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Automatic pest identification
system in the greenhouse
based on deep learning
and machine vision

Xiaolei Zhang, Junyi Bu, Xixiang Zhou and Xiaochan Wang*

College of Engineering, Nanjing Agricultural University, Nanjing, China
Monitoring and understanding pest population dynamics is essential to

greenhouse management for effectively preventing infestations and crop

diseases. Image-based pest recognition approaches demonstrate the potential

for real-time pest monitoring. However, the pest detection models are

challenged by the tiny pest scale and complex image background. Therefore,

high-quality image datasets and reliable pest detection models are required. In

this study, we developed a trapping systemwith yellow sticky paper and LED light

for automatic pest image collection, and proposed an improved YOLOv5 model

with copy-pasting data augmentation for pest recognition. We evaluated the

system in cherry tomato and strawberry greenhouses during 40 days of

continuous monitoring. Six diverse pests, including tobacco whiteflies, leaf

miners, aphids, fruit flies, thrips, and houseflies, are observed in the

experiment. The results indicated that the proposed improved YOLOv5 model

obtained an average recognition accuracy of 96% and demonstrated superiority

in identification of nearby pests over the original YOLOv5 model. Furthermore,

the two greenhouses show different pest numbers and populations dynamics,

where the number of pests in the cherry tomato greenhouse was approximately

1.7 times that in the strawberry greenhouse. The developed time-series pest-

monitoring system could provide insights for pest control and further applied to

other greenhouses.

KEYWORDS

tiny pest detection, improved YOLOv5, pest population dynamics, pest trapping
system, greenhouse
1 Introduction

Monitoring pest population dynamics are essential to greenhouse management for

effectively predicting the potential distribution of pests and preventing infestations and

crop diseases (Deng et al., 2018; Capinha et al., 2021; Preti et al., 2021). Therefore,

monitoring the time series of pest numbers in greenhouse is important to support human

pest control decisions (Wen et al., n.d). However, automatic identification of pest
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populations in greenhouses is challenging due to the small size of

pests. The current manual pest detection and counting approaches

are labor intensive, time-consuming, and unreliable (Xie et al.,

2018). Developing a fast and reliable automatic pest identification

and counting approach may reduce the workload and improve

timely pest control (Rustia et al., 2021b).

Image-based automatic pest monitoring systems can replace

laborious manual identification and improve reliability, thus

proving to be a powerful tool with real-time pest information to

facilitate agricultural management (Sun et al., 2017; Rustia et al.,

2020; Wang et al., 2020a). Deep learning has shown the potential of

image processing with end-to-end feature extraction patterns for

automatic pest identification and counting (Liu and Wang, 2020;

Liu and Wang, 2021). To build an accurate deep learning model for

automatic pest identification, high-quality and large-scale image

datasets are indispensable (Li and Chao, 2021; Li et al., 2021b).

Current pest image datasets are mainly acquired from the

internet, crop surface, pest-trapping containers, or sticky boards

(Table 1). Pest datasets collected from the internet typically contain

a large number of samples and various categories. A previous study

reported an IP 102 dataset containing 75,000 images of 102 pest

species collected from agricultural and insect-science websites; the

dataset was evaluated using machine learning models including

support vector machine, K Nearest Neighbors, and deep learning
Frontiers in Plant Science 02
methods like Faster R-CNN, and FPN (Wu et al., 2019). Another

website-based dataset for crop pest recognition comprises 46,567

images from 41 classes (Wang et al., 2022). However, online

datasets have limited practical pest-monitoring applications

because many pest categories are not representative of greenhouse

crop production and show low-level harm to common crops (Wang

et al., 2021).

Field investigations have mainly focused on pest images collected

from crop fields with specific illumination conditions, crops, or pest

types. A current study developed of an AgriPest dataset including 14

common pests of wheat, rice, corn, and rape (Wang et al., 2021). The

filed collected datasets usually demonstrated different pest

distribution density, light reflection variability, crop surface

backgrounds, and pest types (Xie et al., 2018; Du et al., 2022).

