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of hazelnut, developed with
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Xanthomonas arboricola pv. corylina (Xac; formerly Xanthomonas campestris pv.

corylina) is the causal agent of the bacterial blight of hazelnuts, a devastating

disease of trees in plant nurseries and young orchards. Currently, there are no

PCR assays to distinguish Xac from all other pathovars of X. arboricola. A

comparative genomics approach with publicly available genomes of Xac was

used to identify unique sequences, conserved across the genomes of the

pathogen. We identified a 2,440 bp genomic region that was unique to Xac

and designed identification and detection systems for conventional PCR, qPCR

(SYBR® Green and TaqMan™), and loop-mediated isothermal amplification

(LAMP). All PCR assays performed on genomic DNA isolated from eight X.

arboricola pathovars and closely related bacterial species confirmed the

specificity of designed primers. These new multi-platform molecular

diagnostic tools may be used by plant clinics and researchers to detect and

identify Xac in pure cultures and hazelnut tissues rapidly and accurately.
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1 Introduction

Xanthomonas arboricola pv. corylina (Xac; formerly Xanthomonas campestris pv.

corylina; Vauterin et al., 1995) is a Gram-negative plant pathogenic bacterium of the

Lysobacteraceae family (earlier synonym of Xanthomonadaceae) (Saddler and Bradbury,

2005; Tindall, 2014). Xac is the causal agent of the bacterial blight of hazelnut (Corylus

avellana L.). Other Corylus spp., including C. pontica, C. maxima and C. colurna, also can
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be infected by Xac (OEPP/EPPO, 1986; OEPP/EPPO, 2004).

Bacterial blight of hazelnut is a devastating disease that is

commonly observed in plant nurseries and young orchards,

causing significant plant mortality (Miller et al., 1949; Moore,

2002; OEPP/EPPO, 2004; Lamichhane and Varvaro, 2014;

Webber et al., 2021). The disease also can be seen in established

production orchards, especially on susceptible cultivars. The main

disease symptoms include angular necrotic lesions on leaves and the

involucres of shells, as well as shoot necrosis and cankers. Lesions

on the stalk and top of nuts results in reduced nut quality. Dieback

of nut-bearing branches causes measurable yield reduction. Over

time, bacterial blight of hazelnut reduces tree health and results in

poor tree structure and continued yield losses (Obradović et al.,

2010; Kałużna et al., 2021).

Xac has been a regulated pathogen and placed on the European

andMediterranean Plant Protection Organization (EPPO) list A2 of

quarantine pathogens, but it was recently reclassified as a Regulated

Non-Quarantine Pest (RNQP) (European Union, 2016; European

Union, 2019). Currently, bacterial blight caused by Xac has been

reported in nearly every hazelnut-producing country (OEPP/EPPO,

2004; Kałużna et al., 2021; Osdaghi, 2022). Identification of Xac is

currently a tedious, multistep process, which is described below and

can take several days to return a diagnostic result. Difficulty in

identification arises largely because it is closely related to seven

other pathovars of X. arboricola, including pv. pruni (Xap), pv.

juglandis (Xaj), pv. fragariae, pv. celebensis, pv. arracaciae, pv.

poinsettiicola and pv. zantedeschiae (Vauterin et al., 1995; Janse

et al., 2001; Fischer-Le Saux et al., 2015; Kałużna et al., 2021). Two

former X. arboricola pathovars were recently elevated to the species

rank as X. guizotiae and X. populina (Zarei et al., 2022).

The diagnostic procedures for Xac as recommended by EPPO

rely on the observation of disease symptoms, microscopic

examination of the symptomatic tissues, isolation of the pathogen

from the plant material on common microbiological media for

xanthomonads (Schaad et al., 2001), observation of colony

morphology, biochemical, phenotypic, and pathogenicity assays

(Lelliott and Stead, 1987; OEPP/EPPO, 2004). Xac also can be

identified with serological methods following the procedures

described in EPPO protocols (OEPP/EPPO, 2010b).

Molecular tools for rapid diagnosis of Xac colonies currently

include methods specific for the genus Xanthomonas (Maes, 1993)

and for the species X. arboricola (Pothier et al., 2011a). To identify

X. arboricola isolates to the pathovar level, rep-PCR and partial

sequence alignments are generally used (Tuang et al., 1999; Schaad

et al., 2001; Scortichini et al., 2002; Parkinson et al., 2007; Young

et al., 2008; Calić et al., 2009; OEPP/EPPO, 2010a; Puławska et al.,

2010; Webber et al., 2020). Moreover, it was reported that primers

designed for identification of X. arboricola pv. pruni (XapY17-F/

XapY17-R) can also generate amplicons of some Xac strains

(Pothier et al., 2011a; Webber et al., 2020).

Currently, there are no rapid and sensitive diagnostic tools for

Xac (Prokić et al., 2012; Kałużna et al., 2021). The conventional

methods are too labor-intensive and slow for routine detection and

diagnosis, as complete diagnostic protocols can take several days.

Additionally, the symptoms of bacterial blight of hazelnuts may be
Frontiers in Plant Science 02
confused with anthracnose, a fungal disease caused by Piggotia

coryli (Roberge ex Desm.) B. Sutton (Syn. Gloeosporium coryli

(Roberge ex Desm.) Sacc.). Disease misidentification can lead to

applying ineffective management methods and use of unwarranted

chemical applications.

