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Single primer enrichment technology (SPET) is a novel high-throughput

genotyping method based on short-read sequencing of specific genomic

regions harboring polymorphisms. SPET provides an efficient and reproducible

method for genotyping target loci, overcoming the limits associated with other

reduced representation library sequencing methods that are based on a random

sampling of genomic loci. The possibility to sequence regions surrounding a target

SNP allows the discovery of thousands of closely linked, novel SNPs. In this work,

we report the design and application of the first SPET panel in lettuce, consisting of

41,547 probes spanning the whole genome and designed to target both coding

(~96%) and intergenic (~4%) regions. A total of 81,531 SNPs were surveyed in 160

lettuce accessions originating from a total of 10 countries in Europe, America, and

Asia and representing 10 horticultural types. Model ancestry population structure

clearly separated the cultivated accessions (Lactuca sativa) from accessions of its

presumed wild progenitor (L. serriola), revealing a total of six genetic subgroups

that reflected a differentiation based on cultivar typology. Phylogenetic

relationships and principal component analysis revealed a clustering of

butterhead types and a general differentiation between germplasm originating

from Western and Eastern Europe. To determine the potentiality of SPET for gene

discovery, we performed genome-wide association analysis for main agricultural

traits in L. sativa using six models (GLM naive, MLM, MLMM, CMLM, FarmCPU, and

BLINK) to compare their strength and power for association detection. Robust

associations were detected for seed color on chromosome 7 at 50 Mbp.
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Colocalization of association signals was found for outer leaf color and leaf

anthocyanin content on chromosome 9 at 152 Mbp and on chromosome 5 at

86 Mbp. The association for bolting time was detected with the GLM, BLINK, and

FarmCPU models on chromosome 7 at 164 Mbp. Associations were detected in

chromosomal regions previously reported to harbor candidate genes for these

traits, thus confirming the effectiveness of SPET for GWAS. Our findings illustrated

the strength of SPET for discovering thousands of variable sites toward the

dissection of the genomic diversity of germplasm collections, thus allowing a

better characterization of lettuce collections.
KEYWORDS

lettuce, SPET, high-throughput genotyping, genomic diversity, phenotyping, GWAS,
candidate genes
1 Introduction

Recent years witnessed astonishing advancements in the

development of cutting-edge technologies for next-generation

sequencing (NGS), opening new frontiers for investigating the

genomic diversity of crops (Van Treuren and van Hintum, 2014;

Onda and Mochida, 2016). The availability of reference genome

sequences and the progress in the field of bioinformatics made it

possible to implement high-throughput genotyping methods capable

of massively detecting single-nucleotide polymorphisms (SNPs). Being

highly abundant across the genome and given their biallelic nature

(Wendt andNovroski, 2019), SNPs offer the opportunity to be processed

in automated pipelines providing a high resolution in the analysis of

population structure and genetic ancestry, enabling furthermore a high-

density scan of variants underlying complex traits. Different techniques

for the identification of polymorphisms either in specific sites or

randomly have therefore been developed. Among these, arrays based

on customized oligonucleotide (allele-specific) probes hybridized on

solid supports (Tripodi, 2022) offer an efficient technology combining a

robust allele calling rate with lower investments in terms of library

preparation and downstream bioinformatic analyses. However, arrays

are affected by ascertainment bias due to the non-arbitrary sampling of

polymorphisms and to the low representativeness of samples used to

design the SNP panel leading to the exclusion of rare alleles (You et al.,

2018). Furthermore, they are not flexible in terms of upgrades, requiring

significant costs to increase the throughput.

The possibility to curtail the complexity of genomes and apply

NGS, increasing read depth in determined genomic regions,

enabled the development of reduced-representation library

based-methods (RRL) (Van Tassell et al., 2008). Among these,

genotyping by sequencing (GBS) and restriction site-associated

DNA sequencing (RAD-seq) have been the most attractive and

affordable options for genome-wide SNP discovery and

genotyping (Poland and Rife, 2012; Pante et al., 2015). These

methods rely on the use of endonucleases to produce short

restriction fragments that, after various steps including adaptor

ligation, size selection, and amplification, are sequenced providing

the frame for SNP discovery (Deschamps et al., 2012; Kim et al.,
02
2016a; Kim et al., 2016b). Despite the potentialities for developing

numerous SNPs in comparison to other genotyping methods

(e.g., microsatellites and arrays) and the advantage of a minor

ascertainment bias, the main drawback of both GBS and RAD-seq

is the uneven distribution of endonuclease cutter sites in the

genome (Peterson et al., 2014). The untargeted detection

reduces the possibility to identify polymorphisms within

functionally relevant chromosomal regions. Indeed, single genes,

gene families, promoters and enhancers, gene clusters, and non-

coding genes are the genomic fractions that probably contain

polymorphisms that are causative of, or tightly associated with,

phenotypic variability.

To enable a more targeted approach on functional diversity,

NuGEN Inc. (San Carlos, CA, USA) developed single primer

enrichment technology (SPET, Patent US9650628B2) (Amorese

et al., 2013), a novel customized and cost-effective technology

based on Allegro Targeted Genotyping (Lovci et al., 2018). SPET

offers the possibility to perform targeted genotyping of known

polymorphisms and to discover new random polymorphic loci,

thus combining the benefits of both arrays and RRLs (Scaglione

et al., 2019). The technology relies on the previous identification of

the sites to be sequenced holding the polymorphisms. Based on

information gathered from reference genomes or transcriptomes,

the target sites are selected, and short DNA probes of ~40 bases long

are designed in the adjacent regions. In addition to sequencing of

target sites, the probes enable the detection of closely linked novel

polymorphisms within the area surrounding the target. Because it

uses single primers, the panel design is straightforward, thus

enabling a high capability of multiplexing. The tailored design

allows SPET to have superior reproducibility and transferability

when compared to the other RRL genotyping methods. In plants,

SPET has been applied in maize (Zea mays L.), black poplar

(Populus nigra L.) (Scaglione et al., 2019), oil palm (Elaeis

guineensis Jacq.) (Herrero et al., 2020), cultivated and wild species

of tomato and eggplant (Solanum spp.) (Barchi et al., 2019), and

peach (Prunus armeniaca L.) (Baccichet et al., 2022), showing the

power of this method for genotyping germplasm collections and

crossing populations. Applications included population structure
frontiersin.org
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analyses, phylogenetic investigations, high-density linkage map

development, and association mapping analysis.

