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Accurate detection of tea diseases is essential for optimizing tea yield and quality,

improving production, and minimizing economic losses. In this paper, we

introduce TeaDiseaseNet, a novel disease detection method designed to

address the challenges in tea disease detection, such as variability in disease

scales and dense, obscuring disease patterns. TeaDiseaseNet utilizes a multi-

scale self-attention mechanism to enhance disease detection performance.

Specifically, it incorporates a CNN-based module for extracting features at

multiple scales, effectively capturing localized information such as texture and

edges. This approach enables a comprehensive representation of tea images.

Additionally, a self-attention module captures global dependencies among

pixels, facilitating effective interaction between global information and local

features. Furthermore, we integrate a channel attention mechanism, which

selectively weighs and combines the multi-scale features, eliminating

redundant information and enabling precise localization and recognition of tea

disease information across diverse scales and complex backgrounds. Extensive

comparative experiments and ablation studies validate the effectiveness of the

proposed method, demonstrating superior detection results in scenarios

characterized by complex backgrounds and varying disease scales. The

presented method provides valuable insights for intelligent tea disease

diagnosis, with significant potential for improving tea disease management

and production.

KEYWORDS

tea disease detection, deep learning, multi-scale feature, self-attention, convolutional
neural networks
1 Introduction

As one of the traditional cash crops, tea holds significant economic and cultural value.

However, the susceptibility of tea plants to diseases during their growth stages has a

detrimental effect on both yield and quality, leading to significant economic losses for tea

growers (Mukhopadhyay et al., 2021; Mahum et al., 2023; Sunil et al., 2023). Conventional

manual techniques for detecting tea diseases are laborious, time-consuming, and
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dependent on the expertise of the testers, leading to inefficiency and

high expenses (Drew, 2019; Abade et al., 2021). Additionally, the

complex tea plantation environment, including elements like weeds,

branches, and soil, along with factors like varying disease scales and

densely shaded areas, pose challenges for accurately detecting of tea

diseases. Therefore, there is an urgent need for research on rapid

and precise methods for early detection of tea diseases.

Implementing such methods would enable tea farmers to

promptly implement control measures, prevent disease spread,

protect the health of tea plantations, and promote the sustainable

development of the tea industry (Debnath et al., 2021; Lanjewar and

Panchbhai, 2023; Pandian et al., 2023).

Traditional machine learning models, such as support vector

machines (SVM), decision trees, K-means, and random forests,

require manual feature design specific to different disease types,

making them susceptible to environmental factors and lacking

generalization capabilities (Bhavsar et al., 2022; Zou et al., 2020;

Steven, 2021; Yu et al., 2021; Bao et al., 2022; Prabu et al., 2022).

Conversely, deep learning, particularly in object detection, exhibits

potential in crop disease identification (Krisnandi et al., 2019; Ayan

et al., 2020; Jiang et al., 2020; Tetila et al., 2020; Xiong et al., 2020;

Hu et al., 2021b). However, existing models that solely consider

local pixel relationships at short distances struggle to incorporate

crucial global information in complex scenarios of tea disease

detection, featuring varying disease scales and complex

backgrounds, leading to limitations in detection accuracy (Li

et al., 2021).

Convolutional Neural Networks (CNNs) have demonstrated

remarkable success in automatically learning multi-level, high-

order features from disease images, surpassing the limitations of

traditional manual feature design methods (Abade et al., 2021;

Akanksha et al., 2021; Dhaka et al., 2021; Latha et al., 2021; Lu et al.,

2021; Wang et al., 2021; Yogeshwari and Thailambal, 2021;

Ashwinkumar et al., 2022). They offer significant advantages in

disease detection and have been extensively studied (Liu et al., 2022;

Kirti and Rajpal, 2023; Kirti et al., 2023; Sudhesh et al., 2023;

Tholkapiyan et al., 2023; Xu et al., 2023; Zhou et al., 2023).

Depending on their network structure, CNN-based disease

detection methods can be categorized as one-stage or two-stage

detectors (Jiao et al., 2021; Lin et al., 2023). Regarding tea disease

detection techniques, Qi et al. introduced TC-YOLO, a lightweight

deep learning architecture based on YOLO that achieves high fusion

capabilities (Qi et al., 2022). Alruwaili et al. improved the Faster R-

CNN model for disease detection and achieved better recognition

performance than other models (Alruwaili et al., 2022). By utilizing

basic convolutional layer architectures, Lee et al. achieved an

accuracy of 77.5% in detecting insect pests and diseases (Lee

et al., 2020). Hu et al. introduced an algorithm that enhances

image quality to improve detection accuracy (Hu et al., 2021a).

Chen et al. developed LeafNet, a specialized CNN model for tea

disease feature extraction (Chen et al., 2019). Xue et al. proposed

YOLO-tea, a tea disease detection model based on YOLOv5 (Xue

et al., 2023). However, CNNs overlook crucial global information

among distant pixels, which impacts detection accuracy.