Recently, next-generation sequencing (NGS) and comparative

genomics have developed as effective methods to provide

information on pathogen population structures, create species

specific markers, and characterize virulence or antibiotic

resistance genes. The genomes and/or plasmids of several

pathovars of X. arboricola, including Xac, have been sequenced

(Pothier et al., 2011b; Pothier et al., 2011c; Ibarra Caballero et al.,

2013; Garita-Cambronero et al., 2014; Cesbron et al., 2015; Higuera

et al., 2015; Ignatov et al., 2015; Garita-Cambronero et al., 2016a;

Garita-Cambronero et al., 2016b; Garita-Cambronero et al., 2016c;

Harrison et al., 2016; López-Soriano et al., 2016; Garita-

Cambronero et al., 2017; Retamales et al., 2017; Fernandes et al.,

2018; Fu et al., 2018; Gétaz et al., 2018; Nuñez Cerda et al., 2021;

Teixeira et al., 2021; Cuesta-Morrondo et al., 2022; D’Amico-

Willman et al., 2022; Herbert et al., 2022; Kałużna and Pothier,

2022; Pothier et al., 2022). The available sequence data and the

needs of the grower community and diagnostic laboratories

prompted us to develop rapid, accurate and sensitive tools for the

bacterial blight of hazelnut causal agent. We developed molecular

tools for identification of Xac that could be used with several

platforms, including conventional PCR, qPCR, and Loop-

mediated isothermal AMPlification (LAMP), to facilitate adoption

based on available laboratory equipment. We validated each of the

tools using genomic DNA isolated from pure cultures of Xac and

DNA isolated from artificially inoculated and field-infected plant

material. These fast and accurate identification and detection

methods will aid in the diagnosis and management of bacterial

blight of hazelnut in nursery stock tissues, nurseries, and in both

young and established orchards.
2 Materials and methods

2.1 Bacterial strains

Xac isolates and strains collected from different geographical

regions (n = 60) were tested to validate all diagnostic assays.

Additionally, a collection of type and non-type strains of all

pathovars of X. arboricola species, other closely related

Xanthomonas species (n = 30), and microorganisms (bacteria and

fungi) isolated from symptomatic hazelnut and walnut tissues, i.e.

Pseudomonas spp., Pseudomonas avellanae, Sphingomonas spp. and

Xanthomonas campestris (n = 46) were included in assays (Table 1,

Supplementary Table S1).

Xanthomonads were grown on yeast extract nutrient agar (YNA)

or yeast extract dextrose calcium carbonate (YDC; Schaad et al., 2001)

and pseudomonads were cultured on King’s B medium (King et al.,

1954) at 28°C for 24 to 48 h. The nine fungal isolates were grown on

PDA (potato dextrose agar; Becton Dickinson, Sparks, MD, USA) at

24°C with an 8 h light and 16 h dark photoperiod.
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TABLE 1 Summary of in vitro primers specificity with the different Xanthomonas arboricola pv. corylina detection tools developed in this study.
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X. arboricola pv. corylina (n = 60)
tested 42 42 42 42 36 36 28 28 28 28 23 23 23 23 23

positive 42 422 423 42 36 36 28 28 28 28 23 23 23 23 23

Other X. arboricola pathovars (n = 27)
tested 22 22 22 22 6 6 22 23 22 22 17 17 22 22 22

positive 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Former X. arboricola pathovars (n = 3)
tested 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2

positive 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pseudomonas avellanae (n = 2)
tested 2 2 2 2 -4 – 2 2 2 2 2 2 2 2 2

positive 0 0 0 0 0 0 0 0 0 0 0 0 0

HR5 negative Pseudomonas isolates from hazelnut (n = 9)
tested 8 8 8 8 – – 8 8 8 8 2 2 8 8 8

positive 0 0 0 0 0 0 0 0 0 0 0 0 0

Sphingomonas sp. non-pathogenic on hazelnut (n = 1)
tested 1 1 1 1 1 1 – – – – – – – – –

positive 0 0 0 0 0 0

Xanthomonas campestris non-pathogenic on hazelnut (n = 1)
tested 1 1 1 1 1 1 – – – – – – – – –

positive 0 0 0 0 0 0

HR positive Pseudomonas from walnut (n = 3)
tested 3 3 3 3 – – 2 2 2 2 – – 1 1 1

positive 0 0 0 0 0 0 0 0 0 0 0

HR negative Pseudomonas and other hazelnut isolates (n = 8)
tested 7 7 7 7 – – 8 8 8 8 – – 8 8 8

positive 0 0 0 0 0 0 0 0 0 0 0

HR negative Pseudomonas and other walnut isolates (n = 8)
tested 8 8 8 8 – – 8 8 8 8 – – 8 8 8

positive 0 0 0 0 0 0 0 0 0 0 0

DNA from healthy plants (n = 5)
tested 5 5 5 5 – – 5 5 5 5 – – 5 5 5

positive 0 0 0 0 0 0 0 0 0 0 0

Fungi isolated from diseased hazelnut (n = 4)
tested 4 4 4 4 – – 4 4 4 4 – – – – –

positive 0 0 0 0 0 0 0 0

Fungi isolated from diseased walnut (n = 5)
tested 5 5 5 5 – – 5 5 5 5 – – – – –

positive 0 0 0 0 0 0 0 0
F
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1The first five columns for qPCR correspond to assays performed with SYBR® Green I whereas the last column corresponds to a TaqMan™ assay.
2A smaller amplicon of 900 bp was observed with one strain instead of the 1,455 bp expected amplicon.
3Larger amplicons of 1,150 bp and 1,450 bp were observed with two strains instead of the 385 bp expected amplicon.
4“-” denotes not tested.
5HR: hypersensitivity reaction on tobacco leaves cv. ‘Samsun’.
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2.2 DNA isolation from bacterial and
fungal cultures

Genomic bacterial DNA was isolated using the Genomic Mini

bacterial DNA Purification Kit (A&A Biotechnology, Poland), the

DNeasy Mericon Food Kit (Qiagen, Hilden, Germany) or Whole

Blood and Tissue kit (Qiagen, Germantown, MD, USA), according

to the manufacturer’s instructions. The total fungal DNA was

extracted from 100 mg of mycelia scraped from 10-day-old PDA

cultures with the GeneMatrix Plant & Fungi DNA Purification Kit

(EURx, Gdańsk, Poland) according to the manufacturer’s

instructions. The quality and total DNA concentration was

estimated with a NanoDrop ND-100 or NanoDrop 2000c

(ThermoFisherScientific, Waltham, MA, USA).
2.3 Genome-informed target identification

DNA sequences from three Xac whole genome shotgun

sequencing projects (WGS) (CFBP 1159PT, CFBP 2565 and

NCCB 100457; GenBank WGS prefixes MDEA01, MDSJ01 and

APMC02, respectively) was used for comparative genomic analysis.