Cultivated lettuce (Lactuca sativa L.) is a commercially important

crop belonging to the Compositae (Asteraceae), one of the largest

angiosperm families comprising over 1,800 genera and 24,000 species

(WFO Plant List, 2023). It is considered a main leafy vegetable, widely

appreciated by consumers for the content offibers and the low-calorie

intake (Kim et al., 2016). It also represents a good source of vitamin

C, iron, folate, and different health-beneficial bioactive compounds

(Kim et al., 2016). Its production in 2020 was estimated to be 27.6

million tons on an area of 1.2 million hectares (FAOSTAT, 2023).

The genus Lactuca comprises approximately 100 species, of which L.

sativa and its wild progenitor L. serriola, both part of the primary

gene pool, represent over 90% of the accessions held in genebanks

(van Treuren et al., 2012). Cultivated accessions can be classified into

diverse horticultural types based on the morphological characteristics

of leaves and stems (Simko, 2009). Lettuce germplasm diversity has

been explored using different molecular tools including

microsatellites (Simko, 2009; Rauscher and Simko, 2013),

anonymous and targeted PCR-based markers (van Treuren and

van Hintum, 2009), arrays (Stoffel and van Leeuwen, 2012), and

RRLs (Seki et al., 2020; Park et al., 2021; Park et al., 2022) to study

genetic relationships within and among horticultural types. In the

past few years, several genomic resources have been released

including the first draft of the lettuce genome (cv. Salinas) (Reyes-

Chin-Wo et al., 2017) and the resequencing of 445 accessions

including cultivated lettuce and 12 wild Lactuca species (Wei et al.,

2021), providing a useful source for assessing and exploiting

germplasm diversity through novel marker discovery. The

possibility to implement both genomic and phenotypic information

in genome-wide association studies (GWAS) paves the way to dissect

the genetic basis of complex traits. GWAS enable the identification of

genomic regions underlying the variation of traits exploiting the

ancient recombination events occurring in unrelated individuals

(Huang and Han, 2014). The rapid advances of NGS technologies

and computational pipelines make GWAS a powerful approach for

candidate gene detection in crops. In lettuce, GWAS using different

genotyping platforms for SNP discovery investigated agronomic traits

(Kwon et al., 2013), resistances (Lu et al., 2014), and quality-related

traits (Sthapit Kandel et al., 2020; Park et al., 2021).

In the present work, we describe the development of the first

SPET panel in lettuce and its application for analyzing genomic

diversity and population structure. A heterogeneous collection of

160 accessions of L. sativa and L. serriola was used as a proof of

concept to validate the SPET assay. We further investigated the

potentiality of SPET for candidate gene identification through

GWAS in four main lettuce horticultural traits. The obtained

results showed the strength of SPET for lettuce genomics.
2 Materials and methods

2.1 Plant material

Plant materials consisted of 155 accessions of L. sativa and 5 of

the closely related wild species L. serriola, which were part of the
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germplasm panel established in the frame of the ECPGR European

Evaluation (EVA) Lettuce Network (ECPGR, 2023). Plant materials

originated from the germplasm collections of four institutions: the

Institute for Plant Genetic Resources “K.Malkov” (Sadovo, Plovdiv

district, Bulgaria), the Centre for Genetic Resources, the

Netherlands (CGN, Wageningen, Netherlands), the Unité de

Génétique et Amélioration des Fruits et Légumes, Plant Biology

and Breeding, INRAe (GAFL, Avignon, Montfavet Cedex, France),

and the Nordic Genetic Resource Center (Nordgen, Alnarp,

Sweden). Genotypes encompassed cultivars, breeding materials,

and landraces originating from a total of 10 different countries in

Europe, America, and Asia. Different horticultural types were

represented (Figure 1), including Butterhead (54), Iceberg (46),

Cos or Romaine (17), Batavia or Summer/French Crisp (11), Crisp

(10), Loose leaf (9), Oak leaf (4), Latin (3), and Lollo (1), as well as

wild L. serriola (5) (also known as prickly lettuce). A detailed list

with all available information on the assayed accessions is provided

in Supplementary Table 1.
2.2 Single primer enrichment technology
panel design

For probe design, a dataset including whole-genome

resequencing data of 131 L. sativa accessions (Wei et al., 2021)

was considered (Supplementary Table 2). Raw sequence data were

retrieved from the FTP site of the China National Gene Bank

Sequence Archive (CNSA) repository (Guo et al., 2020). Variants

(SNP and INDEL separately) were selected by filtering those present

in the dataset with a minimum allele count of 3 (i.e., one

homozygous accession and one heterozygous or three

heterozygous accessions). The lettuce reference genome (L. sativa

cv Salinas V8) and its annotation were retrieved from https://

lgr.genomecenter.ucdavis.edu/Home.php and all gene coordinates

were extended by 5,000 bp upstream and 1,000 bp downstream. All

selected genomic variants were intersected with these gene

coordinates and labeled as gene-space variants. A panel of 50k

target sites was then built by imposing a minimum distance of 3,000

bp for variants on the gene-space and a minimum distance of

200,000 bp in the intergenic regions. After two rounds of design, a

final panel of 41,547 targets were successfully identified by unique

probes. Each probe consisted of a 40-bp sequence. SNP calling was

enabled 460 bp downstream of the probe.
2.3 DNA extraction, library preparation,
and sequencing