Researchers are currently exploring methods to enhance the

global modeling capabilities of CNNs in these scenarios. For
Frontiers in Plant Science 02
instance, Hou et al. proposed an improved two-stage Faster R-

CNN disease detection algorithm incorporating an attention

mechanism in the network (Hou et al., 2023).

Attention mechanisms have emerged as highly successful

approaches in disease detection tasks, aiming to emulate the

remarkable capabilities of the human visual system in capturing

vital information from complex scenes (Zheng et al., 2021; Hu et al.,

2023). Spatial attention, channel attention, and self-attention are

different attention mechanisms that enhance feature extraction and

model performance (Carion et al., 2020; Guo et al., 2022). Several

studies have employed attention mechanisms in disease detection

models. For instance, Liu et al. proposed the spatial attention

module (Liu et al., 2019), Wang et al. introduced both channel

and spatial attention mechanisms (Wang et al., 2020), Zha et al.

developed a lightweight network model based on a coordinate

attention mechanism (Zha et al., 2021), Zhu et al. combined

CNNs with Transformer architecture to establish (Zhu et al.,

2022). Similarly, Lin et al. proposed a YOLO-based algorithm that

employs a self-attentive mechanism to enhance the model’s ability

to capture global information on tea diseases (Lin et al., 2023).

Borhani et al. proposed combining CNNs with Transformer

architecture to exploit the Transformer’s capability to establish

dependencies between distant features and extract global disease

features (Borhani et al., 2022). By incorporating attention

mechanisms, researchers have made considerable progress in

capturing essential information and enhancing the performance

of disease detection models (Alirezazadeh et al., 2023; Yang

et al., 2023).

Although the studies mentioned above have made progress in

considering local disease information, it is crucial to emphasize the

value of global information, especially the interaction between distant

pixels (Sapna et al., 2023). Motivated by these challenges and research

gaps, we introduce a novel network named Tea Disease Network

(TeaDiseaseNet). Our proposed network integrates multi-scale

feature representation with a self-attention mechanism to enhance

performance in complex backgrounds and variable disease scales. The

primary contributions can be summarized as follows:
(1) Introducing the Multi-scale Feature Extraction Module

(MFEM), which utilizes multi-scale convolutional neural

networks (CNNs) to capture comprehensive and localized

multi-scale feature representations from disease images

effectively. This module facilitates the extraction of

comprehensive local spatial information.

(2) Devising the Scale Self-Attentive Module (SSAM) to

address scale variations and complex backgrounds. The

SSAM incorporates self-attention blocks to consolidate

local and global information on tea disease images,

facil itating effective interaction between global

information and local features.

(3) Designing the Scale-aware Feature Fusion module (SFF) to

achieve accurate and robust detection. The SFF enables

feature fusion and the network to distinguish the relative

importance of different input features. It enhances the

accuracy and robustness of tea disease detection by

facilitating multi-scale feature fusion.
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(4) Conducting extensive comparative experiments and

ablation studies on each module to demonstrate our

proposed method ’ s super ior per formance and

effectiveness. The results show significant improvements

in various scenarios, surpassing most existing methods.

These findings highlight the potential and effectiveness of

our approach in enhancing the detection of tea diseases.
The structure of this paper is as follows. Section 2 focuses on the

dataset utilized in this research and explains the enhanced modules

integrated into TeaDiseaseNet. Section 3 covers the experimental

setup, including equipment configuration, evaluation criteria, and

experimental parameters. We present the results and analysis of the

ablation experiments, visualization, and discussion. Finally, in

Section 4, we present our conclusions and discuss potential

avenues for future research.
2 Materials and methods

In this section, we outline the critical components of our

proposed TeaDiseaseNet detection method. Our method involves

two main aspects: collecting a comprehensive tea disease dataset

and developing of an accurate disease detection framework. The

dataset collection process includes acquiring disease images,

annotating the dataset, and appropriately partitioning it. The

detection model comprises three crucial functional modules: 1)

The Multi-scale Feature Extraction Module (MFEM) extracts

features from different scales to capture detailed information

about tea diseases. 2) The Scale Self-Attention Module (SSAM)

applies self-attention mechanisms to learn contextual dependencies

within the extracted features. 3) The Scale-aware Feature Fusion

(SFF) module fuses the multi-scale and self-attended features to

generate a robust representation for disease detection. Collectively,

these components contribute to the effectiveness and accuracy of

our TeaDiseaseNet detection.
2.1 Tea disease dataset construction

2.1.1 Disease images acquisition
The tea disease dataset utilized in the experiments was obtained

from Professor Jiang Zhaohui’s research group at Anhui

Agricultural University (Tholkapiyan et al., 2023). This dataset

consists of 776 samples and covers a wide range of tea diseases,

including tea exobasidium blight, tea red scab, tea cloud leaf blight,

tea cake, tea red rust, and tea algae leaf spot. Each sample image in

the dataset has a resolution of 906×600 pixels, ensuring a clear and

detailed representation of the tea diseases.

