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Tomato disease object detection
method combining prior
knowledge attention mechanism
and multiscale features

Jun Liu* and Xuewei Wang*

Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science
and Technology, Weifang, China
To address the challenges of insufficient accuracy in detecting tomato disease

object detection caused by dense target distributions, large-scale variations, and

poor feature information of small objects in complex backgrounds, this study

proposes the tomato disease object detection method that integrates prior

knowledge attention mechanism and multi-scale features (PKAMMF). Firstly,

the visual features of tomato disease images are fused with prior knowledge

through the prior knowledge attention mechanism to obtain enhanced visual

features corresponding to tomato diseases. Secondly, a new feature fusion layer

is constructed in the Neck section to reduce feature loss. Furthermore, a

specialized prediction layer specifically designed to improve the model’s ability

to detect small targets is incorporated. Finally, a new loss function known as A-

SIOU (Adaptive Structured IoU) is employed to optimize the performance of the

model in terms of bounding box regression. The experimental results on the self-

built tomato disease dataset demonstrate the effectiveness of the proposed

approach, and it achieves a mean average precision (mAP) of 91.96%, which is a

3.86% improvement compared to baseline methods. The results show significant

improvements in the detection performance of multi-scale tomato

disease objects.

KEYWORDS

complex background, tomato diseases, prior knowledge, attention mechanism, multi-
scale features, object detection
1 Introduction

Due to the ongoing expansion of tomato cultivation areas and limited arable land, a

growing contradiction has emerged between the two. As a result, consecutive cropping

of tomatoes has become prevalent, resulting in an increase in the variety and complexity of

tomato diseases. According to relevant studies, there are currently more than thirty types of

fungal diseases alone affecting tomatoes worldwide (Widjaja et al., 2022). In China, there

are several prevalent and influential tomato diseases that significantly impact tomato

cultivation. These include early blight, late blight, bacterial spot, gray leaf spot, gray mold,
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leaf mold, yellow leaf curl virus, mosaic virus, canker, and

anthracnose (Liu and Wang, 2020).

Tomato diseases have become a prominent issue in China,

leading to a reduction in yield of approximately 10%. In areas

severely impacted by these diseases, complete crop failure has been

observed (Thangaraj et al., 2022). Tomato diseases not only result in

a reduction in tomato yield but also pose risks to storage and

transportation due to the contamination of infected fruits. As a

result, the efficient diagnosis and control of tomato diseases have

emerged as critical concerns in tomato production.

During the early stages of tomato diseases, farmers often neglect

to assess and manage these diseases due to their unclear symptoms.

This oversight frequently results in missing the optimal period for

disease prevention and control. As the tomato diseases progress and

become severe, the application of a large amount of fungicides

proves to be ineffective. Another group of farmers faces challenges

in assessing whether their tomatoes are infected and lacks the ability

to distinguish the severity of the diseases. Consequently, they resort

to extensively using fungicides for disease prevention and control.

Unfortunately, prolonged implementation of such practices leads to

the excessive use of fungicides, posing risks to environmental safety

and human health (Moussafir et al., 2022). Therefore, there is an

increasing demand for timely and effective identification, detection,

and precise application of treatments for tomato diseases, making it

a prominent research topic in recent years.

Through the long-term collaborative efforts of agricultural and

plant protection scholars, notable advancements have been made in

the domain of tomato disease control and prevention in China.

Commonly employed methods include empirical analysis based on

observable symptoms and physicochemical analysis. However,

when it comes to large-scale detection, the limited number of

experts hinders their ability to provide real-time monitoring of

tomato diseases across the entire production line. Additionally,

expert judgments may be swayed by various influential elements,

including weather conditions and theoretical knowledge, making it

challenging to timely and accurately assess the occurrence of tomato

diseases in actual production. Moreover, the physicochemical

analysis of tomato diseases requires a significant number of

specialized technicians, is time-consuming, and poses the risk of

secondary transmission of diseases due to human activities.

Consequently, there is an urgent need to explore and develop

rapid, accurate, non-destructive, and environmentally-friendly

methods for detecting tomato diseases, which has become a key

research focus.

The development of modern computer technology has led to

increasingly refined applications of new artificial intelligence

information in agriculture. Over the course of more than 30 years

of progress in artificial intelligence, intelligent diagnosis has been

implemented in various aspects of crop cultivation management,

plant protection, crop breeding, and agricultural planting decisions

(Misra et al., 2020). These advancements have greatly enhanced the

efficiency and accuracy of agricultural practices. Additionally, the

integration of artificial intelligence and image recognition enables

rapid, accurate, and non-destructive identification and diagnosis of

diseases. Image detection primarily relies on cameras and other

devices to capture information on crop diseases, thereby reducing
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the need for human observation (Mohammad-Razdari et al., 2022).

By leveraging digital image processing, healthy and diseased crops

can be identified and classified accurately.

However, there is still significant room for improvement in the

actual tomato disease detection process, as the current detection

accuracy and algorithm processing speed do not meet the

requirements of real-world farming scenarios (David et al., 2021)

(Karthik et al., 2020). Several challenges contribute to this

limitation. Firstly, there is an imbalance in the number of samples

available for different tomato diseases (Abbas et al., 2021). This

scarcity of samples makes it difficult to obtain an adequate

representation of various diseases, which in turn hampers model

training and severely restricts the learning capacity of deep learning

models. Secondly, tomato disease detection possesses unique

characteristics. The natural background of tomato diseases is

complex and diverse, and different types of diseases exhibit

distinct characteristics (Gonzalez-Huitron et al., 2021). Even with

a sufficient number of tomato disease samples, relying solely on

visual features makes accurate identification challenging (Huang

et al., 2023). In contrast, humans possess the ability to quickly learn

and assimilate new knowledge based on their accumulated

experiences, which is referred to as prior knowledge. This

suggests that incorporating prior knowledge of tomato diseases

into tomato disease detection is essential to enhance learning

efficiency (Diligenti et al., 2017). Therefore, it is crucial to

integrate deep learning models with prior knowledge in the field

of tomato disease detection in order to overcome these challenges.