Genomic DNA was isolated from young leaves of a single

individual per accession using a NucleoSpin Plant II Mini kit

(Macherey-Nagel GmbH & Co. KG., Düren, Germany. DNA

concentration was measured using the Qubit 2.0 Fluorometer

(Thermo Fisher Scientific, Waltham, MA, USA). Libraries were

prepared using the “Allegro Targeted Genotyping” protocol from

NuGEN Technologies (San Carlos, CA), using 10 ng/ml of DNA as

input and following the manufacturer’s instructions. Libraries were
frontiersin.org
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quantified using the Qubit 2.0 Fluorometer, and their size was

checked using the High-Sensitivity DNA assay from Bioanalyzer

(Agilent technologies, Santa Clara, CA) or the High-Sensitivity

DNA assay from Caliper LabChip GX (Caliper Life Sciences,

Alameda CA). Libraries were quantified through qPCR using the

CFX96 Touch Real-Time PCR Detection System (Bio-Rad

Laboratories, Hercules, CA) and sequenced on the Illumina

NovaSeq 6000 (Illumina, San Carlos, CA).
2.4 Sequence analysis and SNP detection

Demultiplexing of raw sequencing data and base calling (BCL

files into FASTQ files) were performed with the Illumina bcl2fastq2

Conversion Software v2.20 (Illumina, San Carlos, CA). Read quality

check and adapter trimming were carried out using ERNE v1.4.6

(Del Fabbro et al., 2013) and Cutadapt (Martin, 2011), both with

default parameters. Alignment to the reference genome L. sativa cv

Salinas V8 (Reyes-Chin-Wo et al., 2017) was done using the

Burrows–Wheeler Aligner BWA-MEM v0.7.17 (Li and Durbin,

2009) with default parameters and selection of uniquely aligned

reads (i.e., reads with a mapping quality >10). SNP calling was
Frontiers in Plant Science 04
obtained using gatk-4.0 (DePristo et al., 2011) following the

software best practices for germline short variant discovery. SNP

calling was limited to the regions (460 bp) that were previously

defined as downstream of each enrichment probe.

All analyses were implemented in GATK Best Practices v4.1.2.0

(Van der Auwera and O'Connor, 2020) and included the following

steps: (i) per-sample variants calling on target regions using

HaplotypeCaller with default parameters to create a GVCFs file

for each sample; (ii) GVCFs consolidation across multiple samples

using GenomicsDBImport with default parameters and target

intervals in order to improve scalability and speed for further

joint genotyping; (iii) joint genotyping using GenotypeGVCFs

with default parameters to produce a set of joint-called variants;

(iv) Selection of SNPs using SelectVariants and quality filtering of

SNPs using VariantFiltration (filter expression used: QD< 2.0 ||

MQ< 40.0 || MQRankSum< −12.5). A 1,911,467 biallelic SNPs

matrix was obtained. The extra filtration of the VCF was performed

with bcftools by setting all data points with fewer than five reads in

coverage to a missing data genotype (./.) and retaining only records

where a minimum of 96 samples reported a coverage above 10

reads. In total, 835,426 SNPs were obtained. For downstream

analysis, 81,531 SNP sites were retained with minor allele count =
FIGURE 1

Lactuca sativa horticultural types considered in this study. (A) EVA_Lsa_00156, Butterhead; (B) EVA_Lsa_00166, Batavia; (C) EVA_Lsa_00094, Cos;
(D) EVA_Lsa_00150, Crisp; (E) EVA_Lsa_00114, Iceberg; (F) EVA_Lsa_00184, Latin; (G) EVA_Lsa_00196, Lollo; (H) EVA_Lsa_00206, Loose leaf; (I)
EVA_Lsa_00174, Oak Leaf. Photos provided by Charlotte Aichholz and Tizian Zollinger.
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3, max missing 0.5, minQ = 30, and minor allele frequency = 5%.

VCFtools version 0.1.17 (Danecek et al., 2011) was used. Pattern of

nucleotide diversity (p) was estimated in non-overlapping sliding

windows with a size of 1 kbp in VCFtools. Functional annotation of

the identified variants associated genes was performed using SnpEff

(version 3.1) (Cingolani, 2022).
2.5 Genomic diversity analysis

Genetic diversity summary of the SNP matrix was performed by

the Geno Summary tool implemented in Tassel v5.2.15 (Bradbury

et al., 2007). Considering the biallelic nature of SNPs, expected

heterozygosity according to Hardy–Weinberg equilibrium (H) was

calculated according to the formula

H = 1 − r2 − q2

where p and q each represent the frequency of the different

alleles for each SNP.