Incorporating diverse tea diseases into the dataset enables

comprehensive training and evaluation of the proposed detection

model. By including samples from different tea diseases, the dataset

offers a rich and representative collection of real-world scenarios

encountered by tea growers.

Figure 1 visualizes the dataset, displaying selected tea images

that exemplify instances of the six tea diseases above. These images
tiers in Plant Science 03
serve as valuable references for understanding each tea disease

visual characteristics and distinguishing features. The annotated

dataset ensures accurate labeling and facilitates the development of

an effective convolutional neural network for tea disease detection.

By utilizing this meticulously collected and annotated dataset,

we aim to construct a robust and reliable detection model capable of

accurately identifying and classifying tea diseases. The dataset

serves as a crucial foundation for our research, ensuring the

validity and effectiveness of our proposed TeaDiseaseNet.

2.1.2 Data labeling
To adapt the dataset for tea disease detection tasks, we enhanced

the original samples by manually annotating the bounding boxes of

the tea disease targets. This critical step involved meticulously

labeling each sample image to indicate the precise location and

extent of the tea disease instances. The annotation process was

performed by a skilled professional using the labelimg image

labeling tool, ensuring accuracy and consistency throughout

the dataset.

By providing bounding box annotations, we enable the tea disease

detection model to identify the presence of tea diseases localize and

delineate the specific areas affected by the diseases. This level of detail

enhances the model’s ability to provide valuable insights and facilitate

targeted intervention strategies for tea growers.

The inclusion of bounding box annotations in the dataset

enhances its suitability and efficacy for tea disease detection tasks.

When used with our advanced TeaDiseaseNet algorithm, the

annotated dataset enables accurate and precise detection of

tea diseases.

2.1.3 Data augmentation and division
To enhance the model’s generalization capability and improve

its performance in real-world scenarios, data augmentation

techniques were applied to augment the tea disease dataset,

thereby expanding its size and diversity. Various methods

introduced diversity and variability into the original images,

including 90-degree clockwise and counterclockwise rotations,

random rotation, noise addition, and exposure adjustments. As a

result, a total of 7 640 augmented samples were generated, enriching

the dataset and providing a more comprehensive range of training

examples for the model.

The augmented dataset was subsequently divided into an 8:2

ratio for training and validation purposes. This division ensured a

balanced distribution of data and enabled robust model evaluation.

By training the model on a diverse augmented dataset and

validating it on separate samples, we obtained more reliable and

accurate results. The use of data augmentation techniques, along

with the appropriate dataset division, enhances the model’s ability

to accurately detect tea diseases, even when faced with previously

unseen or challenging images.
2.1.4 Characteristics of disease dataset
The dataset’s statistical analysis and ranking of scales revealed a

significant range of sizes among the tea disease targets. Around 20%

of the targets exhibited scales smaller than 0.0207, while 34% had
frontiersin.org
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scales larger than 0.345. This wide range of scales underlines the

diverse nature of the dataset and emphasizes the challenge of

accurately detecting diseases across various sizes. Understanding

these scale variations is crucial for developing a robust detection

model capable of effectively identifying tea diseases, regardless of their

size. Our goal is to enhance the performance and reliability of the

model in detecting tea diseases by addressing the scale variations.
2.2 The architecture of TeaDiseaseNet

To address the challenges posed by variable scales of tea pests

and dense, obscuring diseases, this paper presents a novel fused

multi-scale self-attentive tea disease detection network based on

improving YOLOv5 (Jocher et al., 2022). The YOLOv5 framework

is well-known for its remarkable object detection capabilities and

high efficiency. In our proposed model, we have harnessed the

advantages of YOLOv5 by incorporating multi-scale convolution

and multi-scale self-attention mechanisms to effectively capture

both local and global features in tea disease images. Figure 2

illustrates the network structure of our model, which comprises

three key modules: the Multi-scale Feature Extraction Module

(MFEM), the Scale-Self-Attention Module (SSAM), and the Scale-

aware Feature Fusion (SFF). These modules synergistically work to

achieve accurate and robust tea disease detection. Our approach

involves the following steps:
Frontiers in Plant Science 04
Step 1: Multi-scale feature extraction

We utilize the multi-scale convolutional blocks of the

MFEM as a backbone network to extract features from tea

images. This allows us to capture feature information of tea

diseases at different scales and local levels.

Step 2: Scale self-attentive mechanism

We feed the multi-scale feature maps into the SSAM

simultaneously to enable the interaction of global and local

information. This mechanism dynamically adjusts the weights

of each scale feature, improving the model’s ability to capture

the characteristics of tea diseases.

Step 3: Scale-aware feature fusion

We incorporate a channel attention mechanism to perform

a weighted fusion of features at different scales in tea leaf

images. This mechanism efficiently integrates characteristic

information of tea diseases across a wide range of scales,

enhancing the precision of disease localization and recognition.