However, pest detection models demonstrate high precision in the

present datasets, but are not replicable in a greenhouse setting due to

large variations in pest type, environmental conditions, and unclear

image collection owing to the pest movement. This limits the

application of powerful deep learning technology for pest control

in specific domains such as greenhouses.

Pest images collected with trapping devices are less affected by the

environmental conditions and plant types. Trapping containers adopt

pheromones, toxic gas, or a lamp to attract pests, and collect the

image from its baseplate (Li et al., 2021b). Capturing pest images by
TABLE 1 Current pest image collection approaches and pest detection models.

Image collection
approach

Pest identification model # Pest
species

Application sce-
narios

Year References

Internet-based CaffeNet 9 Paddy 2018 (Alfarisy et al.,
2018)

SVM, KNN, AlexNet, GoogleNet, VGGNet, ResNet 102 / 2019 (Wu et al.,
2019)

EffcientNetB0, ResNet50, GoogleNet, ShuffleNet,
MobileNetv2, DenseNet201

122 / 2022 (Nanni et al.,
2022)

Crop surface Unsupervised feature learning 40 Corn, soybean, wheat,
and canola

2018 (Xie et al.,
2018)

SSD512, RetinaNet, FCOS, Faster R-CNN, FPN, Cascade
R-CNN

14 Wheat, rice, corn, and
rape

2021 (Wang et al.,
2021)

SNIPER, ClusDet, DMNet, DCTDet, DCTDet +
YOLOv3, etc.

1 Wheat 2022 (Du et al., 2022)

Trapping containers RetinaNet 6 Pine forests 2018 (Sun et al.,
2018)

ResNet 5 Paddy 2020 (Yao et al.,
2020)

YOLOv5 2 Paddy and vineyard 2023 (Teixeira et al.,
2023)

Sticky boards Faster RCNN, SSD, YOLOv3, and Cascade R-CNN 24 Field crops 2020 (Wang et al.,
2020b)

CNN 4 Tomato and lisianthus
greenhouse

2020 (Rustia et al.,
2021a)

Faster R-CNN, TPest-RCNN 2 Green pepper greenhouse 2021 (Li et al., 2021a)

YOLOv5 4 Witloof chicory 2023 (Kalfas et al.,
2023)
“/” means data not available.
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light trapping have been widely used for automatic monitoring of

pests (Wang et al., 2021). However, the trapping containers designed

based on the pest phototaxis typically use a concentrated light source,

thus pests are attracted near the light source with overlapping, which

is not applicable to long-term monitoring. A vibration plate and a

moving conveyor belt could be adopted to disperse the pests and

avoid overlapping (Yao et al., 2020). The trapping containers usually

used for detecting large size pests, but not effective for tiny pests of

high-density in the greenhouse.

A Sticky board with color tropism can collect clear pest images

by attracting flying pests, which are widely used as trapping

devices (Ding and Taylor, 2016; Sütő, 2021). It reduces pest

overlapping and limb mutilation, and could be applied to pests

of different sizes. Current studies reported automatic methods for

detecting insect pests using sticky paper traps and achieved high

counting accuracies (Li et al., 2021a; Rustia et al., 2021a). The

trapping board-based systems, however, have low trapping

efficiency at night, and thus could not accurately monitoring

pest number changes over 24 hours. In addition, changes in

light during the day and night cause significant variations in the

images in the trapping board, which reduce the accuracy and

reliability of pest detection. Therefore, it is essential to develop a

trapping system with a uniform light source and a high

trapping efficiency.