A ‘dual-BLASTn’ comparative genomics pipeline was applied to

select 300-bp regions shared among these three target WGS

(Schneeberger et al., 2017). After segmentation into 300 bp length
Frontiers in Plant Science 04
fragments, duplicates were removed and Xac unique sequences

were selected using BLASTn+ v.2.8.1 (Altschul et al., 1990;

Camacho et al., 2009) analysis against the database derived from

the three genomes. Regions obtained from this workflow were

further checked for Xac specificity using online BLASTn searches

against the nr/nt and X. arboricola and Xanthomonas WGS NCBI

databases (accessed in July 2019). Finally, Xac-specific DNA

markers were also confirmed in three recently released Xac

complete genomes (CFBP 1159PT, CFBP 6600 and Xac 301;

GenBank assemblies GCA_905220785.1, GCA_905220805.1, and

GCA_905220715.1, respectively; Pothier et al., 2022).
2.4 Primer design and synthesis

Three Xac-specific regions and their associated primers were

given ‘in-house’ names during analyses, the genome context of the

regions is illustrated in Figure 1. These regions were used to design

primers for: 1) conventional PCR, 2) qPCR (SYBR® Green and

TaqMan™), and 3) LAMP. The primers for conventional PCR and

qPCR were designed using the PrimerSelect program of the

LASERGENE package v.9 (DNASTAR, Madison, WI, USA) and

Primer3Web v.4.1.0. (Untergasser et al., 2012). LAMP primers were

designed using the online platform PrimerExplorer v.5 (Eiken

Chemical Co., Ltd, Tokyo, Japan, http://primerexplorer.jp/lampv5e/
FIGURE 1

Comparison of the genetic environment of the Xanthomonas arboricola pv. corylina (Xac) specific DNA targets in six Xac draft and complete
genomes and one draft X. arboricola pv. arracaciae draft genome. The 300 bp Xac-specific region called “target 45” is represented by an orange bar,
the XaxcyCFBP1159_22010 singleton encoding the hypothetical protein “PPU54630” is displayed by a purple arrow, and the 2.4 kb region called
“region 2.4” identified by comparative genomics is indicated by the red frame. Other CoDing Sequence (CDS) are shown with blue arrows, which do
not denote any shared identity among the genomes. Regions with high DNA sequence identity between the genomes are represented with blocks
using a black to grey scale with black representing the highest identity. The strain name is followed by the GenBank accession number and the
location of the genomic region displayed.
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index.html) also including loop primers (i.e. in total six primers) to

speed up the LAMP reaction (Nagamine et al., 2002). Based on the

regions selected (Figure 1), ten candidate primer sets were designed

for conventional PCR (5, 2 and 3 primer sets based on the “region

2.4”, “PPU54630”, and “target 45” Xac-specific DNA markers,

respectively), six for SYBR® Green I qPCR (3, 1 and 2 primer sets

based on the “region 2.4”, “PPU54630”, and “target 45” Xac-specific

DNA markers, respectively), two for TaqMan™ qPCR (one primer

pair based on the “region 2.4” and one based on the “target 45” Xac-

specific DNA markers), and three for LAMP (two primer pairs based

on the “region 2.4” and one based on the “PPU54630” Xac-specific

DNA markers). The primers for the TaqMan™ qPCR were

purchased HPLC purified since this effectively increases the melting

temperature (Tm) for shorter sequences, allowing for an overall

shorter amplicon while remaining within temperature

requirements. The TaqMan™ probes were designed with a 5′ FAM
reporter dye and a 3’ BHQ-1 non-fluorescent quencher. Initially, the

specificity of the primers, the TaqMan™ probe, and predicted

amplicons to Xac were tested in silico with BLASTn searches

against the nr/nt and WGS NCBI databases (accessed in July 2019).

All these primer sets were then tested in vitro for specificity,

sensitivity, and reproducibility during screening. Depending on the

research institutions, primers were synthesized at Genomed S.A.

(Warszawa, Poland), Invitrogen (ThermoFisherScientific, Waltham,

MA, USA) and MilliporeSigma (Burlington, MA., USA).
2.5 Primer selection based on in vitro
specificity analysis

The in vitro specificity of all primers was tested with purified

genomic DNA of the bacteria and fungi listed in Table 1 (detailed in

Supplementary Table S1).

To exclude potential non-specific amplification of plant genomic

DNA with the primers, total plant DNA was isolated from clean

asymptomatic leaves of five hazelnut cultivars (cv. ‘Cosford’, cv.

‘Merveille de Bollwiller’, cv. ‘Garibaldi’, cv. ‘Webb’s Prize Cob’ and

cv. ‘Hall’s Giant’) grown in a greenhouse. Total plant DNA was

isolated from leaves using the GeneMATRIX Plant & Fungi DNA

Purification Kit (EURx, Gdańsk, Poland), as well as the Genomic

Mini DNA Extraction Kit (A&A Biotechnology, Gdynia, Poland) to

isolate bacterial DNA. Both kits were used according to the

manufacturer’s instructions with the following specifications

concerning the starting material. To isolate plant DNA: 100 mg

from hazelnut leaves were homogenized in liquid nitrogen in a cooled

mortar and pestle and transferred to a 2 ml tube before addition of

400 ml lysis buffer L. For bacterial DNA isolation: 100 mg of crushed

or cut leaf tissue was placed in 20 ml of PBS buffer, incubated for 1 h

at 26°C with shaking (150 rpm), pelleted by centrifugation (5 min at

12,000 × g), and then re-suspended in 100 ml Tris EDTA (TE) buffer.

Three labs participated in the specificity validation of the assays:

two assay development laboratories (Poland and Serbia) and one

assay testing laboratory (USA).

The reactions were conducted according to the protocols

established based on the optimization of all reagents and

temperature gradient analysis performed separately for each
Frontiers in Plant Science 05
primer pair. The amplification conditions for all the primers

pairs/sets are listed in Table 2.