Applying existing deep learning models directly to tomato

disease detection tasks makes it challenging to accurately

differentiate the distinctive features of different diseases. This

limitation often leads to a significant number of misclassifications

or omissions. Consequently, the integration of deep learning

models with prior knowledge and the improvement of tomato

disease detection accuracy through a collaborative “data model

knowledge” approach have become common challenges faced by

both the agricultural and academic communities. To address the

lack of explicit expression of objective prior knowledge in deep

learning models and the imbalanced distribution of disease samples,

this research aims to combine deep learning models with disease

prior knowledge. The study focuses on tomato diseases occurring in

complex backgrounds, considering the complexity of tomato

disease data and utilizing prior knowledge. As a result, a tomato

disease object detection method that integrates a prior knowledge

attention mechanism and multi-scale features is proposed.
2 Related work

2.1 Object detection

Object detection technology encompasses multi-object

classification and localization as its primary tasks. It is not only

responsible for determining whether the detection area contains

target objects but also for marking these targets with bounding

boxes. Over the past few years, the remarkable and swift progress in

the field of computer technology has been noteworthy, coupled with
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advancements in convolutional neural networks, has significantly

propelled object detection technology forward. As a result, it has

found extensive applications in diverse fields including traffic

monitoring and tracking, video surveillance and security alert

systems, drone scene analysis, and robotic vision (Zou et al., 2023).

Object detection technology can be categorized into traditional

approaches and those based on deep learning. Traditional

approaches are founded upon the dependence of manual feature

extraction and conventional classifiers for object classification.

However, they are plagued by problems like weak feature

representation, suboptimal accuracy and inadequate real-time

performance. In contrast, the rapid growth of big data and

computing hardware has led to the widespread adoption and

acceptance of deep learning in the field of object detection. It

excels in feature extraction, which brings notable benefits such as

enhanced detection accuracy and accelerated processing speed. As a

result, it is gradually emerging as the dominant technology in the

field of computer vision (Zhao et al., 2019). This technology has

shown great potential in various applications, including tomato

disease detection, where accurate and efficient identification of

diseases is crucial for effective disease management in agriculture.
2.2 Plant disease object detection method
in laboratory environment

Zhang et al. (2020) developed an enhanced iteration of the

Faster-RCNN algorithm, specifically tailored for the identification

of healthy tomato leaves and the detection of four different diseases.

Instead of using VGG16, they utilized ResNet101 as the feature

extractor. The experimental findings substantiated that the

enhanced detection approach yielded a 2.71% increase in

accuracy, while also providing faster detection speed. Wang et al.

(2021) conducted experiments using the PlantVillage dataset and

found that the DBA_SSD algorithm outperformed other object

detection algorithms. However, It is important to highlight that the

images employed in these studies was primarily captured in

controlled laboratory environments. In such environments, the

samples benefitted from sufficient lighting, simple and uniform

backgrounds, and carefully controlled shooting angles. Moreover,

agricultural experts screened and annotated the samples, resulting

in more distinct disease features. In contrast, images collected in

natural environments are significantly more complex. Various

uncontrollable factors such as environmental location, weather

conditions, and shooting angles pose challenges, including uneven

lighting, shadow occlusion, overlapping leaves, and complex

backgrounds (Liu and Wang, 2021). Consequently, object

detection models trained solely under laboratory conditions are

inadequate for real-world natural environments and fail to fully

meet the production needs of farmers. The performance of these

models can be affected by various factors such as lighting

conditions, variations in plant appearance, and diverse

backgrounds in the field. Therefore, it is crucial to train object

detection models using datasets that encompass a wide range of

real-world scenarios, including different weather conditions, growth

stages, and farming practices.
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2.3 Object detection method for plant
diseases in real natural environments

In real natural environments, the complexity of the image

sample backgrounds adds to the difficulty of the detection task.

Training an effective deep learning model for disease object

detection necessitates a substantial amount of data. Consequently,

this task has garnered considerable attention and become a

significant challenge in current research endeavors.

Fuentes et al. (2017) conducted fine-tuning of classical models

using transfer learning on a self-built dataset of tomato diseases.

After thorough analysis, they selected R-FCN with ResNet-50. This

particular configuration achieved an impressive average precision

(AP) of 85.98% and effectively recognized nine different diseases. In

their study, Xu et al. (2022) presented a real-time technique for

detecting diseases on cucumber leaves. In order to boost the model’s

performance, channel pruning was utilized to trim and fine-tune a

sparsely trained model, and the pruned YOLO v5s+Shuffle model

was then deployed on the Jetson Nano platform, achieving a

remarkable mean average precision (mAP) of 96.7%. Zhang et al.

(2021) developed a multi-feature fusion Faster R-CNN to accurately

detect diseases on soybean leaves. Their approach yielded a best

average precision of 83.34%, showcasing the effectiveness of their

design. Chen et al. (2022) developed an improved plant disease

identification model based on the original YOLOv5 network model

with an average accuracy of 70%. Roy et al. (2022) put forward an

exceptional-performance framework for real-time detection of fine-

grained objects. Their framework achieved successful detection of

diseases across diverse and challenging environmental conditions.

Taking inspiration from attention mechanisms (Vaswani et al.,

2017), some research studies have enhanced feature extraction by

incorporating attention mechanisms. For example, Qi et al. (2022)

put forward an enhanced network model, SE-YOLOv5 for the

identification of tomato virus diseases, which resulted in an

average precision (mAP) of 94.10%. In another study, Guo et al.