Step 4: Prediction

The prediction module utilizes the previously extracted

feature information to efficiently localize and identify tea

disease features in complex contexts and at varying scales.
By following these steps, our approach aims to effectively extract

and integrate features to accurately detect and recognize

tea diseases.
A B

D

E F

C

FIGURE 1

Representative Samples from the Tea Dataset.
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2.3 Multi-scale feature extraction module

Traditional image feature extraction methods often focus on

either local or global information, limiting their ability to

comprehensively capture the diversity and complexity of images.

In recent years, deep learning-based approaches, particularly Vision

Transformers (ViT) (Khan et al., 2022), have become the dominant

method for image feature extraction. ViT segments images into

patches or tokens and employs self-attentive mechanisms to extract

parameterized visual representations. However, these methods are

constrained by fixed-scale token sequences, which restrict their

ability to capture feature structures across different scales. This

limitation poses a challenge in tea disease detection due to scale

variations. Moreover, self-attentive mechanisms prioritize global

information, disregarding important local feature details and

blurring the distinction between intricate backgrounds and

foregrounds in tea disease images. Consequently, their

applicability in disease feature extraction tasks is limited.

To address these challenges, we propose two solutions. The first

solution, illustrated in Figure 3A, involves constructing serial multi-

scale token sequences by up/down sampling and expanding/reducing

token sequences within the self-attentive mechanism module. The

second solution, depicted in Figure 3B, consists of constructing parallel

multi-scale token sequences wherein images of different scales are

simultaneously fed into the self-attentive mechanism module. This

approach leverages multi-headed self-attention to capture global

contextual information across diverse scales. Compared to the first

solution, the second approach provides a simpler implementation.

Building on these observations, we propose a parallel multi-scale tea

disease feature extraction module to address the limitations of limited

local feature representation and a single scale.

As illustrated in Figure 2, our proposed method employs four

Dense blocks derived from DenseNet (Roy and Bhaduri, 2022) to

extract both the multi-scale structure and local features of tea

disease images. The tea disease image passes through the input

layer, further progressing into the dense block, and finally
Frontiers in Plant Science
 05
undergoing average pooling. The shallow convolutional layers in

this module aim to capture intricate features like edges and

contours, while the deeper convolutional layers encode

comprehensive semantic information. Each level of the Dense

block includes down-sampling operations, gradually reducing the

resolution of the disease images. We generate a multi-scale feature

map by preserving the outputs of the last three levels of Dense

blocks. By employing the scaled feature map sequence obtained

from the CNN as input for the self-attentive mechanism module,

the length of the token sequence is indirectly adjusted. This

modification enables each token to represent a larger region in

the original image, encompassing a broader range of spatially

localized information.

In summary, the MFEM module retrieves multi-scale features,

allowing the model to capture information at different levels of

detail. This capability is advantageous for tea disease detection tasks

as it effectively handles disease size, location, and complex

backgrounds variations. The refined multi-scale features enhance

the reliability and accuracy of the tea disease detection model.
2.4 Scale self-attention module

The SSAM enables the interaction and fusion of feature maps at

various scales using the self-attention mechanism. This allows the

tea disease detection model to effectively capture both global and

local information in disease images. More specifically, the self-

attentive block within the SSAMmodule takes in multi-scale feature

maps as inputs, with each scale’s feature maps obtained through

convolution. By enhancing information fusion and interaction, this

module significantly improves the model’s performance and

accuracy across various scales. The self-attention operation in

each head of the multi-head attention mechanism is computed

based on Equation (1).

AAttention(Q,K ,V) = SsoftMax
QKTffiffiffi

d
p + B

� �
V (1)
FIGURE 2

The framework of TeaDiseaseNet.
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where Q, K, and V represent the query, key, and value matrices,

respectively. The vector dimension is denoted as d, and B signifies

the bias matrix. The output is obtained by applying the softmax

activation function SsoftMax for multi-classification.

In particular, the Self-Attention Block within the SSAM takes

multi-scale feature maps as input. Each scale is obtained through a

convolution operation. The configuration of the Self-Attention

Block, illustrated in Figure 4, includes a Multi-head Self-Attention

(MSA) module that employs a window-based approach and a 2-

layer Multi-layer Perceptron (MLP) module. Layer Normalization

(LN) layers are incorporated before each MSA and MLP module,

and residual connections are employed after each module. This

arrangement facilitates the calculation of output features, as shown

in Equation (2).

ẑ i = FW−MSA FLN zi−1
� �� �

+ zi−1

zi = FMLP FLN ẑ i
� �� �

+ ẑ i

ẑ i+1 = FSW−MSA FLN zi
� �� �

+ zi

zi+1 = FMLP FLN ẑ i+1
� �� �

+ ẑ i+1

8>>>>><
>>>>>:

(2)

where W-MSA represents the window multi-head self-

attention, while SW-MSA denotes the shifted window multi-head

self-attention. The variables ẑ i and zi correspond to the output

features of the (S)W-MSA and MLP modules of the i-th block,

respectively. The W-MSA module, SW-MSA module, MLP module

and LN module features are denoted as FW-MSA, FSW-MSA, FMLP,

FLN, respectively.
2.5 Scale-aware feature fusion

The SFF module efficiently combines features from multiple

scales, resolving discrepancies and improving model performance.