Considering the diversity of pests, automatic pest-recognition

models are required. Deep learning, with the advantage of an end-

to-end learning strategy, is the current state-of-the-art object

detection approach. Recently, deep-learning-based pest detection

models are developed for multiclass pest detection and

classification, and achieved high performances (Liu et al., 2019;

Wang et al., 2020b). However, most models are primarily designed

for large-scale pest detection in field crops, which may not be

directly applicable to the detection of small pests in greenhouses due

to the limited number of pixels in their images; therefore, it is

necessary to develop small object detection models for greenhouse

pests. The YOLOv5 model was developed for high inference and at

three different scales, enabling it to effectively tackle the challenges

associated with small-object detection in images. (Zhan et al., 2022;

Zhao et al., 2022). The mosaic data augmentation adopted in the

YOLOv5 model enriches the dataset by random scaling, cutting,

and arranging the original input (Zhao et al., 2022). Further, it

improves the accuracy of small target identification, especially when

the number of large or medium targets is higher.

To address the challenge of automatic pest detection and

counting in greenhouses, a comprehensive experiment on pest

image recognition was conducted in two greenhouses, a cherry

tomato and a strawberry greenhouse. The objectives of this study

were as follows: 1) design an automatic pest identification system

with an LED lamp and insect-trapping board to trap pests and

automatically capture images with a uniform background to

improve the insect trapping efficiency; 2) develop an improved

YOLOv5 model with copy-pasting data augmentation to effectively

identify small-sized pests and improve recognition accuracy of

unbalanced distributed pest images; and 3) Monitoring the pest

population dynamics in two greenhouses and compare their

changing patterns.
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2 Methods

2.1 Experimental design

We developed an automatic pest image collection system in this

study. An improved YOLOv5 model was proposed for detecting small-

sized pests, and its performance was compared with that of the original

YOLOv5 model. Pest images were collected during the spring and

summer for 43 days in two greenhouses (Figure 1). We examined two

greenhouses in Nanjing, China. The first one is a “Hongxi” cherry

tomato glass greenhouse situated in XuanwuDistrict, and the second one

is a “Hongyan” strawberry multi-span greenhouse located in Pukou

District. For the first three days, we placed 10 insect traps in the

greenhouses and collected 10 images of each greenhouse to train a

pest detectionmodel. After the first three days, we used one insect trap to

collect images and monitor the pest populations daily. Images were

collected regularly at 16:00. Thus, we utilized 20 original images and

applied data augmentation techniques to expand the training dataset to

train the pest detection model and 80 images to monitor pest

populations. Twenty training images were preprocessed using a data

augmentation approach, which is discussed in Section 2. Data for the first

dataset was collected from June 6, 2020 to July 18, 2020 from a

greenhouse for cherry tomato plants from the seedling stage to the

flowering and fruit setting stages. Themain pests were tobacco whiteflies,

leaf miners, aphids, and fruit flies. Data for the second dataset was

collected from March 1, 2021 to April 12, 2021 from a greenhouse for

strawberry plants during the flowering and fruit-setting stages.
2.2 Data collection system

An automatic pest identification and monitoring system with an

LED insect trapping lamp and yellow sticky paper are established to

attract pests and collect images in greenhouses. The system consists

of a pest trapping device, a power supply unit, an image collecting

unit, a pest data processing unit, and a visual interface (Figure 2A).

The pest-trapping device consisted of a stainless-steel plate, an

aluminum profile frame, a yellow insect-trapping plate, and LED lamps

(Figure 2B). The size of the yellow insect-trapping board was 20 × 25

cm, with a wavelength of 575 nm ± 10 nm. The wavelength of the LED

insect-trapping lamp was 365 nm, and its voltage was 12 V. Two LED

light strings were fixed on both sides of the frame, with one string

consisting of 10 lamp beads. A storage battery with an output voltage of

12 V was used to provide 24-h power supply for the device. By

adjusting the incident angle of the trapping device, the LED lamp could

simultaneously trap the insects and provide light, making the trapping

board images clear and conducive to the process. The pest-image

collecting device consisted of an industrial camera and a cantilever

bracket (Figure 2C). A Sony IMX226 camera with 3280*2464

resolution was installed in a cantilever and aimed at a piece of sticky

paper at an appropriate distance to capture clear images. The

visualization interface shows pest images and their location, types,

and numbers (Figure 2D). The visualization interface presented

dynamic changes in pest numbers within a week. Computation and

visualization were conducted using Python on a Windows PC (Intel®

Core™ i7-7500U) with a RAM of 8 Gb.
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2.3 Benchmark YOLOv5 model