(2022) presented a CST model based on the Swin Transformer. This

model employed a novel convolution design and achieved

accuracies of 0.909 and 0.922. Furthermore, Thai et al. (2023)

introduced FormerLeaf. Their contribution was the proposal of

attention pruning. This algorithm achieved a reduction in model

size by 28%, an evaluation speed acceleration by 15%, and an

approximate 3% improvement in accuracy.

Furthermore, the contextual information captured during the

recording of plant disease images contributes to more accurate

category classification by the model. Wang et al. (2020) introduced

a context-aware attention model which encodes various types of

information, such as image context, geographical information, time

information, and environmental information, into image

annotations. They utilized a multi-task learning architecture with

CNN models for each task to extract features related to pest coarse

classification, geography, time, and environment. This algorithm

surpasses traditional image feature extraction by incorporating

external environmental factors like geography, time, and

environment into the process. By extracting features relevant to

pest habitat, it explores the possibility of integrating a wide range of

environmental information into CNN for feature representation.
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Zhao et al. (2020) developed the Multi-Context Fusion Network

(MCFN), which leverages contextual features extracted from image

sensors as prior knowledge. This introduction resulted in highly

accurate predictions of crop diseases. Cheng et al. (2023) proposed a

Position Attention Block that effectively extracts positional

information from feature maps and constructs attention maps to

bolster the feature extraction ability. These efforts aim to enhance

the performance and applicability of disease object detection

models in real-world agricultural settings.
2.4 Technical challenges of plant disease
detection methods

Compared to earlier studies on plant disease detection

algorithms, the methods mentioned above have significantly

improved detection performance. However, they still encounter

various obstacles that pose challenges to accurate detection. These

challenges include four categories (Figure 1). One of them is intra-

class variation, where different instances of the same disease may

exhibit variations in appearance and symptoms. Inter-class

resemblances refer to cases where different diseases or healthy

plants may share similar visual characteristics, leading to

misclassification. Complications arising from low resolution

images can make it difficult to discern fine details and accurately

identify diseases. Additionally, occlusion and overlap of plant parts

or other objects in the image can further hinder detection accuracy.

It is crucial for researchers to address these challenges through

advanced techniques such as data augmentation, model

optimization, and incorporating contextual information to

improve the robustness and reliability of plant disease detection

algorithms (Thakur et al., 2022). Figure 1 illustrates these

challenges visually.

To tackle the aforementioned concerns, this study proposes a

method for detecting objects related to diseases in tomato plants

called PKAMMF. This method integrates a prior knowledge

attention mechanism and incorporates features at different scales

to tackle the obstacles of dense distribution of tomato disease

objects in complex backgrounds, a broad spectrum of scale
Frontiers in Plant Science 04
variations, and lack of feature information for small objects. By

combining the prior knowledge attention mechanism and multi-

scale features, PKAMMF aims to improve the performance of

detecting tomato disease objects.

This study makes significant contributions in the

following aspects:
(1) A backbone network was proposed, which integrates a prior

knowledge attention mechanism to improve the capability

of extracting features and improve model stability during

training on large-scale datasets.

(2) The Rep Conv convolutional layer was reparameterized in a

structured manner to construct the SPPCSPF module,

reducing computational and memory costs during model

training.

(3) A parallel multi-branch feature fusion network was

established to minimize the loss of effective information

in feature maps. Additionally, to enhance the capability of

detecting small objects across multiple scales, an additional

layer specifically designed for small object detection was

incorporated.
(4) A novel A-SIOU loss function was employed to refine and

improve bounding box regression, resulting in accelerated model

convergence and improved training accuracy. Experiments were

carried out to evaluate the effectiveness of the proposed approach

using a self-built dataset of tomato disease. The findings indicate

that the proposed method surpasses the performance of

mainstream algorithms in tomato disease object detection tasks

with complex backgrounds.
3 Methods

Because of the intricate background conditions of tomato

disease images, where the background occupies a large portion of

the image while the diseased area to be detected is often small, it is

necessary to use a network structure with the ability to globally

model the complex nature of the background. Therefore, this study
A B DC

FIGURE 1

Various obstacles of plant disease detection task (A) intra-class discrepancies; (B) inter-class resemblances; (C) complications arising from low
resolution; (D) occlusion overlap).
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proposes a tomato disease object detection method that combines

prior knowledge attention mechanism and multi-scale features. The

specific improvements are described as follows:
3.1 Prior knowledge attention
mechanism module

To improve disease detection and recognition, it is necessary to

incorporate geographical location information, environmental

parameters, and time information of tomato disease images. This

is due to the inconsistent types of tomato diseases, occurrence time,

surrounding environment, and geographical conditions. In this

study, we propose a PKAM module that integrates the prior

knowledge attention mechanism to enhance the capability of

extracting target features in complex backgrounds. The

framework of the PKAM module is illustrated in Figure 2.

Firstly, to encode the prior knowledge of tomato disease, we

utilize the Bert model (Devlin et al., 2018). The Bert model,

introduced by Google in 2018, is a language model built on a

transformer encoder structure. It is specifically designed for

encoding language information. In our case, the Bert model is

employed to encode the prior knowledge of tomato diseases. By

inputting the prior knowledge text information, the model

generates an encoded prior knowledge vector K (C, T), where C

denotes the maximum text length of the prior knowledge and T

denotes the vector dimension. The default value for T is set at 100.

Furthermore, to handle the diverse perspectives of tomato

disease images, we utilize convolutional kernels of various sizes

(1×1, 3×3, 5×5) to extract features from the input visual features

IVF (C, H, W). These convolutional kernels capture different spatial

information at different scales. Afterwards, the features obtained at

different scales are concatenated and merged to obtain the visual

feature VF (CH, H, W). Additionally, we treat the obtained visual
Frontiers in Plant Science 05
feature VF as the query Q, the input knowledge feature IKF as the

key K and value V, and employ scaled dot-product attention to

calculate the output feature map G (H, W, C). The calculation

formula for this attention mechanism can be expressed as follows:

Attention(Q,K ,V) = Softmax
Q,KTffiffiffi

d
p

� �
V (1)

In the above-mentioned formular, d denotes the dimension of

the vectors Q and K.