The polymorphic information content (PIC) was calculated

according to the formula (Shete et al., 2000)

PIC = H − 2� r2 � q2

Population structure was determined using the model-based

ancestry estimation obtained with ADMIXTURE software

(Alexander et al., 2015) with K ranging from 1 to 15. One

thousand bootstrap replicates were run to estimate parameter

standard errors. Tenfold cross-validation (CV) procedure with

five iterations was performed, and CV scores were used to

determine the best K value. Individuals were considered to belong

to a specific K population if its membership coefficient (qi) was ≥0.5,

whereas the genotypes with qi lower than 0.5 at each assigned K

were considered as admixed. A neighbor-joining phylogenetic tree

was built using the Jones–Taylor–Thornton (JTT) model with 1,000

bootstraps. Analyses were conducted in MEGA X software (Kumar

et al., 2018). Principal component analysis (PCA) was performed in

Tassel v5.2.15 and the biplot was drawn using the ggplot2 R package

(Wickham, 2016).
2.6 Phenotypic evaluation

The phenotypic traits were surveyed across five locations

(Eyragues, Avignon, France; La Ménitré, France; Les Evouettes,

Port-Valais, Switzerland; Rheinau, Switzerland; and Thessaloniki,

Greece) during the 2020–2022 spring seasons. Plants were grown

in a randomized block design with three replicates. Field trials

were conducted using the standard agricultural practices for the

local area of cultivation. Four traits were assayed including (i) seed

color (1 = white/cream, 2 = yellow, 3 = brown, 4 = black),

(ii) outer leaf color before bolting stage (1 = yellow green, 2 =

green, 3 = gray green, 4 = blue green, 5 = red green), (iii) leaf

anthocyanin content before bolting stage (0 = absent, 3 = weak,

5 = medium, 7 = strong), and (iv) bolting time (number of days

from sowing to bolting).
Frontiers in Plant Science 05
2.7 Genome-wide association analysis

Genome-wide association analysis was performed in 155 L.

sativa genotypes. Six models were used including the general linear

model (GLM) (Loley et al., 2013), the mixed linear model (MLM)

(Zhang et al., 2010), the multi-locus mixed linear model (MLMM)

(Segura et al., 2012), the compressed mixed linear model (CMLM)

with population parameters previously defined (P3D) (Zhang et al.

in 2010), the fixed and random model circulating probability

unification model (FarmCPU) (Liu et al., 2016), and the

Bayesian-information and Linkage-disequilibrium Iteratively

Nested Keyway model (BLINK) (Huang et al., 2019). All models

included the population structure as a covariate. The kinship was

estimated using the identity by state (IBS) for accounting

relationships among individuals. Phenotypic data from

independent experiments were implemented. The significance

threshold for marker–trait association was determined after

Bonferroni multiple test correction with genome-wide a = 0.05.

Considering 81,531 SNPs, the marker was considered significant

when the p-value was less than 6.212 (−log10P = 6.133 × 10−7). GLM

and CMLM were computed in Tassel v 5.2.82 (Bradbury et al.,

2007). MLM, MLMM, FarmCPU, and BLINK were calculated with

the GAPIT R package (Wang and Zhang, 2021). Manhattan and

quantile–quantile (Q–Q) plots for GWAS results were produced

using the R package CMplot. The chromosomal location of the

genome-wide significantly associated SNPs was displayed using

PhenoGram (https://ritchielab.org/software/phenogram).

Significant association signals were checked for their physical

position on the L. sativa (cv. Salinas) V8 genome. The

information about predicted genes was downloaded from the

Lettuce genome browser v8.0 (https://phytozome-next.jgi.doe.gov/

jbrowse/). Underlying genes and their functions were determined

according to Reyes-Chin-Wo et al. (2017).
3 Results

3.1 SPET array

Based on SNP data retrieved from 131 lettuce raw sequences

(Wei et al., 2021) and on the alignment to reference genome L.

sativa cv Salinas V8, 41,547 probes were designed, of which 1,707

(4.1%) were localized in intergenic regions and 39,840 (95.9%)

within genes (Supplementary Table 3). The average coverage of the

total set of probes was 77.1×; for those located within intergenic

regions, 93.4×; and for those within genes, 76.6× (Supplementary

Figure 1). The SPET panel showed an average distribution of one

probe per 55.5 kilobase pair (kbp). Regarding inter-probe distance,

27% of the probes were more than 50 kbp apart, while the largest

gap was 3.2 mega base pair (Mbp) on chromosome 3 (Figure 2). The

sequencing of SPET libraries in the 160 study samples produced a

total of 668,695,867 paired end raw reads corresponding to an

average of 4,179,349 read pairs per sample ranging from 2,000 to 21

million and a mean depth of 79.7× (Supplementary Table 4). The

mapping rate on the whole genome was on average 88%, and only

eight samples had an average below 70% (Supplementary Figure 2).
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By applying stringent filtering criteria, we identified 81,531 SNPs

ranging from 5,291 on chromosome 6 to 13,920 on chromosome 4

(Table 1). SNPs were predominantly located within transcript regions,

covering over 65% of the gene space in all chromosomes. SNP effect

analysis showed that the majority of SNPs (88.08%) have a possible

modifier effect, while the rest exhibited low (6.96%), moderate (4.82%),

and high (0.14%) impacts (Supplementary Table 5).Within gene space,

SNPs were mostly localized in upstream and downstream gene regions

(27.45% and 16.27%, respectively). SNPs in exons and introns were

11.37% and 7.47%, respectively (Supplementary Figure 3). The average

density corresponded to one SNP every 28.99 kbp across the nine

chromosomes, ranging from 21.48 kbp on chromosome 1 to 36.35 kbp

on Chr 6. Across the whole set, PIC values ranged from 0.033 to 0.375

(data not shown) with a mean of 0.240. The minimum average PIC

value was encountered on Chr 6 (0.226), while the maximum value was

found in Chr 2 (0.258). Chr 6 and Chr 2 exhibited the lowest and

highest nucleotide diversity with 4.681e-4 and 6.459e-4, respectively. On

average, heterozygosity was 0.292, reaching values above 0.300 only on

chromosomes 2 and 5. The observed transitions/transversions ratio

was 2.12 (Supplementary Figure 4A). In particular, among transition

events, C > T and G > A were the most abundant (18.697% and

18.225%, respectively), whereas C >A and A >T abounded within

transversion events (4.826% and 4.506%, respectively). The allele

content of the SNP matrix was balanced, being on average

represented for 70% by the four nucleotide bases in homozygosity

state (Supplementary Figure 4B).
3.2 Genomic diversity and
population structure

An admixture-based clustering model implemented in the

software ADMIXTURE (Alexander et al., 2015) was used to infer
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the genetic structure of the studied germplasm. Using the entire

SNP dataset, results of CV error suggested six different clusters

(Supplementary Figure 5) representing the most likely number of

subpopulations (K) (Figure 3).