The benchmark model adopted in this study was YOLOv5

(Figure 3), which was released in 2020 for object detection. The

YOLOv5 model consists of backbone, neck, and head modules that
Frontiers in Plant Science 04
connect the procedure for predicting bounding boxes with class labels in

an end-to-end differentiable network (Ultralytics, 2020). The YOLOv5

model has demonstrated excellent performance in small object detection

in previous studies (Mathew and Mahesh, 2022; Zhan et al., 2022); thus,

it was selected for identification of small-sized pests in this study.
A

B

C

D

FIGURE 2

Automatic pest identification and monitoring system with LED trap lamp, sticky paper and image acquisition system. (A) Pest monitoring system, (B)
Pest trapping device, (C) Image collecting unit, (D) Visualization interface.
FIGURE 1

Experimental design of pest image collection, pest detection model and pest population monitoring.
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2.3.1 Mosaic data augmentation
Mosaic data augmentation was adopted in the YOLOv5 model,

which enriches the dataset by stitching together four images, thereby

introducing novel object locations, partial occlusion, and variations in

surrounding pixels for the model to learn from. The model could

simultaneously process four images in the batch normalization layer,

which decreased the GPU memory usage by using a relatively small

mini-batch. The workflow of mosaic data augmentation was as follows:

1) random selection of four images from the original training dataset; 2)

random rotation, scaling, flipping, and adjustment of the brightness

and chromaticity of the four selected images; and 3) combining the

images and box layout stitching into new images (Figure 4A) (Huang

et al., 2022). The augmented images were enriched with various

backgrounds, as shown in Figure 4B.
Frontiers in Plant Science 05
2.3.2 Backbone
The backbone module extracted features from the input image

and transmitted them to the neck module (Figure 4). The

backbone includes the focus, CBL, Cross Stage Partial (CSP),

and Spatial Pyramid Pooling (SPP) modules. The focus structure

transformed the original 608×608×1 images into 304×304×32

feature maps using slicing and convolution operations, which

increased the computational complexity, but retained the original

features. The CBL comprises one convolutional layer, one batch

normalization layer, and one Leaky ReLU layer. CSP1 was used in

the backbone network, and CSP2 was used in the neck network.

The SPP network outputs a feature map of fixed size with

multiscale feature fusion through the 1×1, 1×5, 9×9, and 13×13

max pooling.
FIGURE 3

Structure of the YOLOv5 model for pest detection.
A B

FIGURE 4

Mosaic data augmentation adopted in the YOLOv5 model. (A) Workflow of mosaic data augmentation, and (B) Pest image after mosaic data augmentation.
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2.3.3 Neck
The neck module generates a feature pyramid based on a path

aggregation network (PANet) (Liu et al., 2018). This enables the

model to detect pests of different sizes by shortening the

information path between low-level spatial features and high-level

semantic features through bottom-up path augmentation. Adaptive

feature pooling directly propagates the effective information at each

level to subsequent subnetworks (Liu et al., 2018).