Then, the fundamental concept behind the prior knowledge

embedding strategy is to integrate visual information with prior

knowledge through the attention mechanism. By combining the

encoded knowledge features with the visual features corresponding

to the input image, we achieve enhanced visual features that

incorporate prior knowledge about tomato diseases. The output

feature map G is multiplied by the visual features VF, resulting in

the final enhanced visual features E-V (C, H, W) that are embedded

with prior knowledge about tomato diseases.

In the end, the advantageous enhanced visual features EV

resulting from the fusion process will be learned by the PKAM

module in the subsequent encoding stage, thereby producing an

output vector embedded with prior knowledge of tomato diseases.

Here, C and C1 represent the channel count in the feature maps,

while H and W denote the height and width of the feature

maps, respectively.
3.2 SPPCSPF module with
structural reparameterization

This research has developed the SPPCSPF module to reduce

memory access costs and improve model training efficiency. The

module employs structurally reparameterized RepConv convolutional

layers in place of regular convolutional layers within the residual
IVF (C, H, W)

Conv 1×1 Conv 3×3 Conv 5×5

Concat

Conv 1×1

Conv 1×1VF (C, HW)
 (HW, C)  (HW, T)

Softmax
 (HW, T)

Conv 1×1

EV (C, H, W)

Conv 1×1 Conv 1×1

IKF (C, T)

(C, T) (C, T)

(T, C)

G (H, W, C)

Element wise multiplication matrix multiplication

FIGURE 2

Framework of PKAM module.
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structure. In training, a multi-branch residual structure is used for

feature extraction. Additionally, during inference, the convolutional

layers are merged with BN (Batch Normalization) layers, and the three

branches are consolidated into a single-path model. As a result, all the

trained parameters are equivalent to a 3×3 convolutional layer,

enabling faster inference speed and reduced memory access costs.

Figure 3 illustrates the designed max pooling part of the SPPCSPF

module, taking into consideration the increased training costs associated

with using structurally reparameterized layers. The pooling kernel size is

set to a fixed value of 5×5 in this design. Furthermore, the output from

each pooling layer serves as input for the subsequent pooling layer. By

setting a pooling stride of 1, two 5×5 max pooling layers can effectively

perform the same function as a single 9×9 max pooling layer. Similarly,

three 5×5max pooling layers yield the same result as a single 13×13max

pooling layer. This approach significantly reduces the computational

load during model training.
3.3 Multiscale detection module with small
object detection layer

In this study, the target detection dataset images are of size

800×800. Since there are small objects with pixel sizes smaller than

8×8 in tomato disease detection images that have complex

backgrounds, the study employs the principle of detecting large

objects based on the small object detection feature map and vice

versa. To maintain the same scale of the output feature map as the

baseline model, a 160×160 detection layer is added in the prediction

stage. This layer divides the input image into 160×160 grid cells,

each measuring 5×5 in size. This approach enhances the regression

and adjustment of prior boxes, resulting in accurate detection boxes
Frontiers in Plant Science 06
for small objects and significantly enhancing precision in small

object detection. To tackle the challenge of losing a substantial

amount of feature information for smaller objects in deeper network

layers, this study proposes the incorporation of innovative feature

layers with alternative dimensions sourced from the backbone

network. Furthermore, by enhancing the Neck component and

constructing a parallel multi-branch feature fusion network, the loss

of effective information in the feature maps is mitigated.
3.4 A-SIOU loss function

Precise target localization is essential for successful target

detection, relying heavily on the utilization of a superior quality

bounding box loss function. The conventional CIOU loss function

proficiently handles the task of orienting bounding boxes, even in

situations where there is no intersection between the predicted and

ground truth boxes. Accomplishing this involves incorporating the

aspect ratio of the boxes into the loss calculation. However, the

CIOU loss function has certain limitations, as it calculates all loss

variables as a whole without adequately addressing the disparity

between the actual target and the predicted box. As a result, this

approach leads to slow convergence and instability issues.

In this study, we introduce the A-SIOU (Alpha SIOU) loss

function as a replacement for the existing CIOU loss function in the

tomato disease detection model. This novel bounding box loss

function, based on enhancements to the SIOU loss function

(Gevorgyan, 2205), offers significant improvements. It enhances

the gradient convergence speed of the loss function through the

parameter a (He et al., 2021). The A-SIOU loss function fully

considers the influence of distance, angle, and area - these three key

factors - on the boundary regression of the model. This ensures that

the predicted box can converge towards the ground truth box more

quickly, thereby controlling the convergence direction. The

proposed loss function consists of four components: Langle, Ldis,

Lshape, and IOU.

The equation for computing the angle loss Langle is given by:

zh = btcy − bpcy
�� ��

s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(btcx − bpcx)2(btcy − bpcy)2

q

Langle = 1 − 2 sin2 (arcsin( zhs ) − p
4 )

8>>><
>>>:

(2)

In the given equation, zh denotes the disparity in height between

the center points of the predicted box and the ground truth box. s
represents the spatial displacement between the center coordinates

of the ground truth box and the predicted box. Furthermore, btcx
and btcy denote the center coordinates of the ground truth box, while

bpcx and bpcy denote the center coordinates of the predicted box.

The formula for calculating the distance loss is provided below:

rx =
btcx−b

p
cx

cw

� �2

ry =
btcy−b

p
cy

ch

� �2

Ldis = 2 −oi=x,yexp (Langle − 2)ri
� 	

8>>>>><
>>>>>:

(3)
Inputs

CBS×3 RepConv

5 5 5

Concat

CBS×2

Concat

CBS

FIGURE 3

Network structure of SPPCSPF module.
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Here, cw and ch represent the width and height of the minimum

bounding rectangle of the ground truth box and the predicted box.