Amplification reactions with the four selected primer pairs for

conventional PCR were conducted in a Biometra T3000

thermocycler (Biometra, Göttingen, Germany) in Poland, in a

Thermo Cycler 2720 (Applied Biosystems, USA) in Serbia, and a

Veriti 96-well Thermal Cycler 9902 (Applied Biosystems, USA) in

the USA. The total amplification reaction mixtures for primers in 15

ml of volume included: 10 to 15 ng of DNA, 0.4 U of DreamTaq

DNA Polymerase (ThermoFisherScientific, Waltham, MA, USA),

1× reaction DreamTaq Green buffer, 0.15 mM each dNTPs and 0.7

mM of each primer. The amplicons obtained in individual reactions

for each primer pair were separated in 1.5% agarose gels in 0.5×

TBE buffer (0.045 M Tris-boric acid, 0.001 M EDTA, pH 8.0)

(Sambrook et al., 1989). To confirm the size of the obtained product

O’GeneRuler100-bp DNA Ladder Plus (ThermoFisherScientific,

Waltham, MA, USA) was used. Gels were stained in an ethidium

bromide solution (0.5 mg ml-1) and obtained products were

visualized under UV irradiation.

SYBR® Green I qPCRs were conducted in a Bio-Rad CFX96

(Bio-Rad, Hercules, CA, USA) with SsoAdvanced™ Universal

SYBR® Green Supermix (Bio-Rad, Hercules, CA, USA) in Poland

or a Mic qPCR Cycler (Bio Molecular Systems, Australia) in Serbia.

The reaction mixture in 20 ml of total volume included 1× reaction

SYBR® Green Supermix and 0.5 mM of each primer from the

following primer sets: Xac2.4-2RT, Xac45-1RT, Xac45-2RT,

Xac2.43RT, and 10 ng of DNA. The PCR programs for all above-

listed primers are given in Table 3. The specificity of amplification

products was verified by a melting curve analysis using a progressive

denaturation of products at a rising temperature (Table 3). Specific

melting temperatures observed are indicated in Table 2.

The validation of the TaqMan™ qPCR was also done in Poland.

The sequence of probes and primers are indicated in Table 2.

Reactions were conducted in a Bio-Rad CFX96 (Bio-Rad, Hercules,

CA, USA) using the amplification conditions in Table 3. The

TaqMan™ qPCR assays were carried out in a 10 ml total reaction
mixture containing 1 ml of template DNA, 0.25 ml of primers Xac-

PPU54630-F and Xac-PPU54630-R (0.25 mM final concentration of

each), 0.15 ml of probe Xac-PPU54630-P (0.15 mM final

concentration), 1× TaqMan™ Fast Universal PCR Master Mix

(Applied Biosystems, USA).

Loop‐mediated isothermal amplifications were performed on a

Bio-Rad CFX96 (Bio-Rad, Hercules, CA, USA) in Poland. The

reactions mixture carried out in a total volume of 20 ml contained
1× Isothermal Mastermix (OptiGene, Horsham, UK) and primers at

the final concentrations as follows: outer primers F3/B3 0.2 mM each,

inner primers FIB/BIP 0.8 mM each and loop primers 0.4 mM each.

Fluorescence was detected on the FAM channel. The LAMP reaction

mixtures were run according to conditions detailed in Table 3.
2.6 Limits of detection of DNA- and crude
bacterial cell-based assays

The limits of detection (LoD) of all the DNA-template based

assays were tested with 10-fold dilutions series prepared in TE
frontiersin.org
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TABLE 2 Nucleotide sequences of specific primers developed in this study for the detection of Xanthomonas arboricola pv. corylina.

Assay target
or code name1

Primer
info2 Primer sequence 5’-3’

Amplicon
length3

(bp)

MCA
Tm

4

(°C)

Conventional PCR

Xac2.4-1
F CCGCCACCATTTAGTACACGAGGAG

794 NA
R GGAGCCCGCGGAGATAGTTGC

Xac2.4-4
F TAATTCCAACTCCCCAAGCGTATC

1,4555 NA
R AATGAATTGGAGTGGTTGTTTAGG

XacPPU-1
F TCCCAACACTAAGTCTTCAACATC

3856 NA
R GGTGCAGGTGGGAGGTGGTAAC

Xac45-1
F TTCCTCAATGCGGGCCAGTAATGTC

197 NA
R ATAGTGATAATGAGGTGGCAGTCG

Xac45
F CCAGTCTCACCCAACGTCAGA

198 NA
R TGTCGTGGAATCAACCTGATGTG

XacPPU54630
F CACCAGAAAAGCAGGGCCATAAC

159 NA
R GGCAATGGAAGGACGTCTAGG

qPCR SYBR® Green I

Xac2.4-2RT
F AGCAGGGCCATAACTTCTTG

170 81.5
R ATATACACCCCTTTTTGGATGG

Xac45-1RT
F CTTGCCCAGCCCCCAGTC

104 84.5
R TATGAACAACGTACCGCAGATG

Xac45-2RT
F AAGTGCTTGCAAATAATAAATC

88 81.5
R TGTCGTGGAATCAACCTG

Xac2.4-3RT
F GCCACCATTTAGTACACGAGGAGTTC

102 81.0
R TATTTCGGTAGAGCTAGTCGGTTGTC

qPCR TaqMan™

Xac-reg45

F CCAGTCTCACCCAACGTCAGA

198 NAR TGTCGTGGAATCAACCTGATGTG

P FAM-CATGATCATTCCTCAATGCG-BHQ-1

Xac-PPU54630

F CACCAGAAAAGCAGGGCCATAAC

159 NAR GGCAATGGAAGGACGTCTAGG

P FAM-TAATTAACCAAGCCATCGCC-BHQ-1

LAMP

XacPPU-1

F3 CGAAAAAAATAAGGAAACTTCACC

(214)7 84

B3 ATTCATAGCGCCACGATA

FIP GGATGGCAATGGAAGGACGTCACCCCCTATCTCCCTC

BIP TAGAAAAGAAAGAAAGCTATCCGCTAAATGAATTGGAGTGGTTGTT

LF AGGTTAGCCCTTCAGGTACTC

LB ACTAGGCTCATCTATTACCCTAGTT

(Continued)
F
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TABLE 3 Amplification conditions for the primers pairs/sets designed and used in this study.