In tea disease detection tasks, it is crucial to efficiently process
Frontiers in Plant Science 06
information from multiple scales. This module is specifically

designed to address discrepancies and inconsistencies in multi-

scale features. We leverage a channel focus mechanism to enhance

the model’s performance by incorporating spatial and channel

features in the input data. This allows the model to accurately

discern and differentiate between objects or features, improving

object detection accuracy.

The channel attention mechanism enhances the inter-channel

information importance in a convolutional neural network. It

compresses the features of each channel by integrating their

spatial information and computes them using global average

pooling, as defined below:
FIGURE 4

Self-Attention Block.
A

B

FIGURE 3

Two Ideas for Multi-scale Structures in Tea Disease Detection. (A) Constructing serial multi-scale token sequences. (B) Constructing parallel multi-
scale sequences.
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z = Fsq =
1

H �Wo
H

i=1
o
W

i=1
X(i, j) (3)

where z denotes the compressed feature vector,H andW denote

the feature map size of feature X. A learnable parameter w captures

the correlation between feature channels. To improve

computational efficiency, the number of channels is reduced using

the following approach:

s = Fex z,wð Þ = ∂ g z,wð Þð Þ = w2d w1zð Þð Þ (4)

where the adaptive weight of each channel is represented by s,

and d represents the ReLU activation function, while s represents

the Sigmoid activation function. Combining the channel adaptive

weight s with the original feature z and assigning a new adaptive

weight to each existing channel, the rescaled feature is obtained

using Equation (5).

Xc = Fscale(X, s) = X · s (5)

As shown in Figure 5, the SFF consists of Upsample, Concat,

Bottleneck CSP, and St module operations. The BottleneckCSP

module performs a convolution operation on the fused features to

further extract feature information, and the St module introduces a

channel attention mechanism to weigh the multi-scale features for

fusion and eliminate redundant information.

The St module utilizes global average pooling to compute

feature compression values for each channel and learns

parameters to model the correlation between channels, resulting

in adaptive weights. These weights are applied to rescaled original

features, achieving adaptive feature weighting and improving

feature representation. Through the combined operations of

Upsample, Concat, BottleneckCSP, and St, the feature fusion

network enables the interaction and fusion of multi-scale

information, enhancing the model’s performance. This addresses

inconsistencies and discrepancies between multi-scale features,

improving accuracy and robustness in tea disease detection tasks.

In general, the primary objective of the SFF module is to

integrate global and local information from multiple scales,
Frontiers in Plant Science 07
enabling the generation of precise density maps to effectively

capture the spatial distribution of diseases.
2.6 Prediction module

The prediction module is responsible for locating and

identifying tea disease information at various scales. It achieves

efficient prediction by utilizing the feature fusion network’s output

and employing parallel branches. The incorporation of IoU

branches further enhances the accuracy of the prediction results.

The prediction module comprises 1×1 convolutional layers and

parallel branches. Each branch contains a Conv Block that

comprises two 3×3 convolutions. The topmost Conv Block is

dedicated to the classification task, while the bottommost Conv

Block focuses on the regression task. An additional IoU branch is

introduced to the module to enhance the accuracy of

the predictions.
2.7 Loss functions

The tea disease detection model utilizes three essential loss

functions: localization loss Lloc , classification loss Lcls, and

confidence loss Lconf , as depicted in Equation (6).

L = Lloc + Lcls + Lconf (6)

These components enhance the model’s accuracy regarding

object localization and category identification. The localization

loss minimizes bounding box coordinate discrepancies, while the

classification loss reduces errors in tea disease classification. Finally,

the confidence loss enhances the model’s precise detection and

classification estimation. The model can optimize its performance

by incorporating these loss functions and achieve more accurate

and reliable tea disease detection results.

The final localization loss Lloc is computed according to

Equation (7).
FIGURE 5

The multi-scale feature fusion module.
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Lloc =o
s2

i=1
o
B

j=0
Iobji,j (1 − CIoU) (7)

The Complete Intersection over Union (CIoU) loss is a

regression loss function considering bounding boxes’ overlapping

area, center distance, and aspect ratio consistency. When

incorporated into the model, it provides a more accurate measure

of the bounding box regression error, leading to improved accuracy

and localization performance in tea disease detection.

CIoU = IoU −
r2 b, bgtð Þ

c2
− aυ (8)

n =
4
p2 arctan

wgt

hgt
− arctan

w
h

� �2

a =
υ

1 − IoUð Þ + υ

where c represents the diagonal distance between the prediction

frame and the minimum enclosing area of the ground truth frame, r
denotes the Euclidean distance function, while b and bgt correspond

to the centroids of the prediction frame and the actual frame,

respectively. The variable n indicates the similarity of the aspect

ratio, and a is the weighting factor. Additionally, w and h denote the

width and height of the prediction frame, respectively.