To compute the shape loss, use the following formula:

ww = wp−w tj j
max(wp ,w t )

wh =
hp−htj j

max(hp ,ht )

Lshape =oi=w,h 1 − exp(wi)ð Þq

8>>><
>>>:

(4)

In the equation above, wp and hp represent the width and height

of the predicted box, while wt and ht represent the width and height

of the ground truth box. q is a constant used to control the emphasis

on shape loss, with a value of 4 in this study.

The formula for calculating the A-SIOU loss function is as

follows:

IOU = A
B

LA−SIOU = 1 − IOUa −
(Ladis+L

a
shape)

2

� �
8<
: (5)

In the equation above, A and B represent the intersection and

union of the areas of the ground truth box and the predicted box. a
is a variable that controls the convergence speed of the loss function.

Through multiple experiments, it has been found that setting a to 2

helps the model focus more on targets with high intersection-over-

union ratios, thereby improving the accuracy of object localization.

Compared to other functions, the A-SIOU boundary box loss

function considers the influence of distance and angle on boundary

regression, thereby avoiding the issue of gradient vanishing in cases

where there is no overlap between the predicted box and the ground

truth box. Additionally, the A-SIOU loss function include four

components. In the angle loss component, the range of values for

the angle loss Langle is [0, 1] due to the characteristics of the sine

function. In the distance loss component, considering the range of

ri to be [0, 1), the value range of the distance loss Ldis can be derived

as (0, 2-2e-2). In the shape loss component, considering the range of

wi to be (0, 1), the value range of the shape loss Lshape can be derived

as (0,2(1-e)4). In conclusion, the A-SIOU function has a value range

of (-2 + 2e-4,1 + 2(1-e)8), which has both upper and lower limits,

effectively preventing gradient explosion.
3.5 Overall framework of PKAMMF

Based on the above improvement measures, the overall network

framework of the PKAMMF method for tomato disease detection,

which incorporates the fusion of prior knowledge attention

mechanism and multi-scale features to enhance performance, is

illustrated in Figure 4.
4 Dataset

4.1 Experimental data collection

The experimental research area was selected as the tomato

planting base in Shouguang City, Shandong Province. This

location is known for year-round cultivation of various tomato
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varieties, as shown in Figure 5. To collect data, agricultural IoT

monitoring equipment equipped with a 4K high-definition camera

(with a resolution of 4096x3112) was used. The equipment enabled

the collection of typical tomato disease images from different plants,

regions, and growth stages under natural conditions. Image

collection took place during specific time intervals: 08:00 to 09:00,

11:00 to 12:00, and 15:00 to 16:00 every day, to capture images

under varying lighting conditions. In total, 26,983 images depicting

various types of tomato diseases were collected.
4.2 Dataset construction

To ensure data quality, the original image was cropped to a fixed

size of 640 × 640. Cropping the image to this specific dimension

ensures that the subject of the photograph is clear, the disease

objects are easily discernible, and the real background is visible. In

addition, we manually removed duplicate and low-quality images

from the dataset. After the selection process, we obtained a total of

10,000 tomato disease images that represent various types of

diseases. Next, we divided these images into a 9:1 ratio, creating a

training set and a test set. The training set encompassed 9,000

images, while the test set contained 1,000 images. By including a

diverse range of scene information, such as rainy and foggy weather,

sunny days, cloudy conditions, and other scenarios, the dataset

effectively captures real-world planting environment information.

In order to enhance the model’s robustness to variations in

tomato disease image sizes and lighting conditions, we employed a

method to augment the training set. This involved changing the

contrast and scaling the image sizes. The contrast coefficient and

scaling factor were randomly generated within the ranges of [0.6,

1.5] and [0.6, 1.7], respectively. In order to enhance the model’s

capability in detecting occluded disease objects, we augmented the

dataset by adding salt-and-pepper noise to simulate random pixels

and artificially create occlusions. As a result, the augmented training

set consisted of a total of 45,000 tomato disease images. Meanwhile,

the test set remained in its original state, and data augmentation was

solely applied to the training set. This decision was made to improve

the dependability and precision of the test results.
4.3 Data annotations

The labeling of tomato disease samples is divided into two steps.

Firstly, the prior knowledge information of tomato disease is labeled.

Secondly, the tomato disease category information is labeled.

4.3.1 Labeling prior knowledge information of
tomato diseases

The prior knowledge information of tomato diseases includes

the identification of the disease infection location (leaves, stems,

fruits) and the shooting angle from which the images are captured

(main view, top view). To illustrate this, Table 1 presents a

compilation of tomato disease images along with corresponding

label examples.
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The labeled examples serve as valuable references for training

and developing models or systems focused on tomato disease

detection, making use of prior knowledge information.

4.3.2 Labeling tomato disease
category information

The model used in this study was trained on a Pascal VOC-

formatted dataset. To annotate the tomato disease images of

different disease types, we utilized the LabelImg software. The

annotation rules were as follows: 1) We annotated the diseased

areas in the images without occlusion or with some occlusion that

did not impact manual judgment of the disease type. 2) We did not

annotate severely occluded areas where it was difficult for humans

to determine the disease type accurately. Since tomato diseases

rapidly spread, it is common for most images to contain multiple

affected areas. In total, we annotated 127,356 diseased areas across

10 disease categories during the annotation process. The quantities

of the different tomato disease types can be found in Table 2.
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5 Results

5.1 Operating environment configuration

The experimental platform employs Ubuntu 22.04 as its

operating system. It utilizes two NVIDIA RTX 3080 GPUs for

deep learning, with a memory capacity of 12GB. Other software

packages include Python 3.8, CUDA 11.0, Torch 1.7.0, and

torchvision 0.8.1.
5.2 Model training

During the training phase, we performed pre-training using the

weight file of the baseline model. Since the improved model shares

most of its structure with the baseline model, many weights can be

transferred from the baseline model to the improved network. This

transfer of weights allows us to save a significant amount of training
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time. To carry out the training, a batch size of 16 was chosen, and

the training process consisted of 300 epochs. We utilized the Adam

algorithm for gradient descent. Additionally, the image size was

adjusted to 416×416. The initial learning rate was set to 0.01, and

the weight decay coefficient was determined to 0.000005. We

employed the cosine annealing algorithm for learning

rate adjustment.