2.3.4 Head module
The head module provides detection boxes, pest categories,

coordinates of the detected pests, and confidence values. The loss

function in the head module includes classification loss and

bounding box regression loss. The YOLOv5 model uses the

complete intersection over union (CIoU) loss (Zheng et al., 2020),

which improves the regression accuracy and convergence speed by

considering the distance between the detection frame and target

box, overlapping area, aspect ratio, and other aspects.
2.4 Improved YOLOv5 model

The mosaic data augmentation approach shows limitations on the

proposed datasets where small targets comprise more than 80% of total

pests. Mosaic data augmentation improves the accuracy of small target

identification only if there are more large and medium targets than

small targets. For example, in Figure 5A, the size of the raw image was

3280 × 2464 pixels. The images were resized to 608 × 608 pixels before

being fed into the YOLOv5 network. Thus, the output feature sizes

were 19 × 19, 38 × 38, and 76 × 76 pixels. The largest feature map (76 ×
Frontiers in Plant Science 06
76) corresponded to the smallest anchor box for small target detection.

Its receptive field was 8 × 8 when back-propagated to an input image of

608 × 608 pixels. When the 8 × 8 receptive field corresponded to the

raw image, it was approximately 43 × 32 (Figure 5A). Therefore, insects

smaller than 43 × 32 pixels in the raw image were not recognized in the

YOLOv5 model. Therefore, the mosaic data augmentation approach

reduces the recognition precision for tiny pests. To improve the pest

identification performance of the proposed pest images collected from

greenhouses, an improved YOLOv5 model adopting a copy-pasting

data augmentation approach to virtually increase the number of pests

is developed.

2.4.1 Improved data augmentation approach
A copy-pasting augmentation approach was developed for data

augmentation to improve the identification accuracy for small

objects (Figure 5B). A raw image of 3280 × 2464 pixels was

cropped by setting the overlapping area. The image was

horizontally cropped into six pieces, each with 600 pixels, and the

overlap length was set to 64 pixels. The image was also vertically

cropped into 5 pieces, each piece of size 600 pixels, and the overlap

length was set to 134 pixels. Therefore, the raw images were divided

into thirty smaller images with 600 × 600 pixels. Setting the

overlapping area could improve the detection accuracies for pests

on the segmentation lines. Finally, to reduce the number of

overlapping detection boxes, a non-maximum suppression (NMS)

operation was performed on the entire image.

2.4.2 Improved head module
The YOLOv5 model generated candidate anchor boxes with

various sizes and shapes, but these windows supposedly to contain
A

B

FIGURE 5

(A, B) Receptive field before and after copy-pasting data augmentation.
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one object, so it is necessary to filter out the ones. NMS is adopted to

remove redundant boxes when their overlaps exceed a threshold.

The intersection over union (IoU) loss is commonly used in NMS,

but it demonstrates poor performances for the nonoverlapping

boxes. The improved distance IoU (DIoU) considers the overlap

area and distance between the central points of two bounding boxes

when suppressing redundant boxes, making the model more robust

to occlusion objects (Zheng et al., 2020). (Figure 6).

LIoU   =   1  −  
B ∩​ Bgtj j
B ∪​ Bgtj j (1)

LDIoU   =   1  −   IoU   +RDIOU (2)

RDIOU =  
r2(b, bgt)

c2
(3)

Where Bgt is the ground truth, and B is the predicted box, The

RDIOU is the distance between the center points of two   boxes, b and

 bgt represent the center points of the anchor frame and target frame

respectively, the r(b, bgt) is the distance between the two center

points, and c is the diagonal distance of the smallest rectangle

covering two boxes.

In the improved YOLOv5 model, DIoU was deployed in the

NMS and applied to the head module to remove redundant

bounding boxes and improve the detection accuracy of occluded

pests (Figure 6). The DIoU-NMS approach is more robust than the

original NMS used in the YOLOv5 model for removing redundant

boxes. Therefore, the DIoU-NMS method adopted in the improved

YOLOv5 model improved the detection accuracy of occluded pests.

The DIoU-NMS was defined as follows:

Si =
Si, IOU − RDIOU (M, Bi   ) < e  

0, IOU − RDIOU (M,Bi   ) ≥ e

(
(4)
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where S is the confidence level of category i, e is the threshold of
the NMS,M is the box with the highest confidence level, and IOU is

the intersection ratio of the anchor and target frames (Zheng

et al., 2020).