Detection tool Assay target Reaction conditions

Conventional PCR

Xac2.4-1
95°C for 4 min,
30× (94°C for 35 s, 63°C for 45 s, 72°C for 1 min),
72°C for 10 min

Xac2.4-4
95°C for 4 min,
35× (94°C for 35 s, 58°C for 45 s, 72°C for 1 min),
72°C for 10 min

XacPPU-1
95°C for 4 min,
30× (94°C for 30 s, 61°C for 40 s, 72°C for 55 s),
72°C for 10 min

Xac45-1
95°C for 4 min,
30× (94°C for 25 s, 61°C for 35 s, 72°C for 50 s),
72°C for 7 min

Xac45
95°C for 2 min,
30× (94°C for 30 s, 53°C for 30 s, 68°C for 45 s),
68°C for 5 min

XacPPU54630
95°C for 2 min,
30× (95°C for 30 s, 53°C for 30 s, 68°C for 45 s),
68°C for 5 min

qPCR SYBR® Green I all primer pairs
98°C for 2 min,
35× (95°C for 10 s, 60°C for 20 s),
65→95°C with +0.01°C s-1

qPCR TaqMan™ all primer sets
95°C for 10 min,
40× (95°C for 10 s, 55°C for 40 s)

LAMP all primer sets
50× (63°C for 30 s),
65→95°C with +0.01°C s-1
F
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TABLE 2 Continued

Assay target
or code name1

Primer
info2 Primer sequence 5’-3’

Amplicon
length3

(bp)

MCA
Tm

4

(°C)

Xac2.4-1

F3 CGAAAAAAATAAGGAAACTTCACC

(214) 83.5

B3 ATTCATAGCGCCACGATA

FIP TACACCCCTTTTTGGATGGCAATCCCTATCTCCCTCATGAGTAC

BIP TAGAAAAGAAAGAAAGCTATCCGCTAAATGAATTGGAGTGGTTGTT

LF GAAGGACGTCTAGGTTAGCCCTTCA

LB ACTAGGCTCATCTATTACCCTAGTT

Xac2.4-2

F3 ATTCCTGAGGACTAGGCACT

(186) 87.5

B3 CTTTGAGACGCGCTGTCG

FIP TTGTGGTGAAGAACCGCCGTATCTGATCATCGAGGGACCCG

BIP GCAAGGAAACTCTGGCAACGGATGCGCTAGGCATATTTGGTG

LF GGAGGTGGTCTTTATAATGCTGG

LB AAAGTTTCAGCCGAGGCAAA
f

1Primer names begin with Xac45, Xac2.4, or XacPPU to indicate targeted genomic regions (target 45, region 2.4, or PPU54630, respectively) shown in Figure 1. RT at the end of the primer code
name stands for real-time.
2Primer information is abbreviated as follows, F, forward primer; R, reverse primer; P, probe; F3, forward outer primer; B3, backward outer primer; FIP, forward inner primer; BIP, backward
inner primer; LF, forward loop primer; LB, backward loop primer.
3Expected amplicon length based on the complete genome of X. arboricola pv. corylina CFBP 1159PT (GenBank accession number HG992341) and amplicon size commonly observed during in
vitro tests. Depending on the assay, a few strains produced an amplicon with a different size as indicated below in footnotes 5 and 6, and with more details in Supplementary Table S1.
4Specific melting temperature observed during melting curve analysis. NA, not applicable.
5A smaller amplicon of 900 bp was observed with one strain.
6Larger amplicons of 1,150 bp and 1,450 bp were observed with two strains.
7Parentheses indicate the predicted size (bp) of the region targeted by the F3 and B3 primers in LAMP assays.
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buffer using bacterial genomic DNA isolated from pure cultures of

CFBP 1159PT and Xac 301. The dilution series ranged from ~10 ng

ml-1 to 0.1 fg ml-1 based on the initial concentrations determined

with a NanoDrop ND-100 (ThermoFisherScientific, Waltham, MA,

USA). Additionally, bacterial genomic DNA was independently

extracted from pure bacterial cultures of these two same strains

using known bacterial concentrations ranging from ~108 to 100

CFU ml-1 as described in Kałużna et al. (2016).

For the crude bacterial cell-template based assays, 100 ml of
different concentrations of aqueous suspensions of strain Xac 301

were added to 100 mg of crushed/cut fragments of leaves or stems.

Then DNA was isolated from these ‘heterogeneous suspensions’

according to the methodology described by Kałużna et al. (2016).

For the PCR-based assays, the efficiency (E) was calculated from

the slope (S) of the standard curve generated for each run using the

following equation E = 10(−1/S) with E = 2 corresponding to 100%

efficiency (Ramakers et al., 2003).
2.7 Validation of assays on artificially and
naturally infected hazelnuts

To test the usefulness of designed primers, positive controls for

in planta detection were obtained from artificially inoculated

hazelnut cvs. ‘Cosford’ and ‘Merveille de Bollwiller’ (two samples

from each cultivar) maintained in a greenhouse, as well as from

naturally infected material obtained from orchards (two samples).

For artificial inoculation of the hazelnut cultivars, a 48-h culture of

Xac 301 grown on YNA medium was suspended in sterile water

(108 and 107 CFU ml-1) and infiltrated into hazelnut leaves with a

needleless syringe and/or injected into green shoots using a

hypodermic needle (0.7×30mm) attached to a syringe. Four to six

weeks post-inoculation, symptomatic plant tissue was harvested.