Throughout the process of training the model, we recorded the

loss function of the model and depicted it in Figure 6. According to

the depicted graph, in the early stages of training, the loss function

experiences rapid decrease with minor overall fluctuations. Notably,

around the 20,000th iteration, the loss value reaches 0.022. After

training for 30,000 iterations, the loss value converges and stabilizes

at 0.016.
5.3 Metrics for evaluating performance

Before introducing the metrics, it is necessary to briefly explain

the symbols used. In this research experiment, when IOU > 0.5, it is

considered that the predicted box hits the annotated box; otherwise,

it is considered that the predicted box does not hit the annotated

box. TP indicates the count of correctly predicted boxes that match

the annotated boxes for the given class, FP corresponds to the count

of incorrectly predicted boxes that match the annotated boxes for

the given class, TN is the count of predicted boxes that correctly

match the annotated boxes for other classes, and FN represents the

count of predicted boxes that fail to match any annotated boxes.

The commonly used metrics include Recall, Precision, Average

Precision (AP), and mAP. Recall is used to evaluate whether the

model predicts all target objects comprehensively. The model’s

prediction accuracy is assessed through Precision. To evaluate the

model’s classification performance for a particular class, AP

calculates the area under the Precision-Recall curve, while mAP
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computes the average AP across multiple classes. Furthermore, the

model’s detection speed is measured in frames per second (FPS),

representing the number of images detected per second. The

formulas for calculating the above evaluation metrics are as follows:

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

AP =
Z 1

0
p(r)dr (8)

mAP = o
N
n=1AP(n)

N
(9)

FPS =
Cimg

Timedetect
(10)

In the above-mentioned formulars, p(r) represents the

Precision-Recall curve. N denotes the overall count of categories

within the tomato disease detection data, while n represents the

current data category. Cimg represents the count of pictures within

the test dataset, and Timedetect represents the time taken to detect

Cimg images.
5.4 Ablation experiment

In order to verify the performance enhancement of the various

improvement measures proposed in this study for tomato disease

image object detection, a series of experiments involving ablation

was conducted. These experiments aimed to systematically assess

the impact of each improvement measure by selectively removing or
FIGURE 5

Experimental site.
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disabling them one by one. The experimental results are presented

in Table 3, where PKAM, SPPCSPF, MSD, and A-SIOU represent

the four improvement measures, namely, the PKAM module, the

SPPCSPF module, the Multi-Scale Detection module, and the loss

function, respectively.

The above-mentioned table reveals the following:
(1) Improvement 1 designs the PKAM module, which utilizes

attention mechanisms to integrate visual information with

prior knowledge. This enhances the network’s ability to

capture global observations. While the introduction of the

PKAM module leads to a slight increase in the parameter

count and a decrease in detection speed, it results in a

significant improvement in mAP, with an increase of

2.23%. This indicates that the incorporation of the PKAM

module helps to improve the overall performance of the

detection by effectively leveraging both visual information

and prior knowledge. Despite the trade-off in terms of

computation and speed, the gained improvement in

accuracy justifies the utilization of the PKAM module in

the context of disease object detection in tomato plants.

(2) Building upon improvement 1, improvement 2 designs the

SPPCSPF structure with structurally reparameterized

RepConv convolutional layers. This design not only

stabilizes the training process but also improves inference

speed, resulting in an mAP improvement of 0.59%

compared to improvement 1.

(3) Based on improvement 1, improvement 3 implements

multi-scale detection by adding a new feature fusion layer

in the Neck section and incorporating a small object

prediction layer during inference. Compared to

improvement 1, improvement 3 achieves a mAP

improvement of 0.74%, indicating enhanced accuracy in

detecting small objects.

(4) Improvement 4 integrates the first three improvements and

achieves the highest mAP. Compared to the baseline model,

improvement 4 shows an mAP enhancement of 3.86%.

(5) Continuing from improvement 4, this study further

improves the proposed method by utilizing A-SIoU.

Although the mAP improvement is only 0.59% compared

to improvement 4, the convergence speed during actual

training is faster.
Overall, through multiple improvement measures, the proposed

method in this study achieves a 3.86% mAP increase compared to

the baseline model. Despite a slight increase in parameter count, the

number of parameters remains within the same order of magnitude

as the baseline model, indicating that the additional computational

requirements are manageable. The detection frame rate drops by

11.71 frames per second. However, it still meets the fundamental

criteria for real-time performance. Considering these factors, the

detection accuracy improvement obtained through the various

improvement measures is highly cost-effective. The trade-offs in

terms of parameter count and detection speed are reasonable, given

the substantial enhancement in accuracy achieved by the proposed
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method. This implies that the proposed method may have practical

value and can be considered as an effective solution for detecting

objects related to diseases in tomato plants.
5.5 Comparative analysis of performance
with alternative mainstream approaches

To further validate the advantages of the PKAMMF method in

detecting tomato diseases in complex backgrounds, we conducted

object detection experiments using our own tomato disease dataset

under the same experimental environment and parameter settings.

We compared and analyzed the object detection performance of

mainstream methods such as Faster-RCNN, SSD, YOLO series, and
Frontiers in Plant Science 11
PKAMMF in this study. The experimental outcomes from these

various methodologies are presented in Table 4.