The subpopulations reflected to some extent a differentiation

based on cultivar typology rather than country of provenance

(Figure 3; Supplementary Table 6). The first cluster (K1) grouped

21 accessions, mostly Iceberg and Cos lettuce types from Bulgaria.

Butterhead were mostly grouped in clusters 2 (K2) and 6 (K6) and

represented 62% and 67% of the total individuals within each

cluster, respectively. The subpopulation 3 (K3) included several

Batavia and Crisp types whereas Oak leaf types were included in

cluster 4 (K4) together with Iceberg and Loose leaf types. Among

the different cultivar types, Iceberg accessions were clustered in

several subpopulations. Lactuca serriola accessions were grouped

separately from the rest in a distinct group (K = 5). Thirty-two

accessions belonging to 8 out of the 10 considered cultivar types

were classified as admixed, as they showed values for the highest

cluster membership coefficient (qi) lower than 0.5. The Fixation

Index (FST) values, measuring the population (K) differentiation

based on SNP data, are reported in Table 2.

The highest FST values were found between K5 and the other

subpopulations, thus confirming the differentiation of the wild L.

serriola from the cultivated L. sativa. The lowest divergence was

found between clusters 1 and 3 (FST = 0.265) mostly comprising the

same type of cultivars. Considering the average q-value at K = 6

(Figure 4), the analysis showed how among the most represented

cultivars, iceberg types were included in five out of the six detected

clusters while butterheads were included in clusters 2, 3, and 6. Batavia,

Crisp, and Lollo as well as Loose and Oak leaf types were mostly

represented by clusters 3 and 4, respectively. The average

heterozygosity of the accessions was on average lower than 4% in all

cultivated variety groups (Figure 5). Prickly lettuce accessions showed
FIGURE 2

Distribution of 41,547 SPET probes on the nine lettuce chromosomes. The number of SNPs is represented within 1 Mb window size. The horizontal
axis shows the chromosome (Chr) length (Mb); each bar represents a chromosome, with Chr 1 at the top and Chr 9 at the bottom. The different
colors depict SNP density following the gradient in the legend on the right.
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an average heterozygosity of 4.69% with values ranging from 4.64% to

4.99%. The same trend was observed among different subpopulations

based on admixture analysis (data not shown). Twelve accessions

belonging to Butterhead (7) and Iceberg (5) exhibited heterozygosity

higher than 5% with values up to 6.61% (Butterhead) and 10.08%

(Iceberg). Only a single accession, representing the Cos horticultural

type, showed a relatively high heterozygosity of 16.11%.
3.3 Genetic relationships
among accessions

Phylogenetic clustering and PCA were performed to find

patterns of genetic variation among accessions. The phylogenetic

network using the neighbor-joining method was generally in

agreement with Admixture analysis. Two main subpopulations

were detected. Group I mostly included butterhead types

(Figure 6A) from the clusters K2 and K6 (Figure 6B).

Group II consisted of several icebergs, loose leaf, and cos types

from clusters K1, K3, and K4 (Figures 6A, B). All prickly lettuce (L.

serriola) genotypes were grouped closely together according to the

cluster K5. The distribution of the accessions in the PCA bi-plot

graph corroborated population structure analysis highlighting,

among L. sativa accessions, a clustering of butterhead types

compared to the rest (Figure 7A). Prickly lettuce genotypes were

grouped apart on the second component, thus confirming the

observed subpopulation in the ancestry analysis. A slight

differentiation between French and Bulgarian germplasm was

observed. Interestingly, several close relationships were found

between Italian and Bulgarian accessions. Although more

admixtures were found when the geographical provenance was

considered, a general differentiation was observed between

germplasm retrieved from Western and Eastern Europe (Figure 7B).
3.4 Genome-wide association analysis

Genome-wide association scans using six models detected a total of

306 significant SNP–trait associations (STA) (Supplementary Table 7)

distributed across all chromosomes except for chromosome 6. The

majority of STA were detected for seed color and leaf anthocyanin

content: 133 and 117, respectively. Fifty-eight percent of associations

were identified with the GLM, whereas among the five multi-locus

models used, MLM and CMLM highlighted the highest number of

association signals. Only for bolting time was no association found with

multivariate models, except FarmCPU. Considering all models,

chromosomes 5, 7, and 9 held over 94% of the STA, showing further

several colocalizations. Manhattan plots showing the associations, their

chromosomal positions, and Bonferroni threshold are shown in

Figure 8, and Q–Q plots for multi-model GWAS and physical

position of STA are shown in Figure 9. Two main clusters were

found for leaf anthocyanin content and outer leaf color in a 160-kb

region at 86 Mbp on chromosome 5 as well as in a 2-Mbp region at

150–152 Mbp on chromosome 9. Furthermore, different significant

SNPs were detected on chromosome 7 for seed color in a 3-Mbp region

at 49–52 Mbp position and for bolting time at 164 Mbp.
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In order to narrow down to potential GWAS hotspots, we