A binary cross-entropy loss function is used for the

classification loss Lloc , according to Equation (9).

Lcls = −o
s2

i=1
o
B

j=1
o

c∈classes

Iobji,j p̂ j
i log pji

� �
+ 1 − p̂ j

i

� �
log 1 − pji

� �h i
(9)

where S, B and Iobji,j have the same meaning as in the context, c is

the currently identified category and classes are all the classes to be

detected, pji and p̂ j
i are the predicted and true probabilities that the

target in the i-th grid, j-th anchor box belongs to class c,

respectively. The confidence lossLconf is computed according to

Equation (10).

Lconf = −o
s2

i=0
o
B

j=0
Iobji,j Ĉ j

i log Cj
i

� �
+ 1 − Ĉ j

i

� �
log 1 − Cj

i

� �h i

−lnoobjo
s2

i=1
o
B

j=0
Inoobji,j Ĉ j

i log Cj
i

� �
+ 1 − Ĉ j

i

� �
log 1 − Cj

i

� �h i (10)

where, Inoobji,j denotes the i-th grid, whether the j-th anchor box

does not have a target, no target is 1, otherwise is 0; lnoobj is a

constant coefficient, taken as 0.5, to balance the effect of positive and

negative samples on the loss function; Cj
i and Ĉ j

i are the confidence

levels of the prediction and truth boxes respectively.
3 Experimental results and analysis

The experiments were conducted using Python programming

language and the PyTorch deep learning framework (version 1.7.0).

Taking advantage of the server’s configuration, which included two

RTX 3090 GPUs, the training process efficiently utilized parallel
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processing. The Adam optimizer was employed to optimize the

training process. A batch size of 8 was selected, striking a balance

between computational efficiency and model convergence. To

ensure comprehensive learning and convergence, the models were

trained for 300 epochs. This experimental setup effectively

maximized computational resources, enabling accurate and

reliable model training.
3.1 Performance comparisons

In this paper, we evaluate the performance of disease detection

models using the mean Average Precision (mAP), Precision, and

Recall as metrics. The mAP is calculated by summing the Average

Precision values for all categories and dividing it by the total

number of categories, as shown in Equation (11).

AP = ∫
1

0
p(r)dr (11)

mAP =
1
no

n

i=1
APi

where n represents the class number, APi denotes the Average

Precision values for each category. This formulation enables a

comprehensive and concise evaluation of the model’s overall

detection accuracy, capturing its performance across diverse

disease categories.

Precision provides valuable insights into the model’s capability

to accurately identify and classify target frames. It quantifies the

ratio of correctly identified frames to the total predicted frames,

providing a measure of the model’s precision and accuracy in target

detection. Equation (12) represents the mathematical expression of

Precision.

P =
TP

TP + FP
(12)

Recall is defined as the ratio of correctly detected target frames

to the total number of target frames in the dataset, assessing the

model’s ability to identify all instances of the target without missing

any. Equation (13) represents the mathematical expression for

Recall.

R =
TP

TP + FN
(13)

This study evaluates the performance of TeaDiseaseNet by

comparing and analyzing its detection and identification results

with various classical CNN models, including SSD (Liu et al., 2016),

Faster R-CNN (Ren et al., 2015) YOLOv3 (Redmon and Farhadi,

2018), YOLOv4s (Bochkovskiy et al., 2020), YOLOv5s (Jocher et al.,

2022), YOLO-Tea (Xue et al., 2023), and AX-RetinaNet (Bao et al.,

2022). Table 1 presents these networks’ detection and recognition

experiments’ precision, recall, and mean Average Precision (mAP)

values. The results demonstrates the outstanding detection accuracy

of TeaDiseaseNet. TeaDiseaseNet achieves superior detection

accuracy compared to models that employ model scaling, such as
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YOLOv4s and YOLOv5s. This remarkable performance can be

attributed to the utilization of DenseNet, which incorporates

dense connectivity in the network, enhancing feature reuse and

gradient flow. Moreover, TeaDiseaseNet employs effective

techniques for multi-scale feature extraction and fusion.

It is worth noting that the YOLOv3 algorithm exhibits higher

detection accuracy than YOLOv4s and YOLOv5s, potentially

because of its shallower depth and smaller feature map width.

The detection accuracy of Faster R-CNN is higher than that of

YOLOv3 by 1.9%. This performance difference arises because Faster

R-CNN is a two-stage target detection algorithm. It generates

candidate regions using a region proposal network and selects the

best candidate regions using a region classification network. In

contrast, YOLOv3 is a one-stage target detection algorithm that

predicts object locations and classes across the entire image by

taking the entire image as input. Despite requiring more

computational resources, Faster R-CNN delivers higher accuracy

and fewer false positives compared to YOLOv3. Furthermore,

TeaDiseaseNet demonstrates a slightly higher average accuracy

compared to the SSD algorithm.