All training and processes were implemented on a Python

library torch 1.9.0 framework in the Pycharm platform with

Python 3.6. The computations were performed on a Windows

workstation with an Nvidia GeForce 940MX graphics card

(NVIDIA Corporation, Santa Clara, California, United States).
2.5 Performance metrics

The model performance is evaluated by precision, recall, F1-

score, and accuracy, which are shown in Eqs. (5) to (8).

precision   =  
tp

tp + fp
(5)

recall   =  
tp

tp + fn
(6)

F1 =   2� precision� recall
precision   +recall

(7)

Where the tp (true positive) represents the number of correct

positive predictions, fp (false positive) represents the number of

incorrect positive predictions, and fn (false negative) represents the

number of incorrect negative predictions.

The mean average precision (mAP) is adopted for evaluating

the object detection performance. It is calculated by taking the

average of the AP scores across all classes. The AP value is obtained

by calculating the area under the precision-recall curve, which

measures the trade-off between precision and recall at different

confidence thresholds.
2.6 Pest dataset preparation

The datasets collected from the two greenhouses included six

types of pests: tobacco whiteflies, leaf miners, aphids, fruit flies,

thrips, and houseflies (Figure 7). Houseflies had the largest length of

5–8 mm while thrips were the smallest, with a length of 0.5–2 mm.

Tobacco whiteflies were the highest in number but were difficult to

detect by the human eye because of their white color. The lengths of

the leaf miners, aphids, and fruit flies were 4–6 mm, 2.2 mm, and

1.5–4 mm, respectively. The number distribution of different types

of pests are unbalanced, which brings challenge for the

pest detection.

We collected 20 images with size of 3280 × 2464 pixels in the

two greenhouses to train the YOLOv5 model. However, after data

preprocessing with mosaic data augmentation, 450 images of size

600 × 600 pixels were acquired to train the insect pest detection

model. Of the 450 training images, 200 were randomly selected for

copy-pasting data augmentation. In total, 1,024 tobacco whiteflies,

857 thrips, 1,092 winged aphids, 941 leaf miners, 873 fruit flies, and

1,013 houseflies were included in the training set (Table 2).
FIGURE 6

Intersection over union (IoU) and distance IoU losses and three
application scenarios. (Blue and red colors represent the target box
and predicted box, respectively.).
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The test set contained 328 images of 12,014 pests, including 5,832

tobacco whiteflies, 2,928 thrips, 1,001 winged aphids, 460 leaf miners,

890 fruit flies, and 267 houseflies (Table 2). The test set was used to

monitor the pest population dynamics over a long period; therefore, the

number of pests in the test set was larger than that in the training set.
3 Results and discussion

3.1 Pest detection results

The improved YOLOv5 model obtained higher accuracy than

the original YOLOv5 model by adopting copy-pasting data

augmentation (Table 3). The precision-recall graph, depicted in

Figure 8, compares the performance of YOLOv5 and the improved

YOLOv5 models. The overall pest-detection precision improved

from 64% to 96% by using the improved YOLOv5 model. The

improved YOLOv5 model obtained the highest detection precision

of 99% on leaf miners and fruit flies, followed by aphids and

houseflies, with a precision of 98%. Thrips are very difficult to

identify because of their small size. The improved YOLOv5 model

obtains a precision of 83% for thrips, which is still higher than that

of the YOLOv5 model (80%). The improved model achieved an F1

score of 0.99 for detecting aphids, leaf miners, fruit flies, and

houseflies, and a score of 0.98 for detecting whiteflies. However, it

exhibited a lower F1 score of 0.91 for detecting thrips. The primary

reason for the low detection accuracy of thrips may be the varying

size of trips during different growth stage. Image resolution may be

another factor that some pests are confused with dust. Furthermore,

the improved YOLOv5 model required more time for image

processing because it adopts a copy-pasting operation and feeds

the input images into the network in different batches, the
Frontiers in Plant Science 08
recognition speed of the improved YOLOv5 model was lower

than that of the original YOLOv5 model.