considered the top-ranked SNPs within each model (Table 3). For

seed color, five out of the six models detected the strongest signal at

50.40 Mbp on chromosome 7 in an intergenic region at 19.55 kb to

an Atp-dependent rna helicase DEAH5. The percentage of

phenotypic variation explained (PVE%) by each locus ranged

from 0.03% to 45.26%. Only with the CMLM model was the

highest peak found 147 kb downstream to the previous one

(chromosome 7, 50.54 Mbp) and in correspondence to CYTOKININ

DEHYDROGENASE 3. For leaf anthocyanin content, five models detected

a robust association on chromosome 5 at 86.12 Mbp in

correspondence to PHOTOTROPIN-2 with a PVE% ranging from

4.55% to 15.26%. In addition, all models detected the strongest

STA on chromosome 9 at 152.91 Mbp within an MLO like protein
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11. Also, for outer leaf color, the strongest associations were in both

chromosome 5 and 9, at ~27 kbp distance from those identified for

leaf anthocyanin content. For leaf color, a SIGNAL PEPTIDASE COMPLEX

SUBUNIT 3B was the candidate gene identified with GLM, CMLM,

and FarmCPU on chromosome 5 at 86.15 Mbp. The three models

exhibited a PVE% ranging from 2.78 to 20.32. Furthermore, all

models detected the strong STA at 152.88 Mbp on chromosome 9 in

correspondence to a GENERAL TRANSCRIPTION FACTOR 3C POLYPEPTIDE 6,

with a PVE% ranging from 10.46% to 47.65%.

For bolting time, only GLM, BLINK, and FarmCPU

revealed the strongest STA in an intergenic region at 1.77 kbp

from FAR1-RELATED SEQUENCE 10 located on chromosome 7 at 164.43

Mbp. The three models exhibited a PVE% ranging from 18.71%

to 48.65%.
FIGURE 3

Genetic structure of the 160 study samples using 81,531 SNPs from SPET analysis. On the top: the geographical distribution of the germplasm
studied and its subdivision according to the observed K groups; in the pie chart, the proportion of admixed accessions is indicated in ice blue color.
On the bottom: bar plot describing the population admixture by the Bayesian approach. Each individual is represented by a thin vertical line, which is
partitioned into K-colored segments whose length is proportional to the estimated membership coefficient (q). The population was divided into six
(K = 6) groups according to the most informative K value.
TABLE 2 FST values between populations inferred from a model-based ancestry estimation through the ADMIXTURE analysis.

K1 K2 K3 K4 K5

K2 0.409

K3 0.265 0.428

K4 0.313 0.356 0.33

K5 0.676 0.684 0.686 0.592

K6 0.38 0.334 0.397 0.34 0.682
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4 Discussion

4.1 SPET development and
genomic diversity

In this work, we investigated the effectiveness of SPET as a tool

for high-throughput genotyping in lettuce. This method has been
Frontiers in Plant Science 09
developed recently, but so far, very little information about how well

it performs in plants is reported. To that end, we developed and

validated a novel SNP panel enriched of intraspecific SNPs from 131

resequenced genomes and consisting of over 40,000 probes across

the lettuce genome. The potentialities of SPET rely on the high-

efficiency enrichment of targeted loci and the high scalability of up

to thousands of probes in a single reaction (Scaglione et al., 2019).
FIGURE 4

Stacked bar chart of the allele frequency based on Q membership coefficient at K = 6. For each cultivar group, the number of accessions is
indicated above each bar.
FIGURE 5

Heterozygosity level (in percentage) of the lettuce accessions. Box plots show median values and quartiles (first and third) of accessions considering
the different varietal types.
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In addition, it offers the possibility of discovering novel SNPs by

sequencing the genomic regions surrounding the target SNPs.

Compared to other genotyping strategies for reducing genome

complexity, this method offers full control of target sites, thus

broadening the investigation of variation within genomic regions

with a functional role. Furthermore, the possibility to detect SNPs

within probe-defined regions improves reproducibility, thus

enabling one to implement and/or compare genomic information

from different genotyping experiments. Our main goal was to

determine the applicability of SPET for assessing the diversity of

a heterogeneous germplasm collection of lettuce including

genotypes belonging to different horticultural types with diverse

geographic origins. This work was done as part of the ECPGR
Frontiers in Plant Science 10
European Evaluation Network (EVA) with the goal of improving

the knowledge of crop genetic diversity and exploiting it to breed

more resilient crops that can meet the major problems facing

agriculture in the upcoming years (FAO, 2021; ECPGR, 2023). A

more efficient use of crop diversity is essential for genetic

improvement, management, and conservation of germplasm

resources. The sequenced dataset comprised an average of 4

million SNPs per sample, which has been indicated to be

adequate for processing several thousands of probes (Scaglione

et al., 2019). Compared to the 25K SPET panel reported in peach

(Baccichet et al., 2022) and the 5K SPET panel described for tomato,

eggplant, and oil palm (Barchi et al., 2019; Herrero et al., 2020), the

40K SPET assay designed in lettuce provides a higher number of
A B

FIGURE 6

Neighbor-joining phylogenetic tree (radiation style) using 81,531 SNPs from SPET analysis. The evolutionary distances were computed using the
Jones–Taylor–Thornton (JTT) model with 1,000 bootstraps. (A) Tree with annotated species and horticultural type. (B) Tree with annotated grouping
revealed by the population structure analysis.
A B

FIGURE 7

Loading plot in the first two components, showing the genomic diversity of the 160 studied accessions. The PCA was computed with 81,531 SNPs.
(A) PCA with annotated species and horticultural types. (B) PCA with annotated country of origin.
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SNPs covering up to 96% of gene-rich regions. Our findings

demonstrated how effective SPET is compared to other

genotyping techniques for detecting SNPs within coding regions.