Leaf samples were rubbed for 10 s on both sides with a cotton-swab

soaked in 70% ethanol. A sample consisting of three 1-cm2

segments including the lesion border was collected, crushed, and

suspended in 1 to 2 ml sterile PBS for 15 min. We then tested two

DNA extraction methods on the tissue macerate. In the first one, 10

ml of the plant macerate was added to 190 ml of TE buffer, boiled for

10 min at 100°C, and then centrifuged for 5 min at 9,500 × g. In the

second approach, 10 ml of the plant macerate was added to 90 ml of
TE buffer and total DNA was isolated using the Genomic Mini

DNA Extraction Kit (A&A Biotechnology Gdynia, Poland)

according to the manufacturer’s instructions. The boiled extract

and purified DNA extract were used as templates in molecular

assays. To confirm the infection by Xac, especially from naturally

infected plant material, bacterial colony isolation was done

simultaneously by plating on YNA medium.
3 Results

3.1 Genome-informed Xac-specific targets

The in silico analysis resulted in the detection of a highly

conserved, Xac-specific sequence of 300 bp called “target 45” that
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had no hit with other bacteria in the database. A 2,440 bp genomic

region called “region 2.4” encompassing “target 45” was identified

after performing the comparative genomic analysis of target 45 in

the six Xac whole genomes available (Figure 1). Region 2.4 located

on the chromosome corresponds to an insertion in Xac that was not

present in other X. arboricola pathovars, such as pv. arracaciae

(Figure 1). The annotations for this region varied slightly between

the different Xac genomes, but the region contains between two and

three singletons that encode hypothetical proteins. A 494 bp

singleton located within “region 2.4” in Xac CFBP 1159PT

(locus_tag XaxcyCFBP1159_22010) and annotated as encoding

the hypothetical protein PPU54630 was used for the further

development of Xac-specific assays.
3.2 Candidate primer sets and Xac
assays development

Out of the candidate primer sets designed for all three detection

techniques, a few sets were discarded from further analysis due to

the presence of non-specific products that persisted, even after

adjusting annealing temperatures. After initial laboratory testing,

we focused on validation and testing of six primer pairs for

conventional PCR, four primer pairs for qPCR with SYBR®

Green I, two primer pairs for TaqMan™ qPCR, and three primer

pairs for LAMP. The sequences of these primer sets are reported in

Table 2. A primer BLASTn analysis of selected primers showed no

full similarity to any sequences of bacterial plant pathogens in

GenBank in July 2019. This in silico result was also confirmed on 15

May 2023 with a final primer check performed in the course of

writing this article.
3.3 Primers specificity for Xac in
conventional, qPCR and LAMP in vitro and
in planta

The genomic DNA of the 60 Xac strains was selectively

amplified with all the primers developed for the different assays.

No amplification was observed for the bacterial and fungal genomic

DNA not belonging to the Xac pathovar (Table 1). Similarly, no

amplification was observed with DNA templates obtained from

clean, asymptomatic leaves offive hazelnut cultivars using two DNA

extraction kits.

The PCR assays using primers designed for conventional PCR

gave amplicons ranging from 197 bp to 1,455 bp depending on the

primer pairs used (Table 2, Supplementary Table S1). The six

primer sets designed for conventional PCR generated a single

amplicon of the size predicted by genome analyses for nearly all

the 60 strains of Xac evaluated (Table 1). Although, during

validation of conventional PCR reactions on the JL26xx strains of

Xac collected in Oregon, amplicons with an unexpected size were

observed with Xac strain JL2600 with primers Xac2.4-4 and

XacPPU-1. For Xac strain JL2600, the amplicon observed for

primer pair for Xac2.4-4 was 1,166 bp instead of 1,455 bp and the

amplicon for the primer pair for XacPPU-1 was 1,450 bp instead of
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390 bp. The other conventional PCR primer pairs generated the

predicted amplicon size for Xac strain JL2600. Conventional PCR

reactions for all the other Xac strains in the JL26xx series

(Supplementary Table S1) returned the expected amplicon size

for each of the primer pairs.

In the SYBR® Green I qPCR assays, DNA from the Xac strains

resulted in a positive reaction. However, non-specific, false-positive

results after 28 cycles for a few bacteria not belonging to the

Xanthomonas genus were observed when using the primers

Xac45-1. Nonetheless, these non-specific amplicons were excluded

based on the results of melting curve analysis i.e., having different

melting temperature than the target product. The amplicons ranged

from 88 bp to 170 bp and melting curve analysis performed on these

specific products revealed a single peak characteristic of their

already introduced line 492 Tm as reported in Table 2.

In the TaqMan™ qPCR, two primer sets designed resulted in a

positive reaction for the tested DNA from the Xac strains tested

(Table 1, Supplementary Table S1) and no product were observed in

case of testing of bacterial and fungal genomic DNA not belonging

to the Xac pathovar nor DNA templates obtained from clean,

asymptomatic leaves of five hazelnut cultivars.

In the LAMP assays, DNA of the Xac strains gave a positive

reaction as expected and no amplification was observed with DNA

of other isolates. The Tm of products amplified using the LAMP

primers are provided in Table 2.

Specificity, sensitivity, and efficiency of the Xanthomonas

arboricola pv. corylina specific assays based on the organisms

evaluated in this study are reported in Table 4.

The LAMP and both qPCR assays confirmed identity of verified

Xac strains. Results for LAMP and qPCR platforms were obtained

in less than 1 h.
3.4 Limits of detection of DNA- and crude
bacterial cell-based assays

The sensitivity and detection limit of the Xac target DNA varies

not only between the detection systems developed but also

depending on the primer sets used. For four primer pairs

designed for conventional PCR, 100 fg of genomic DNA

generated a visible amplicon with primer pairs Xac2.4-4, and

XacPPU-1; ~1 pg genomic DNA for primer pair Xac2.4-1; and 10

pg was detected with primer set Xac45-1. When crude, boiled

bacterial cell templates were tested, the LoD was 1.8 × 101 CFU

per reaction for Xac2.4-1 and XacPPU-1 primer sets, 1.8 × 100 CFU

per reaction for Xac2.4-4 primer sets, 1.8 × 102 CFU per reaction for

XacPPU54630 primer sets, and 1.8 × 103 CFU per reaction for

Xac45-1 primer sets.