A confusion matrix of the detection accuracies is shown in

Figure 9. The improved YOLOv5 model demonstrated the best

performance for leaf miners and fruit flies, with a 99% detection

accuracy. 1% of leaf miners were incorrectly recognized as thrips

and 1% of fruit flies were incorrectly detected as fruit flies and

aphids. The model showed 98% accuracy for aphids and houseflies,

while 2% of the aphids were incorrectly recognized as thrips, 1% of

houseflies were incorrectly recognized as thrips, and 1% of

houseflies were incorrectly identified as leaf miners. Among

tobacco whiteflies, 97% were correctly detected, and 3% were

missed. The model obtained the lowest detection accuracy for

thrips at 83% accuracy, with 1% being incorrectly recognized as

aphids. Missed-detected pests were recognized as background.

The recognition performance of the improved YOLOv5 model

is illustrated in Figure 10. The improved YOLOv5 model

demonstrated high classification accuracies for both cherry

tomato and strawberry greenhouses. However, the model could

not recognize tobacco whiteflies that were too light in color, and

some tiny thrips were incorrectly recognized as small dust particles.

Houseflies and leaf miners are similar in color and shape; therefore,

they are sometimes misidentified. Precision, recall and mAP after

training the improved YOLOv5 model are shown in Figure 11.
3.2 Recognition performance on
adjacent pests

The improved YOLOv5 model demonstrated better

identification accuracy for nearby insects and could distinguish

between two adjacent whitefly insects (Figure 12). For example, the
TABLE 2 Pest dataset description.

#
images

#
tobacco
whiteflies

#
thrips

# winged
aphids

# leaf
miners

# fruit
flies

# house-
flies

# total
pests

Training
set

450 1,024 857 1,092 941 873 1,013 5,800

Test set 80 5,832 2,928 1,001 460 890 267 12,014
A B

FIGURE 7

Images of pests collected in the (A) cherry tomato greenhouse and (B) strawberry greenhouse.
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original YOLOv5 model recognized two tobacco whiteflies as one

pest in the black circle, whereas the improved YOLOv5 model could

distinguish two adjacent whiteflies. DIoU-NMS computes the

overlapping area of pests and the central point distance between

two pest boxes when suppressing redundant boxes.
3.3 Real-time pest population
dynamics in the cherry tomato
and strawberry greenhouses

The improved YOLOv5 model obtained reliable prediction

results; the predicted number of pests showed similar trends to
Frontiers in Plant Science 09
the manual counting results. The cherry tomato greenhouse had a

total of 7619 pests after 40 days of continuous monitoring as

compared to 4395 pests in the strawberry greenhouse.

The dynamic trends in the two greenhouses demonstrated different

patterns at different growth stages of cherry tomatoes and strawberries

(Figure 13). The number of pests in the cherry tomato greenhouse

increased sharply from 37 to 325 from June 9th to 10th. Thereafter, the

number of total pests decreased to 92 on June 28th, and rose rapidly in

late June and early July. The number of pests was at its highest from

214 to 419, from July 1st to July 18th, although there were fluctuations.

The strawberry greenhouse had a low density of pests from March 4th

to March 19th, and showed two peaks on March 23rd and April 3rd.

Changes in pest numbers may be related to environmental

temperature, humidity, and the growth stages of greenhouse crops

(Aiello et al., 2018). Understanding pest outbreaks may help identify

periods of risk in greenhouses and provide decision-making support

for managers.