In fact, prior studies in lettuce utilizing genotyping by sequencing

revealed that the proportion of SNP loci within genic regions ranged

from 0.94% to 27.6% (Park et al., 2021; Park et al., 2022).
Frontiers in Plant Science 11
We detected over 80,000 high-quality polymorphisms that were

analyzed to determine population ancestry, phylogenetic relationships,

and principal components among the EVA lettuce accessions. The three

approaches were complementary, thus supporting the interpretation of

results. In agreement with earlier findings (Park et al., 2021; Park et al.,

2022; Simko, 2009; Stoffel and van Leeuwen, 2012), no admixture was
DA B C

FIGURE 8

Manhattan plots showing SNP–trait associations (STA) in L. sativa using six multi-locus GWAS models. Four horticultural traits are shown: (A) seed
color, (B) leaf anthocyanin content, (C) outer leaf color, and (D) time of beginning of bolting (bolting time). Analysis has been performed considering
81,531 SNPs on 155 accessions. The black horizontal line indicates a significant threshold (−log10 p-value) according to Bonferroni. The X-axis
indicates the chromosome position. The STA repeatedly identified by three or more GWAS models are highlighted.
D

A B E

C

FIGURE 9

Quantile–quantile plots for six multi-locus GWAS models (A–D) and physical position of SNP–trait associations (E). For QQ plots, the order of traits
are as follows: (A) seed color, (B) leaf anthocyanin content, (C) outer leaf color, and (D) time of beginning of bolting. For chromosomes 7 and 9, the
clusters of regions with most STA are highlighted.
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found between L. sativa and L. serriola. Indeed, the accessions of the two

specieswere clearly separated. This evidence promotes the potentiality of

SPET for phylogenetic studies, as already observed in aubergine and

tomato (Barchi et al., 2019). Population structure and phylogenetic

analysis revealed the presence of five distinct subpopulations within L.

sativa with a variable degree of mixture across cultivar groups,

confirming previous studies using both short-read genotyping-based

techniques (Park et al., 2021; Park et al., 2022; Stoffel and van Leeuwen,

2012) and microsatellites (Rauscher and Simko, 2013). This could be

related to the fact that in lettuce breeding, different horticultural types

may be used in the pedigree scheme. In the collection assayed, we found

a major clustering of butterhead genotypes when compared to the rest.

This tendency contrastedwith Park and colleagues (2021), who reported

instead a greater separation of iceberg accessions from the other types in

a collection of 441 individuals. Despite finding a slight differentiation

according to geographical provenance, the effect due to the composition

of the diversity panel assayed in terms of horticultural types and

represented countries must be considered. Furthermore, for breeding

and research materials, the reported origin often matches the places

where the selection is carried out, thus providing an additional

confounding effect. Several factors could affect the subpopulations

enclosed in germplasm collections, such as the management practices

occurring in the holding genebanks (e.g., level of heterozygosity retained

and duplications), the areas of sampling of materials, or the biological

status of accessions. Iceberg types investigated by Park et al. (2021) were

mostly patented lines from the USDA, whereas we assayed mostly

breedingmaterials, thus suggesting the presence of accessions still under

development. The possibility to discover de novo polymorphisms free

from any sequencing ascertainment bias and at affordable costs

commensurable to other next-generation genotyping methodologies

designates SPET as an efficient tool for population genomic analysis

in lettuce.
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4.2 Genome-wide association analysis

The advances in genomics and cutting-edge genotyping

technology have contributed to the growing availability of large-

scale genotypic data of germplasm resources for various crops. The

analysis of the genetic underpinnings of complex traits used in

GWAS has benefited greatly from the ability to link phenotypic

data to genomic sequence data. GWAS has proven to be an effective

method for finding genetic variations that are significantly more

common for a specific phenotype in unrelated individuals (Xiao et al.,

2022). Owing to the greater number of recombination events

occurring in natural populations, the advantage over bi-parental

mapping populations depends on a larger genetic base to exploit

and on higher map resolution (Han et al., 2020). Over the past years,

the GWAS computing efficiency has been improved by developing

different multivariate models that consider the family kinship

inference and population structure covariates to enhance the power

of associations and decrease the rate of false positives (Wang and

Zhang, 2021). GWAS has been performed with the aim of

investigating the potentiality of the SPET panel for candidate gene

detection. To that end, we focused on four main agronomic traits

driving the selection of cultivated lettuce cultivars and underlying

market and consumer preferences. To test the most likely candidate

regions underpinning the variation of the considered traits, different

models were implemented. As expected, the GLM detected the

highest number of STA in all traits, although this model

accumulates several false positives, which are eliminated by

incorporating additional correcting factors involving a multi-

dimensional genome scan able to simultaneously estimate all

marker effects (Wang et al., 2014: Chaurasia et al., 2021). By

combining multivariate models, we identified seven candidate

regions across chromosomes 5, 7, and 9 for the assayed traits. For
TABLE 3 Robust associations detected with a multimodel GWAS for four horticultural traits in a germplasm collection of 155 cultivated lettuce
accessions.

Trait Chromosome Model* Position^
Major/
Minor
allele

MAF+
Minor
allele
effect

PVE#
Nearest
candidate

gene

Candidate gene
annotation

Seed color

7 a,b,c,e, f 50,400,650 C/T 0.25 0.48–0.80
0.03–
45.26

+19.55 kb
Atp-dependent rna
helicase DEAH5

7 d 50,547,653 G/T 0.28 3.33 e-08 0.73 0.0 kb
Cytokinin dehydrogenase

3

Leaf
anthocyanin
content

5 a,c,d,e,f 86,123,750 T/A 0.27 0.30–0.55
4.55–
15.26

0.0 kb Phototropin-2

9 a,b,c,d,e,f 152,909,707 G/A 0.22 −1.12 to −0.5
3.99–
23.70

0.0 kb MLO like protein 11

Outer leaf
color

5 a,d,f 86,150,826 T/A 0.21
0.10–0.30

2.78–
20.32

0.0 kb
Signal peptidase complex

subunit 3B

9
a,b,c,d,e,f

152,883,490 A/G 0.26 0.45–0.70
10.46–
47.65

0.0 kb
General transcription
factor 3C polypeptide 6

Bolting time
7 a,e,f 164,434,052 A/G 0.49

−1.67 to
−1.47

18.71–
48.65 −1.77 kb FAR1-related sequence 10
*a, GLM; b, MLM; c, MLMM; d, CMLM; e, BLINK; f, FarmCPU.
^ Position in base pair (bp) based on the v8 version of the reference genome assembly for L. sativa (cv. Salinas) (Reyes-Chin-Wo et al., 2017).
+ MAF, Minor frequency allele (range).
# PVE, Range of percentage variance explained.
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seed color, the STA found on chromosome 7 confirmed a previous

