding Values) x

GEBV (Genomic Estimated Breeding Values) or EGVs (Estimated Genotypic
Values) x GEGV (Genomic Estimated Genotypic Values). Correlations are

listed for the different combinations of age adjustment, genetic and
genomic models, for the different training sets.
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SUPPLEMENTARY TABLE 10

Coincidence rate (%) between the number of G2 candidate trees in
HPT267 that would be selected based on their GEBV (Genomic

Estimated Breeding Values) or GEGV (Genomic Estimated Genotypic

Values) and the number of trees that were selected based on their EBVs
(Estimated Breeding Values) or EGVs (Estimated Genotypic Values) at age

six for different selected proportions (%). Correlations are listed for the
different combinations of age adjustment, genetic and genomic models,

for the different training sets.
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SUPPLEMENTARY TABLE 11

Predictive abilities (PAs) for mean annual increment (MAI) in tree volume
and corresponding standard errors estimated by cross-validation (Pure

species and Pure species + Hybrids training sets) and standard errors of

Pearson correlation (Hybrids training set) for each pure species breeding
population in the RRS program. Estimates listed for the two measurement

ages with different combinations of age correction, genetic and genomic
models, using different G1 generation training sets. NA: model did

not converge.
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