Pest diversity and frequency varied between the two

greenhouses (Figure 14). The main pest observed in the cherry

tomato greenhouse was the tobacco whitefly, whereas thrips were

the most prevalent pest in the strawberry greenhouse. The number

of tobacco whiteflies in the cherry tomato greenhouse was

approximately 2.5 times the total number of leaf miners, fruit

flies, and aphids. In the strawberry greenhouse, 87% of the pests

comprised thrips, fruit flies, tobacco whiteflies, and houseflies. In

the cherry tomato greenhouse, the dynamic changes in tobacco

whitefly, fruit fly, and aphid showed patterns similar to the overall

trend of pest numbers, which decreased in June and increased in

July. The population trend of leaf miners showed the opposite

pattern, increasing in June and decreasing in July. In the strawberry

greenhouse, the numbers of thrips and fruit flies showed the same

trend of increasing in late March and early April. The numbers of

tobacco whiteflies and houseflies fluctuated and showed a small

increase at the same time. The dynamic trend in pest numbers

provides insights into pest control during certain periods
TABLE 3 The pest detection accuracies and average detection time of
the models.

YOLOv5
model

Improved YOLOv5
model

Average detection time (s/
image)

0.83 7.53

Overall pest detection
precision (%)

65 96

Tobacco whitefly detection
precision (%)

92 97

Thrips detection precision
(%)

80 83

Aphid detection precision
(%)

56 98

Leaf miner detection
precision (%)

41 99

Fruit fly detection precision
(%)

88 99

Housefly detection precision
(%)

30 98
A B

FIGURE 8

Precision-recall graph obtained on the (A) YOLOv5 model and (B) improved YOLOv5 model.
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FIGURE 9

Confusion matrix of ground truth and predicted pests using the improved YOLOv5 model.
A B

FIGURE 10

Results of pest detection for the two greenhouses using the improved YOLOv5 model. (A) Cherry tomato greenhouse, (B) Strawberry greenhouse.
FIGURE 11

Plot of precision, recall and mAP after training the improved YOLOv5 model.
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A B

FIGURE 12

Pest recognition performance on two adjacent tobacco whiteflies using (A) YOLOv5 and (B) improved YOLOv5 models.
A B

FIGURE 13

Pest population dynamics in the (A) cherry tomato greenhouse and (B) strawberry greenhouse during the 40 days of monitoring.
A B

FIGURE 14

Changes in individual pest numbers in the (A) cherry tomato greenhouse and (B) strawberry greenhouse during the 40 days of monitoring.
Frontiers in Plant Science frontiersin.org11

https://doi.org/10.3389/fpls.2023.1255719
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1255719
throughout the year, which is of vital importance for

greenhouse management.

Obtaining the dynamic changes in pest occurrence will help us

to further build pest prediction models based on time series and

understand the patterns of greenhouse pest occurrence, thus

assisting agricultural pest control decisions (Chen et al., 2022).

The present study monitored pest populations in two greenhouses

for 40 days, which provided the change in number of pests at

different times. This study provides insights for pest management at

different plant growth stages.
4 Conclusions

This study proposed a pest detection and long-term pest

number monitoring system for cherry tomato and strawberry

greenhouses. To obtain high-quality images, we designed a

sticky board trap that combines yellow sticky paper and LED

pest-trap lamps to achieve all-weather pest-trapping effects. The

LED lamp can also be used as a light supplement to increase the

brightness of the trap board image and alleviate the problem of

uneven illumination, thereby improving image quality. The pest

image capturing system with LED traps provided clearer images

compared to that adopted sticky paper only. The system was

applied to cherry tomato and strawberry greenhouses, and the

improved YOLOv5 model obtained an overall pest detection

precision of 96% during the 40 days of monitoring. The model

achieved the highest F1 score of 0.99 for the detection of four types

of pests, while the lowest F1 score of 0.91 was obtained for thrips.

This system provides important decision-support information for

the management of pests and diseases in greenhouses. The pest-

monitoring system developed in this study can be applied to other

types of greenhouses for pest image collection and for building

pest-detection models for a large number of common pests. The

system can also be used for pest population dynamics and

status prediction, considering future changes in climate and

weather conditions.
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