investigation reporting three associations in a 12-Mbp region

spanning 69.87 Mbp to 80.63 Mbp (Kwon et al., 2013). We better

refined the position at 50.40 Mbp near DEAH5, an ATP-dependent

RNA helicase involved in abscisic acid and stress responses in the

acquisition of embryogenic competence (Almeida et al., 2020). The

CYTOKININ DEHYDROGENASE 3 detected within the association may

regulate cell division as well as a large number of developmental

events in plants (Schmülling et al., 2003). The two candidates may

therefore play a role in seed coat development and color.

The position of STA located on chromosomes 5 and 9 for leaf

color traits agreed with previous studies (Zhang et al., 2017; Su et al.,

2020; Wei et al., 2021). On chromosome 5, Zhang et al. (2017)

reported the lead SNPs for leaf color at less than 150 bp (86,123,627,

86,123,633, and 86,123,651) from the top association for leaf

anthocyanin color. In the same study, the association on

chromosome 9 was in the same region at 17.45 kb (152,892,248)

from the top- ranked STA found in this study. These regions are

reported to harbor two genes RLL2 (Red Lettuce Leaves 2) and ANS

(Anthocyanin Synthase) that encode key enzymes for anthocyanin

biosynthesis. We found four main candidate genes. PHOTOTROPIN 2

and MLO LIKE PROTEIN 11 both play a key role in leaf development and

physiology. PHOTOTROPIN 2 is primarily involved in the reception of

light direction in the blade and has been demonstrated to promote

leaf expansion and flattening (Legris et al., 2021). In Pistacia

chinensis, PHOTOTROPIN 2 has been reported to be involved in the

signal transduction for anthocyanin accumulation during leaf

coloration in autumn (Song et al., 2021), whereas in octaploid

strawberry, it was involved in anthocyanin accumulation in

strawberry fruits (Kadomura-Ishikawa et al., 2013).

The MLO LIKE PROTEIN 11 is part of the large family of proteins that

regulates pathogen defense and leaf cell death (Pozharskiy et al.,

2022). No previous report indicates any function of MLO LIKE PROTEIN

11 in leaf color. A general transcription factor (3C POLYPEPTIDE 6) was

found to be involved in outer leaf color on chromosome 9. In plants,

transcription factors regulate secondary metabolism (Vom Endt

et al., 2002) and are potential candidates for plant organ

pigmentation (Ban et al., 2007; Zhou et al., 2014; Su et al., 2020).

The strongest signals found for bolting time at 164.43 Mb on

chromosome 7 confirmed previous evidence. Indeed, several studies

consistently supported the importance of chromosome 7 for lettuce

flowering control (Kwon et al., 2013; Sthapit Kandel et al., 2020; Lee

et al., 2021; Rosental et al., 2021). Despite the exact comparisons of

the candidate region not always being possible, owing to the

different marker system used (Han et al., 2021), our study

supports whole-genome resequencing data findings (Wei et al.,

2021), which detected a strong association at 164.5 Mbp in

correspondence to PHYTOCHROME C involved in delaying of

flowering. With the same effect, the strong STA found in the

present study was near FAR1 (FAR-RED IMPAIRED RESPONSE 1), a

component of the phytochrome A and putatively involved in

regulating light control during the developmental stage (Siddiqui

et al., 2016; Liu et al., 2020). FAR1 directly activates the expression of

the evening gene ELF4 that plays a key role in the circadian

flowering clock. In Arabidopsis, it negatively regulates flowering

time in synergy with other FRS (FAR-Related Sequence) and FRF
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(FRS-Related Factor) genes (Ma and Li, 2018). The variation of FAR1

expression has also been reported to regulate shoot growth and

flowering time in roses.

The creation of a novel SPET assay in lettuce was described in

this work, and its potential for genetic diversity and GWAS research

was demonstrated by comparing the results with earlier discoveries

using different genotyping technologies. Additional research could

weigh the benefits and drawbacks of SPET in comparison to whole-

genome short and long read sequencing.
5 Conclusion

Here, we presented SPET as an efficient method combining the

properties of random complexity reduction techniques and arrays,

allowing us to choose a set of gene-associated targeted markers for

the accurate characterization of lettuce germplasm. The

combination of population ancestry and phylogenetic approaches

proved to be effective to better understand the genomic structure of

lettuce genotypes. It is evident that the observed diversity patterns

reflect the varietal composition of the collection and, to a minor

extent, the geographical origin, which can be assumed primary

factors underlying the diversification. Given the high marker

density, the SPET panel has been used as a proof of concept for

genome-wide association analysis to identify genomic regions

underpinning the variation of main agronomic traits in lettuce.

We confirmed previous findings, refined the genomic position of

trait loci, and demonstrated the power of SPET for GWAS. These

results will be useful for breeding and selection in lettuce. Further

applications may include analysis of genetic relationships among

species, management of genebank collections, and genetic

fingerprinting for plant variety protection as well as GWAS for

other additional important traits in lettuce.
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