In conclusion, this paper presents a significant advancement in

disease detection by employing CNN characteristics and

incorporating a self-attentiveness mechanism. TeaDiseaseNet

utilizes CNN to extract multi-scale feature maps that encompass

abundant spatial information at various levels of detail. Inspired by

human visual mechanisms, this design enhances the model’s
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capability to effectively handle complex backgrounds and scale

variations in disease images. The incorporation of the attention

mechanism empowers TeaDiseaseNet to automatically select and

prioritize the most relevant features within an image, significantly

enhancing disease detection accuracy.

Figure 6 illustrates the average loss value curve of

TeaDiseaseNet during training iterations. The plot demonstrates

that the loss value stabilizes around 0.39 after approximately 255

iterations. The slight fluctuations observed in the loss value after

convergence can be attributed to the inherent complexity and

variability of the training data. The results indicate that

TeaDiseaseNet has successfully learned and adapted to the

training data, as evidenced by the convergence of the parameters

and satisfactory performance.
3.2 Evaluation of TeaDiseaseNet

The effectiveness of the proposed TeaDiseaseNet algorithm was

evaluated using the provided dataset. Table 2 presents the accuracy

of the model in recognizing each tea disease. The results highlight

the significant advantages of the algorithm for tea disease detection.

The algorithm achieved high accuracy rates of 92.1% and recall

rates of 92.9% for tea round red star disease, with an average

accuracy rate of 94.5%. These findings indicate accurate

identification and significant improvements in detecting this
TABLE 1 The Comparison of different networks.

Network Year Precision (%) Recall (%) mAP (%)

SSD 2016 86.5 89.1 88.4

Faster R-CNN 2015 91.5 87.3 92.2

YOLOv3 2018 94.2 84.6 90.3

YOLOv4s 2020 90.7 85.9 88.7

YOLOv5s 2020 92.3 86.5 89.4

AX-RetinaNet 2022 96.8 94 93.8

YOLO-Tea 2023 – – 79.3

TeaDiseaseNet 2023 95.3 97.1 93.5
fr
FIGURE 6

The Loss changing graph of TeaDiseaseNet.
ontiersin.org

https://doi.org/10.3389/fpls.2023.1257212
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2023.1257212
particular disease. Tea webcake disease exhibits slightly lower

accuracy and recall rates of 89.2% and 85.8%, respectively.

However, the algorithm achieves an average accuracy rate of

95.4%, surpassing the individual accuracy and recall values. This

demonstrates the algorithm’s capability to overcome challenges

related to small spot areas. The algorithm also performs

remarkably well in detecting other tea diseases, including tea

algae spots, tea cake disease, tea cloudy leaf blight, and tea red

rust algae disease. These diseases exhibit high values across all

evaluation metrics. The results demonstrate significant innovations

and benefits in multi-scale tea disease detection. The algorithm

achieves high recognition accuracy for large-scale tea redscab and

small-scale tea exobasidium blight.

The algorithm achieves high recognition accuracy for large-scale

tea redscab and small-scale tea exobasidium blight. The performance

evaluation of each network was conducted based on metrics such as

accuracy, recall, and average accuracy, and the results are presented in

Table 3. The results revealed that the DenseNet model, serving as the

backbone network, performed the best in accuracy, recall, and average

accuracy. The algorithm achieves high recognition accuracy for both

large-scale tea redscab and small-scale tea exobasidium blight.

DenseNet exhibits strong resistance to overfitting, making it

particularly suitable for scenarios with limited training data. A

notable characteristic of DenseNet is its utilization of feature reuse

through feature concatenation across channels. This enables DenseNet

to achieve superior performance compared to ResNet-101, while

utilizing fewer parameters and incurring lower computational cost.

In contrast, Darknet53 is a lightweight convolutional neural network,

however, it proves to be challenging to train. DenseNet performs

admirably in the tea disease detection task. As a result, this paper selects

DenseNet as the underlying network structure for the proposed

algorithm. The algorithm effectively resolves the scaling issue by

establishing a multi-scale feature representation and enhances overall

performance. In summary, the algorithm proposed in this study

demonstrates improved accuracy compared to other models, thereby

representing significant progress in the field of tea disease detection.
3.3 Ablation studies

To validate the effectiveness of the proposed network model,

incremental ablation experiments were conducted. Each network

module was incrementally incorporated based on the DenseNet

backbone architecture. This approach allowed for a comprehensive
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evaluation of each module’s contribution to the overall

performance. This step-by-step approach aimed to enable a

comprehensive evaluation of the individual contribution of each

module to the overall performance.

The results of the ablation experiments conducted for each

module are presented in Table 4. Including of the MFEM+SSAM

module results in a substantial performance improvement, with a

2.2% increase in mAP compared to using the MFEM module alone.