The LoD was lowered by 101 when using the primer pairs

Xac2.4-1, Xac2.4-4, and XacPPU-1 to detect Xac in plant tissue

macerates that contained the pathogen; for the primer pairs

XacPPU54630 and Xac45-1 the LoD remained the same with or

without plant tissues.

Among qPCR primers designed for SYBR® Green I, two primer

sets (Xac2.4-3RT and Xac45-1RT) detected 1 fg of Xac genomic

DNA (Figure 2), however the two other primer sets (Xac2.4-2RT
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and Xac45-2RT) detected about 10 fg of Xac genomic DNA. When

crude boiled bacterial templates were tested, the limit of detection

was 1 × 100 CFU per reaction. The same decrease of sensitivity as

noticed for conventional PCR (lowered by 101) for boiled bacterial

preparations and in combinations of plant tissues and bacteria.

Parameters of the four qPCR SYBR® Green I assays are reported

in Table 5.

For TaqMan™ qPCR, the primer sets Xac-reg45 and Xac-

PPU54630 detected 80 and 8 pg of Xac genomic DNA,

respectively. When crude boiled bacterial templates were tested,

the limit of detection was 2 × 101 CFU per reaction for primer set

Xac-PPU54630 and 2 × 103 CFU per reaction for primer set

Xac-reg45.

When determining the sensitivity of LAMP primers, we detected

1 pg of purified genomic DNA from Xac isolates. When boiled

bacterial cell templates were tested, the LoD was 1 × 100 CFU per

reaction for the XacPPU-1 primer set and 1 × 101 CFU per reaction

for the Xac2.4-1 and Xac2.4-2 primer sets. In purified DNA isolated

from plant material combined with bacteria, the LoD was 1 × 103

CFU per reaction for all the primers tested.
3.5 Performance of the different detection
tools on tissues from artificially inoculated
and naturally infected hazelnuts

The detection of Xac in artificially inoculated plant material was

done with four conventional primer sets (Xac2.4-1, Xac2.4-4,

XacPPU-1 and Xac45-1), all SYBR® Green I qPCR (n = 4) and

all LAMP primer sets (n = 3). All the primer sets used in the

different platforms returned positive results for detection of Xac

when the DNA was isolated using the kit procedure. Nonetheless,

when the volume of the template of purified genomic DNA (µl or

concentration per reaction) significantly increased, detection was

decreased. Correspondingly, a one-tenth dilution of the purified

genomic DNA template added to plant tissues allowed for

consistent detection of Xac.

With all four conventional PCR primer sets, Xacwas not detected

when the assays were performed on DNA templates obtained via the

boiling procedure of plant macerate (plants artificially or naturally

infected). Because this was not the case with templates consisting of

purified genomic DNA, we suspect that the boiling procedure did not

eliminate possible plant inhibitors. The assays also remained negative

when a tenfold dilution of the extracts was tested. For the SYBR®

Green I qPCR primer sets, Xac was detected in DNA isolated with

both procedures independent of the template DNA concentration.

With the LAMP XacPPU-1, Xac2.4-1 and Xac2.4-2 primer sets, Xac

was always detected with purified genomic DNA preparations. In

case of DNA extracted by boiling, templates with only 0.5 and 1 µl of

undiluted extract was detected.
4 Discussion

Based on a comparative genomics approach using five publicly

available Xac genomes (Ibarra Caballero et al., 2013; Merda et al.,
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2017; Pothier et al., 2022) and several bacterial genomes from NCBI

GenBank, we successfully identified unique DNA targets and

designed highly specific tools capable of identifying Xac in pure

culture and culture-independent in planta detection. We developed

four different systems for conventional PCR and qPCR, as well as a

LAMP protocol for the rapid and specific detection of Xac. This

ensures a wide application of the developed detection methods,

depending on the equipment or preferences of scientists,

diagnosticians, inspectors, and producers. In addition, these

methods offer an advantage over conventional testing as bacteria

do not need to be cultured prior to detection (Palacio-Bielsa et al.,

2009). This could prove especially useful in the context of screening

nursery material for latent infections, which would otherwise go

undetected and become a source of primary infection in the field.

For regions where new hazelnut acreage is rapidly increasing, such

as Serbia and Chile (Lamichhane et al., 2012; Obradović et al.,

2010), disease-free planting material is a critical first step to keep

Xac disease pressure low.

Historically, hazelnut bacterial blight diagnostics have relied

upon a combination of classical microbiology, serology, and

molecular techniques (Schaad et al., 2001; OEPP/EPPO, 2004;

Pothier et al., 2011a; Prokić et al., 2012; Kałużna et al., 2021).

While recommended by EPPO, these methods are time consuming

and risk misdiagnosis (Prokić et al., 2012). Moreover, none of them

provide a LoD. For example, the biochemical features of Polish

strains differ from those described in the EPPO standard. As a

result, the recommended phenotype testing methods are not

applicable to strains from the Polish climatic zone (Puławska et al.,

2010). Similar issues have emerged when conducting the

recommended procedure of sequencing housekeeping genes to

identify pathovars within X. arboricola. The multilocus sequence

analysis within this species showed that using a restricted number of
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housekeeping gene loci did not have sufficient discriminatory power

to differentiate isolates of Xaj and Xac into unique groupings.

Moreover, the use of partial gyrB sequences alone cannot

discriminate Xaj and Xac from Xap (Kałużna et al., 2014; Fischer-

Le Saux et al., 2015; Webber et al., 2020). The molecular tools

reported herein overcome these sub-species diagnostic shortcomings.