As shown in Table 4, the parameter size (Params) of single-

stage object detection methods, including SSD, YOLO series, and

the proposed method in this study, is relatively smaller than the

two-stage object detection approach, Faster-RCNN. This reduction

in parameter size leads to faster detection speed. In comparison to

the baseline model, the proposed method in this study exhibits an

increase of 14.87M parameters and a decrease of 11.71 frames per

second (FPS) in the detection frame rate. However, it demonstrates

an improvement of 3.26% in precision (P), 2.55% in recall (R), and

achieves a mean average precision (mAP) of 91.96%. This

performance enhancement surpasses YOLOv7 by 3.86% and

outperforms other models in the table. It strongly indicates that
TABLE 2 Sample quantities for each disease type.

No.
Disease
class

Sample images in the
training set

Annotated diseased areas
in the training set

Sample images in
the test set

Annotated diseased
areas in the test set

1 Early blight 4500 10903 100 228

2 Late blight 4500 12317 100 247

3 Bacterial spot 4500 17302 100 469

4
Gray leaf
spot

4500
13236 100 303

5 Gray mold 4500 12315 100 269

6 Leaf mold 4500 11871 100 235

7
Yellow leaf
curl virus

4500
10036 100 213

8 Mosaic virus 4500 10277 100 208

9 Canker 4500 12398 100 249

10 Anthracnose 4500 13964 100 316

Total 45000 124619 1000 2737
FIGURE 6

Variations of the loss function during the training process.
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PKAMMF exhibits remarkable superiority in detecting tomato

disease objects.

Given that the self-built tomato disease dataset comprises ten

disease classes with significant variations in scale and features

among different instances, achieving multi-scale object detection

is typically challenging. Table 5 presents the average precision (AP)

results of different methods for detecting various object categories.

According to Table 5, the experiment shows that the proposed

PKAMMF outperforms the baseline model YOLOv7 among the 10

target categories. Therefore, in comparison to alternative prevalent

object detection methods, PKAMMF also demonstrates significant

advantages in detecting objects at multiple scales. The proposed

method exhibits notable superiority in detecting tomato disease

objects of varying scales, even within complex backgrounds.

However, there is still room for improvement in detecting

bacterial spot disease and gray leaf spot disease, as these targets

have less distinct features. In scenarios involving multiple scales,

there is a higher risk of false negatives occurring.
5.6 Performance comparison of different
attention mechanisms in tomato disease
detection

The comparative experiments were conducted under consistent

conditions, and several classical attention mechanisms, namely SE

(Hu et al., 2018) (Squeeze and Excitation), CBAM (Woo et al., 2018)

(Convolutional Block Attention Module), GAM (Liu et al., 2021)

(Global Attention Mechanism), and Biformer (Zhu et al., 2023),
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were added. Table 6 provides a performance comparison of the

proposed prior knowledge attention mechanism and other

attention mechanisms in tomato disease detection. The results

clearly demonstrate that the proposed prior knowledge attention

algorithm in this study achieves the highest mAP and exhibits a

significant enhancement in detection performance.

This finding suggests that the prior knowledge attention

mechanism effectively integrates prior knowledge of tomato

diseases, enabling more focused feature extraction in the regions

associated with tomato diseases. The prior knowledge attention

mechanism helps to focus on relevant areas of the image that are

more likely to contain disease objects. This can improve the

efficiency and accuracy of detection by reducing false positives

and identifying subtle disease symptoms. Consequently, the prior

knowledge attention mechanism is deemed more suitable for

feature extraction in tomato disease detection scenarios.
5.7 The influence of training samples of
different sizes on detection results

The number of training samples can significantly influence the

detection performance of a model, so training samples of different

sizes should be evaluated. To investigate the impact of training

sample size on the performance of the proposed PKAMMF model,

it is necessary to employ a method that involves changing the

number of training samples while keeping the test set samples

unchanged. Building upon the experiments conducted in the

previous sections, we randomly selected 5000, 10000, 15000,
TABLE 3 Results of ablation experiments.

Methods PKAM SPPCSPF MSD A-SIOU Params(M) FPS(Frames per second) mAP(%)

YOLOv7 36.853 66.39 88.10

Improvement 1 Yes 50.856 57.92 90.33

Improvement 2 Yes Yes 51.267 57.98 90.92

Improvement 3 Yes Yes 51.698 55.67 91.07

Improvement 4 Yes Yes Yes 51.279 55.32 91.37

PKAMMF Yes Yes Yes Yes 51.723 54.68 91.96
fro
TABLE 4 Performance metrics of various methods.

Methods P(%) R(%) F1 score(%) Params(M) FPS mAP(%)

Faster-RCNN 85.98 61.79 71.85 129.8 10.59 70.73

SSD 90.87 55.87 68.92 25.43 47.65 72.54

YOLOv3 85.88 60.78 70.82 60.83 27.28 78.62

YOLOv4 87.95 68.54 76.21 62.73 34.07 80.37

YOLOv5 89.97 75.82 80.33 70.10 60.28 88.98

YOLOv7 88.64 83.52 85.97 36.853 66.39 88.10

PKAMMF 91.90 86.07 88.18 51.723 54.68 91.96
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20000, 25000, 30000, 35000, 40000, and 45000 samples,

maintaining the same proportion of tomato disease categories

from our self-built dataset. We employed the same training

method to train datasets with varying sample sizes. The impact of

training samples of different sizes on mean Average Precision

(mAP) is illustrated in Figure 7.

From Figure 7, it can be seen that the learning ability of the

model increases with the increase of sample size for different

training sample Quantities. In the case of a small number of

training samples (5000-200000), the mAP obtained in the

experiment significantly can improve greatly. As the number of

training samples continue to increase, the improvement of mAP

slows down. When the number of training samples exceeds 30000,

mAP gradually tends to stabilize.
5.8 Analysis of tomato disease object
detection results

The proposed PKAMMF model was utilized to detect 10 types

of tomato disease images under complex backgrounds in the test set,

which comprised 1000 images. Figure 6 presents some of the disease

detection results.