This improvement can be attributed to utilizing the multi-head self-

attention mechanism within the MFEM+SSAM module. This

mechanism captures global contextual information from multi-

scale feature maps and facilitates the interaction between global

and local information. Assigning weights to features, such as spot

color and leaf edge, enhances the detection accuracy. Furthermore,

the new scale-aware feature fusion (SFF) module adopts a channel

attention mechanism to fuse features of different scales. It focuses

on the feature channels containing discriminative information and

assigns a higher weight distribution to them, effectively improving

the detection performance (Chen et al., 2020). The SFF module

effectively fuses information from tea disease features of various

scales, resulting in improved accuracy of localization and

identification. The introduction of the SFF module enhances the

mAP by 0.7%, indicating its contribution to improved detection

accuracy of the network.
3.4 Visualization and discussion

Representative disease images were selected to showcase the

exceptional performance of the proposed model in effectively

addressing challenges posed by continuous scale variations and

complex backgrounds. This visualization demonstrates the model’s

ability to detect diseases accurately. Figures 7 and 8 present the

original disease images on the left and the model’s detection results

on the right. Rectangular boxes indicate the identified disease types

and their corresponding confidence levels.

Figure 7 demonstrates the model’s ability to effectively identify

diseases with varying scales and address disease scenarios

characterized by continuous scale variations. This showcases the
TABLE 2 Performance in detecting different tea diseases.

Tea Disease P (%) R (%) mAP (%)

Tea exobasidium blight 89.2 85.8 95.4

Tea red scab 92.1 92.9 94.5

Tea algae leaf spot 94.9 88.8 93.5

Tea cake 90.0 91.4 94.7

Tea cloud leaf blight 88.5 89.5 92.0

Tea red rust 85.4 87.7 90.9
TABLE 3 Performance comparison of different backbone networks.

Backbone P (%) R (%) mAP (%)

DenseNet 95.3 97.1 93.5

Resnet-101 91.3 90.2 92.8

Darknet53 91.8 90.5 93.2
fr
TABLE 4 Results of ablation experiments.

Backbone (MFEM) SSAM SFF mAP (%)

√ 90.6

√ √ 92.8

√ √ √ 93.5
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algorithm’s capacity to extract rich global contextual information at

multiple scales and accurately detect scale variations by comparing

global and local information. Figure 8 highlights the model’s

effectiveness in eliminating complex background interferences, such

as branches and fallen leaves in disease scenes. This can be attributed

to the feature extraction and fusion networks, which enable the

proposed method to accurately detect disease areas within complex

scenes by capturing dependencies between input feature scales.

Additionally, a comparison was conducted between the YOLOv3

and TeaDiseaseNet models using images of tea leaf diseases, as depicted

in Figure 9. The YOLOv3 model exhibited missed detections and

inaccurate annotation box positions, whereas TeaDiseaseNet accurately

detected and confidently annotated the diseases. The superior

performance of TeaDiseaseNet can be attributed to its multi-scale

self-attention mechanism, which enhances the acquisition of semantic

and location information in the images. This results in improved

feature extraction and detection accuracy.

The results demonstrate that TeaDiseaseNet outperforms

YOLOv3 in terms of detection accuracy and robustness, owing to

its enhanced feature extraction capabilities and multi-scale self-

attention mechanism.
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4 Conclusion

This paper introduces TeaDiseaseNet, a novel tea disease

detection model that effectively addresses challenges posed by

complex backgrounds and variable scales. By incorporating a

multi-scale self-attentive mechanism, TeaDiseaseNet enables

effective interactions between global and local features across

multiple scales. This mitigates the impact of scale variations and

complex backgrounds on detection accuracy. Experimental results

demonstrate that TeaDiseaseNet surpasses state-of-the-art

methods, exhibiting exceptional accuracy and robustness in scale

variations and background interference scenarios. These findings

provide valuable insights for intelligent tea disease diagnosis,

supporting tea farmers with accurate detection capabilities and

enabling timely control measures to protect tea plantations,

improve tea quality, and enhance yields.

In addition to the benefits and contributions highlighted in the

conclusion, this study also has certain limitations that need to be

acknowledged. Firstly, the use of a limited dataset may not fully

capture the diversity of tea diseases. Including a wider range of tea

diseases would enhance the representativeness and applicability of
FIGURE 7

Disease scenarios with continuous scale changes.
FIGURE 8

Disease scenes with complex backgrounds.
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the detection system. Secondly, biases in the training data, such as

imbalances in disease instances or variations introduced by different

image acquisition systems, could affect the performance of the tea

disease detection system. Efforts should be made to address these

biases and enhance the system’s robustness. Additionally, the study

focuses on offline detection, which may not be practical for real-

time implementation in tea plantations. Future research should

explore real-time implementation, taking into account the resource

and time constraints associated with practical deployment. Lastly,

interpreting the decision-making processes of the deep learning

model is challenging due to their complexity. Enhancing the

interpretability of the model would enhance its usefulness in

decision-making for tea farmers. Addressing these limitations can

improve the practicality and effectiveness of tea disease

detection systems.
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