The success of our work is based on comparing the genomes of

all X. arboricola pathovars and related Xanthomonas species (Zarei

et al., 2022), which allowed for the selection of a highly specific

regions for Xac. The specificity of the region identified within the six

genomes used for in silico development (three WGS and three

complete genomes from five Xac strains) also was confirmed when

tested with BLASTn analysis against three additional complete Xac

genomes released after our assay development (namely: A7,

assembly ASM1814170v1; IVIA 3978, assembly ASM2337497v1;

CFBP 1846, assembly ASM2337499v1; data not shown). The

success of our approach likely benefitted from the large number

of genomes available for the X. arboricola species (about 100

genomes at the time of in silico development) thus allowing the

development of assays at a sub-species level. The designed

diagnostic tools allowed the detection of Xac genotypes from

different worldwide geographical origins. A total of 60 Xac strains

originating from eight countries in two continents and collected

over 20 different years spanning the period 1939-2020 was tested

successfully. The only exception was a result for the conventional

PCR primer set Xac2.4-4 and XacPPU-1 when screening a set of

Xac isolates from the United States. Xac isolate JL2600 amplified

successfully, which indicates a Xac positive result, but the resulting

amplicon was larger than expected. This result is particularly

surprising because the dendrogram constructed using the

concatenated partial sequences of rpoD and gyrB (Webber et al.,

2020), had strain JL2600 clustered together with strain JL2606, an
TABLE 4 Specificity, sensitivity, and efficiency of the Xanthomonas arboricola pv. corylina specific assays based on the organisms evaluated in this
study.
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isolate for which the expected amplicon size was obtained. All other

Xac strains (e.g., JL2610) belonging to the other Xac cluster

described in the work by Webber et al. (2020) gave the expected

amplicon size. This result reaffirms that validation testing of a

comprehensive collection of strains, preferentially in different

laboratories, is very important when developing novel

identification and detection systems. Importantly, Xac specificity

was confirmed by all detection assays and none of the non-

X. arboricola pathovars tested returned a positive amplicon,

which has happened in previous studies (Palacio-Bielsa et al.,

2011; Pothier et al., 2011a; Fernandes et al., 2017). Also, none of

the genomic DNA of Pseudomonas, other plant pathogenic and

nonpathogenic bacteria, or fungi isolated from hazelnut and walnut

gave a positive signal in the assays. In addition, no amplification was

observed from DNA isolated from asymptomatic plants of different

C. avellana cultivars, which means that the designed primers did

not react with the hazelnut genome or its microbiota.

The methods and tools developed here can be applied for

specific, reliable detection of Xac in infected plant material. Not

having to first isolate and purify the pathogen significantly shortens

the time required for diagnosis. All methods presented in this study

allow for direct amplification of Xac DNA present in plant material.
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However, we observed that direct detection of DNA templates

extracted by boiling can give false negative results, most likely due

to the presence of inhibitory compounds. This phenomenon has

already been observed with culture-independent detection of other

pathogens in planta (De Boer et al., 1995; López et al., 2009; Palacio-

Bielsa et al., 2009; Gétaz et al., 2017) and did not occur with the

qPCR assays. The use of a DNA extraction kit eliminated putative

DNA polymerase inhibitors and supports the finding of López et al.

(2009) that the purification methods used should be evaluated for

each combination of tested pathogen and plant before establishing

and recommending the procedure for routine detection. Therefore,

a DNA extraction kit is recommended for detection of Xac DNA in

hazelnut tissues.

The LoD of the different assays was satisfactory for all the

primer sets and allowed detection of between 1 pg to 10 fg per

reaction or 1 × 100 to 1 × 103 CFU per reaction, with the highest

sensitivity obtained for qPCRs. The qPCR procedure turned out to

be the fastest of the protocols developed, with the whole reaction

and melting curve analysis taking about 1 hour. The high sensitivity

of these assays is especially important in the case of naturally

infected plant material with low populations of the pathogen.

LoD values, similar to the ones obtained in this study were
BA

FIGURE 2

Determination of the limit of detection (LoD) of the Xanthomonas arboricola pv. corylina (Xac) qPCR SYBR® Green I assay (A) and standard curve (B).
The representative amplifications were obtained with the Xac2.4-3RT SYBR® Green I assay using 10-fold dilutions (three technical replicates) of
genomic DNA of known concentrations isolated from pure cultures of strain Xac 301. The efficacy reaction E, coefficient of determination (R2), slope
and regression curve equations (y) were evaluated using the CFX Manager Software v.3.1 (Bio-Rad, Hercules, CA, USA).
TABLE 5 Parameters of the four qPCR SYBR® Green I assays evaluated through the analysis of standard curves generated with serial dilutions of
genomic DNA extracts from X. arboricola pv. corylina CFBP 1159PT and Xac 301 as templates.

qPCR code name E (%)1 R22

S3 Y = int4

Xac2.4-2RT 101.9 0.996 -3.276 35.671

Xac45-1RT 102.6 0.991 -3.261 36.210

Xac45-1RT 99.7 0.998 -3.330 36.915

Xac2.4-3RT 99.5 0.999 -3.333 36.166
1E stands for PCR efficiency.
2R2 is a measure of data linearity among technical replicates (n = 3) of serial dilutions.
3The slope (S) of the log–linear phase of the amplification reaction is a measure of reaction efficiency.
4Y = int represents the cycle threshold (Ct) value where the curve crosses the y-axis.
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observed previously during the development of detection methods

for other X. arboricola pathovars (Palacio-Bielsa et al., 2011; Pothier

et al., 2011a; Fernandes et al., 2017), as well as for diagnostics of

other plant pathogenic bacteria from other species or genus, e.g.,

Pseudomonas morsprunorum race 1 and 2 (Kałużna et al., 2016),

P. syringae pv. actinidiae (Gallelli et al., 2014), X. campestris pv.

campestris (Eichmeier et al., 2019).

The Xac detection systems developed allow for quick and

reliable determination of host plant infection without the

requirement for isolation of the bacterial pathogen. These assays

also can be used to improve our knowledge of this pathogen, such as

exploration of other host plants and natural reservoir(s). Even in the

presence of potential plant inhibitors, the sensitivity of the assays

remained high and sample-to-result times ranged from 5 to 6 hours

for conventional PCR down to 1 to 2 hours for qPCR and LAMP

assays. So far, this group of molecular assays is the first such

methods available for rapid detection of the Xac pathogen directly

from plant material.
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