Based on Figure 8, it is evident that the proposed PKAMMF

model exhibits accurate detection capabilities for tomato disease
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images. The results depicted in Figure 6 clearly showcase the

robustness and adaptability of the PKAMMF model in handling

challenging scenarios commonly encountered in tomato disease

detection. The model effectively addresses the difficulties posed by

objects at different scales, instances where objects are partially

obscured, and varying lighting conditions, all of which are

prevalent in real-world situations. Also, by effectively identifying

objects in tomato disease images under challenging conditions, the

model minimizes instances where diseases go undetected (missed

detections) and also reduces the occurrence of incorrectly

identifying healthy regions as diseased (false detections). By

accurately detecting objects under such conditions, the

PKAMMF model proves its capability to improve the

performance of tomato disease detection. Its ability to handle

complex backgrounds further strengthens its practical

applicability in agricultural settings.
6 Discussion

In response to the limitations of existing deep learning models

in learning prior knowledge of tomato disease objects and their

reliance solely on visual features, this study proposes a method for

tomato disease detection. The main objective is to leverage the prior

knowledge available in tomato disease images and achieve accurate

disease detection in complex backgrounds. To address this

challenge, our proposed method, called tomato disease object

detection method combining Prior Knowledge Attention

Mechanism and Multiscale Features (PKAMMF), is introduced.

By integrating the visual features extracted from detected images

with the prior knowledge of tomato diseases, the overall

performance of tomato disease detection in complex natural

backgrounds is significantly enhanced. Through comprehensive

experimental analysis and comparisons with existing methods, we

have drawn the following discussions:
(1) In response to the challenge posed by complex

backgrounds and unclear, overlapping target features in
TABLE 5 Average precision of several methods for detecting different disease class.

Disease class Faster-RCNN SSD YOLOv3 YOLOv4 YOLOv5 YOLOv7 PKAMMF

Early blight 89.3 90.2 90.6 90.1 95.4 96.7 98.3

Late blight 88.7 89.3 92.5 80.3 91.3 92.2 97.9

Bacterial spot 77.5 70.2 79.8 80.6 76.3 78.5 79.6

Gray leaf spot 77.3 80.1 72.7 75.8 76.2 76.4 79.1

Gray mold 69.4 66.8 92.1 88.9 90.0 90.2 93.4

Leaf mold 89.3 80.4 80.8 85.4 88.6 89.7 94.8

Yellow leaf curl virus 86.5 84.3 78.6 79.6 82.7 84.9 90.1

Mosaic virus 80.2 86.7 82.4 72.8 87.9 88.1 89.6

Canker 53.7 52.2 69.7 70.7 88.2 90.1 90.3

Anthracnose 42.6 53.9 80.4 76.9 89.3 90.5 91.1
f

TABLE 6 Comparison of different attention mechanisms.

Algorithms with different attention mechanisms
mAP
(%)

baseline 88.10

baseline+SE 88.26

baseline+ CBAM 89.39

baseline+ GAM 89.27

baseline+Biformer 89.56

baseline+PKAM 90.33
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Fron
tomato disease images, this study investigates the utilization

of prior knowledge on tomato diseases. We incorporate

prior knowledge as auxiliary information into our model,

enabling the detection network to effectively learn the

distinctive features of various categories of tomato

diseases and achieve accurate detection.

(2) Incorporate a feature fusion layer within the Neck section

to facilitate effective information transmission across the

backbone network. Additionally, augment the prediction

section with a small object detection layer, enabling

improved performance in detecting small objects at

multiple scales. This enhancement reduces both the

missed detection rate and false detection rate. Moreover,

introduce the A-SIoU loss function to expedite bounding

box regression, thereby accelerating the convergence speed.
tiers in Plant Science 14
(3) Validate the proposed algorithm using a self-built dataset

specifically designed for tomato disease detection. The

experimental results demonstrate that the proposed

model adeptly utilizes the prior knowledge inherent in

tomato disease images. It achieves accurate detection of

small target diseases and effectively identifies densely

occluded diseases against complex backgrounds. This

approach significantly enhances the overall detection

performance of tomato diseases and mitigates the

occurrence of missed and false detections arising from

complex backgrounds. Furthermore, the proposed model

exhibits good real-time performance.
This study focuses on leveraging prior knowledge to enhance

the detection effectiveness of tomato diseases. The experimental
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FIGURE 7

The impact of training sample size on detection results.
FIGURE 8

Object detection results of tomato disease.
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results validate that, with the guidance of prior knowledge, the

model performs significantly better in detecting tomato diseases

amidst complex natural backgrounds. This research sets the

groundwork for integrating prior knowledge of tomato diseases

with deep learning models, offering new insights and ideas for

intelligent disease detection technology in plants. However, it is

important to note that the proposed model currently only

incorporates explicit knowledge, such as the precise location and

shooting angle of tomato diseases, at the coding level. It lacks the

capability to autonomously acquire implicit knowledge, including

expert experience and the utilization of existing “knowledge” for

reasoning. Therefore, future work should explore ways to integrate

implicit knowledge, such as expert experience, into the model by

employing technologies like knowledge graphs. Additionally, there

are plans to conduct in-depth research into the fusion of prior

knowledge and the model, incorporating spatial location

relationships among diseases or prior knowledge about disease

occurrence time to achieve more accurate disease detection.

Knowledge reasoning methods will be employed to express prior

knowledge more effectively, and efforts will be made to further

enhance the proposed method and apply it to a wider range of plant

disease detection scenarios, aiming for more accurate multi-

category plant disease detection.
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